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Abstract: Population count is a necessary process in several fields, such as cryptography, database search, data mining, and machine 

learning. Real-time problems have very large datasets, which require enhanced performance. Therefore, the objective of this paper was 

to propose a modified approach to the hamming weight algorithm to allow the implementation of approximate calculations on error-

tolerant applications, such as machine learning and database searches, which do not require precise results. The proposed approach 

used approximate adders, rather than the exact carry save adder computations used in the Harley-Seal methodology of bit counting, 

along with modified imprecise error-tolerant adder type II (ETAII), named Approximate Harley-Seal with Modified ETAII (AHS-

METAII). The precise versus imprecise designs of Harley-Seal approach were tested, evaluated, and compared to show that 

implementing partial logic functions instead of fully logic functions resulted in 27% power reductions with a slight decrease (9%) in 

the accuracy level over traditional adders on a 64-bit stream. The simulation results demonstrated that the proposed approximate 

approach model using Verilog was faster than the exact methods by 3% and consumed 16% less area. 
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1. INTRODUCTION  

The term hamming weight, also known as population 

count, popcount, or sideway sum, is the number of bits set 

to one in any binary stream given as an input of bits appears 

at the same time. Implementing this calculation can be done 

using both hardware and software [1] on strings that vary 

in length ranges. This paper tackles the never-ending issue 

of bit counting, a process that deals with the fundamentals 

of computer organization and has been debated ever since 

the infancy of launching the computer science field [2]. 

Hamming weight carries importance in many fields 

including -but not limited to- cryptography [3], data mining 

[4], machine learning [5], and database search [6]. 

Therefore, the need to enhance the speed of the hamming 

weight calculations has been increased to the point where 

some processors have a specialized population count 

method [7]. Suggested solutions expose either scalar 

parallelism or vector parallelism. However, certain 

applications are precision-loss tolerant by nature, and due 

to their existence, the need to implement inexact computing 

has gained popularity. Many evolving application classes 

like mining and synthesis that reveal intrinsic error 

resilience have redundancies in their input data sets, where 

some of them do not have a correct answer. Thus, the 

concept of error-tolerance resources was introduced, which 

delivers approximate results at an enhanced speed while 

showing improvement in power consumption, latency, and 

area at the expense of accuracy. Consequently, utilizing the 

mentioned characteristic to enhance the computation’s 

speed performance through a simplified inaccurate circuit 

is required [8, 9].  

Therefore, to keep up with the progressively high 

demands of applications requiring high-speed and power-

efficiency, a new approach has been proposed to speed up 

the calculation of counting set bits in a stream by modifying 

the internal circuit blocks to boost the operation’s 

performance. Since the discussed pop count method in this 

paper requires the use of traditional adders which play a 

vital role, the chosen approximate error-tolerance adders 

are not directly compatible for population count use. 

Hence, focusing our work-attention to this compatibility 

challenge allowed us to consider combining both (the exact 

and approximate adders) to compute the hamming weight 

at a narrow range of accuracy loss [10] which resulted in 

faster addition compared to previous results.  

An abstract visualization of this approach is shown in 

Figure 1. The approach proposes the usage of the existing 

vectorized Harley-Seal algorithm [11] with approximate 

adders instead of exact adders to perform the addition 

process. Thus, decreasing dependencies between two 

related operations. The chosen approximate adder is Error-

Tolerant Adder Type II (ETAII) [12], which is further 

modified to Modified Error-Tolerant Adder Type II 

(METAII) to be compatible with the mentioned 

implementation. The hybrid popcount approach consumes 

less power by 27% and utilized 16% less area as compared 

the use of exact adders only. In addition, it is faster than the 
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Figure 1.  Modified Harley-Seal 

exact methods by 3% with a slight loss in the accuracy level 

(i.e., 9%). 

The main objective of this paper is to present an 

improved hybrid popcount approach based on the 

approximate adder principle, named as Approximate 

Harley-Seal with Modified ETAII (AHS-METAII) 

implemented using Verilog. Our contributions can be 

summarized as follows: 

• Proposing an approximate method to count the 

number of ones inspired by the vectorized version 

of the Harley-Seal method. 

• Proposing a modified version of the approximate 

error-tolerant adder type II (ETAII). 

• Combining the approximate Harley-Seal with the 

modified ETAII to enhance speed and reduce 

power with a slight loss in accuracy.  

• Comparing the exact Harley-Seal method results 

in terms of speed, accuracy, power and area with 

the modified approximate Harley-Seal method. 

• Studying the effect of varying the number of 

words implemented in our Approximate Harley-

Seal with Modified ETAII (AHS-METAII) 

approach using different popcount functions. 

• Determining the best implementation in terms of 

performance metrics considered. 

The organization of this paper is as follows: Section 2 

provides an overview of the key existing algorithms 

related to counting-ones and then introduces current 

approximate adders. Section 3 gives a more detailed 

background of the Harley-Seal method and ETAII. 

Section 4 proposes the enhanced version of the 

approximate Harley-Seal methodology, which utilizes 

modified ETAII. Section 5 discusses the experimental 

results and compares the exact and approximate adders’ 

performances. Finally, Section 6 concludes the paper and 

presents some future trends. 

2. EXISTING ALGORITHMS AND RELATED WORK 

This section discusses various existing non-complex 

methodologies to calculate the hamming weight with 

different effectiveness. Then, approximate adders are 

presented to accelerate the process of counting ones. 

A. Bit-counting techniques  

Hamming weight algorithms can be categorized into 

scalar algorithms and vectorized algorithms. Algorithms 

using the scalar approach have been discussed for the 

longest time [7, 11, and 13] and afterwards the concept of 

vectorization appeared [7]. Hence, algorithms shifted to 

the use of vectorization due to the enhancement it offers. 

Naïve method is an obvious approach presented in 

[14], to count the number of ones in a string of bits. The 

method goes as follows: the least significant bit (LSB) is 

inspected; if it is set to one then the counter is incremented. 

As long as the remaining value is not equal to zero, the 

string of bits is repeatedly shifted. Although this is a 

simple method, it is the poorest in terms of efficiency. As 

it does not benefit from the distinct nature of this 

calculation, where it could be done in parallel. This 

method is further extended by using parallel bit reduction 

such that a naïve tree of adders (NTAD) which utilizes less 

operations per word as stated in [7]. As shown in Figure 2, 

a word of eight-bits (for simplicity) is grouped into levels, 

such that each two consecutive bits are summed in parallel. 

Next, the results of the previous step are added into a four-

bit sub word. Finally, the four-bit sub words are summed 

to provide the final result.  

Figure 2. Trees of Adders 

Wilkes-Wheeler-Gill (WWG) approach stated in [7, 

15], optimizes the tree-of-adders count function such that 

it involves fewer instructions as shown in Figure 3. Next, 

keeping in mind that the MSB of each sub-word is zero, it 

adds consecutive sub-words into bytes. Efficiently, the 

multiplication and final shift sum all bytes such that the 

total population count is less than 64. 

Figure 3. Wilkes-Wheeler-Gill method 

Inn [63:0] = Inn - ((Inn [63:0] >> 1) & 64'h5555555555555555); 
Inn [63:0] = (Inn [63:0] & 64'h3333333333333333) + ((Inn [63:0] 

>> 2) & 64'h3333333333333333); 

Inn [63:0] = (Inn [63:0] & 64'h0f0f0f0f0f0f0f0f) + ((Inn [63:0]>> 
4) & 64'h0f0f0f0f0f0f0f0f); 

Inn [63:0] = (Inn [63:0] * 64'h0101010101010101) >> 56; 
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Memoization (Look Up Table) algorithm is based on 

tabulations such that, tables are generated only once, 

where each row has the matching population count for 

each possible value. For example, in a 32-bit device, a 

single table size will be equal to 232 and any given word 

is used as an index to the LUT to determine its hamming 

weight. Hence, a single read operation is enough. 

However, the table can be further reduced to be of size 216. 

Although the reduction reduces the table size to half, it 

also adds extra read operations and a splitting operation. 

This as a result, slows down the calculation process as 

presented in [16].  

Arithmetic logic is another common method based on 

subtraction and masking bits, which could compete with 

previous methods when population count is expected to be 

low (e.g., less than 6.25% of a word) as stated in [12]. The 

procedure starts by decrementing the original stream by 

one then the decremented value is AND-ed with the 

original number. This process is repeated until the checked 

value equals zero.  

In [11], vectorized technique (Harley-Seal) is 

illustrated, where the Carry Save Adder (CSA) is utilized 

for calculation. This methodology is chosen in our 

approach as it is faster than all of the non-vectorized (or 

scalar) functions [7]. It is favored in the case of having 

largely sized input bits, as it is quicker to reduce inputs and 

then bit count on two outputs; instead of directly bit 

counting on three inputs. Thus, reducing data amounts for 

which bit counting operate on directly [7]. Further details 

on Harley-Seal is presented in the next section. 

B. Approximate adder designs 

Adders are playing a vital role in Harley-Seal method 

[11]. Approximate addition also known as soft addition, 

relies on slackening exact and fully deterministic building 

blocks (like full adders). Since the approach of this work 

concentrate on redesigning a logic circuit into an 

approximate version, the result pertains to the 

functionalities of different logic circuits because of the 

approximate adder. However, there are many approximate 

adder approaches with different accuracy levels, as well as 

different implementations. Approximate adders are 

classified into four categories: Speculative Adders, 

Segmented adders, Carry Select Adders and Approximate 

Full Adders [10]. Speculative Adders include almost 

correct adder (ACA) [18], while segmented adders include 

ETAII [12] and Accuracy-Configurable Approximate 

Adder (ACAA) [9], carry Select Adders include 

Speculative Carry Select Adder (SCSA) [12] and 

Approximate Full Adders include Lower-Part-OR Adder 

(LOA) [19]. 

ETAI and ETAII approximate adders are discussed in 

[12]. ETAI deals with small input numbers where it 

segments the addition into two parts, an accurate part 

containing the most significant bits (MSBs) and an 

inaccurate one, which adds the least significant bits (LSBs) 

of the input. This adder type has a low accuracy result. 

Similarly, ETAII is a segmentation-based inaccurate adder 

that takes the value of the carry into consideration. The 

carry propagation trail is fragmented into several short 

routes. More explanation is shown in the following section. 

Thus, the carry propagation can be done in the short routes 

at the same time as the summation.  

In [20], the Speculative Carry Select Adder (SCSA) is 

proposed. According to theoretical research, the lower 

bound on the critical path delay of an n-width adder has 

O(log n), complexity indicating that a sub-logarithmic 

delay cannot be attained by traditional adders. On the 

contrary, speculative adders revealed sub-logarithmic 

delay achievements through neglecting rare critical path 

input patterns. Based on the above observation, speculative 

adders were built. Differentiating between both adder 

types, each traditional adder output depends on all lower or 

equal significance preceding bits, while each speculative 

adder output only depends on preceding k bits rather than 

all preceding bits. Because SCSA is only employed on 

blocks instead of individual outputs, it is less vulnerable to 

errors.  

In Accuracy-Configurable Approximate Adder 

(ACAA) introduced in [9], the circuit arrangement changes 

during accuracy configuration at runtime, thereby attaining 

a trade-off of accuracy against performance. In this n-bit 

adder, ⌈n/k - 1⌉ 2k-bit sub-adders are necessary. In order to 

correct the errors created by each sub-adder, an Error 

Detection and Correction (EDC) circuit is used in a 

pipelined architecture with the approximate adder to 

implement the accuracy configuration [10].  

Other recent researches regarding approximate adders 

include [21, 22, and 23]. In [21], block-based carry 

speculative approximate adder (BCSA) is proposed. This 

adder is built on dividing the exact adder into blocks which 

work in parallel. Different type of adders can be 

implemented in these blocks as they are non-overlapped. 

The carry chain length is reduced and a select logic is 

suggested to speculate the carry input of each block based 

on some input operand bits of the current and next block. 

A new 32-bit Approximate Carry Look Ahead Adder 

(CLA) is introduced in [22] for Error Tolerant 

Applications. Approximate CLA is built on modified carry 

propagation equation of the exact CLA. The proposed 

design consumes less power and utilized less area than the 

exact one. Lower error obtained when compared to the 

other approximate CLA. In [23] four Approximate Full 

Adders (AFAs) are proposed for high performance 

approximate computing. The proposed adder is built on 

shortening the length of carry propagation along with 

achieving minimal error rate.  

According to the comparison of approximate adders 

conducted in [10], ETAII, SCSA and ACAA have the 

similar accuracy levels when their parameters are equal and 

ETAII is considered as one of the most accurate and 

efficient adders among all the compared designs [17]. 

Moreover, it consumes less power and area and has shorter 

delay than ACAA and SCSA, as the logic block of ETAII 

is simpler than SCSA and ACAA. Regarding the power-
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delay-product (PDP) value which is used to estimate the 

circuit characteristics of approximate adders since smaller 

delay not necessary means lower power consumption, 

ETAII has the lowest PDP compared with ACAA and 

SCSA [17]. It is found that ETAII is a good and compatible 

choice to be implemented with Harley-Seal bit-counting 

technique in order to improve its performance in terms of 

delay, power and area. To the best of our knowledge, this 

is the first work utilizing Harley-seal technique as one of 

the efficient and fastest popcount techniques using 

approximate adders and a great improvement in delay, 

power and area are achieved to be further implemented in 

error-tolerant applications. 

3. BACKGROUND 

This section presents more details on both the Harley-

Seal technique and the ETAII approximate adder. Table I 

illustrates the notations used in the presented algorithms. 

A. Harley-Seal technique (HS-CSA) 

Harley-Seal is a vectorized technique where adders are 
used in a specific way to reduce the time it takes to calculate 
the hamming weight. The Carry Save Adder (CSA) is 
utilized for calculation. The CSA shown in Figure 4 is a 
sequence of independent n full adder which requires three 
inputs with two outputs, where each of those bits are binary 
values [11]. 

TABLE I.  ALGORITHMS NOTATIONS. 

Notation Description 

N Input length in bits 

c Population counter 

I Iteration counter 

Ai Word at itch iteration 

ones First least significant bits 

twos Second least significant bits 

fours Third least significant bits 

eights Fourth least significant bits 

M Number of input blocks to ETAII adder, where M ≥ 

2 

N/M Block length in bits of ETAII adder 

W Number of segmented words 

 XOR operation 

^ AND operation 

˅ OR operation 

Ci Carry of its full adder 

Si Sum of ith full adder 

In more details, the carry of the ith full adder represents 

the overlapping bits such that it equals one when at least 

two of the inputs Ai, Bi, or Ci have their bits set. This is 

represented by (1): 

 

Figure 4. Carry Save adder 

Ci =  (Ai ^ Bi) ˅ ((Ai  B i) ^ Ci) 

On the other hand, sum accumulates bits such that the 

bit is set only when Ai + Bi + Ci results in an odd number. 

The Sum result for each full adder is represented by (2).  

Si =  Ai  (Bi  Ci) 

The result is calculated using five logical operations, 

two of which are repeated (XOR, AND). While, OR 

logical operation is used once only, due to dependencies, 

the CSA operation takes at least three cycles.  

For example, instead of iterating through the 16-bit of 

the bit stream 1100 1101 0011 0010, this method segments 

the stream into two parts where A=1100 1101, B=0011 

0010, then adds them together. Therefore, the result of 

sum= 1111 1111 and carry=0000 0000, utilizing one of the 

mentioned scalar algorithms to count 8-bit instead of 16-

bit to find the hamming weight.  

Subsequently, translating the above explanation into 

an algorithm is presented below. As well as, an example 

of the algorithm is shown in Figure 5 with 16-bit input 

divided into eight words.  

Assuming an input of N-bit stream is divided into a 

number of words (A0, A1, …) divisible by 8. Starting with 

three words (Ones, Twos, Fours) initialized to zero, 

represents the first, second and third least significant bits, 

respectively. Initializing a population counter c and an 

iteration counter i to zero (i.e., c = 0, i =0). The following 

steps take place: 

1) Two new words (Ai, Ai+1) with Ones word are 

loaded into CSA function to write their output sum 

to the Ones register, while their resulting carry is 

loaded to a temporary register called TwosA. 

2) Perform addition to the next inputs (Ones, Ai+2, 

Ai+3), where sum is stored to the ones and carry is 

loaded to a temporary register called TwosB. 

3) Current three words with second LSBs (carry) are 

created (Twos, TwosA and TwosB). These three 

values are summed, and the result of the sum is 

stored in the Twos register, while carry is stored in 

a temporary register called FoursA. 

4) Steps (1-3) are repeated with (Ai+4, Ai+5) and (Ai+6, 

Ai+7). Three words will be gained: Twos, TwosA, 

and TwosB. The results are stored in register Twos 

(sum) and temporary register called FoursB 

(carry). 

FA

Cn
An Bn

FA

Ci+1Ai+1 Bi+1

FA

CiAi Bi

Si Sn 

…….

  

Ci          ……. Si+1 
 

Ci+1           Cn          …….

CSA
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Figure 5. Harley-Seal Technique 

5) So far, we have obtained three words containing 

third LSBs (Fours, FoursA, and FoursB). Once 

again, these words are summed. The final sum 

result is stored in the Fours register, while carry 

bits are stored in the Eights register. 

6) Increment counter i by 8 and repeat steps (1-6) 

until all the words are iterated through. 

7) Once the loop terminates, the population count 

will be equal to (3):  

c = 8 * popcnt (Eights) + 4 * popcnt (Fours) + 2 * 

popcnt (Twos) + popcnt (Ones).                                (3) 

 

It is worth mentioning that population count equation 

can be implemented using one of the count functions (e.g., 

Naïve, NTAD, WWG). Using the following stream bit 

example: 1100 1101 0011 0010, segmented into eight 

words (2-bit each) and performing the Harley-Seal on it, 

the final population count is calculated using (3) as shown 

below: 

popcnt = (8 * popcnt (Eights)) + (4 * popcnt (Fours)) + (2 

* popcnt (Twos)) + (1 * popcnt (Ones)) = (8*0) + (4*2) + 

(2*0) + (1*0) = 8 

In the mentioned implementation, segments of eight 

words were used. However, this can be extended to say 

that the Harley-Seal method works for segments of 2𝑛 

words, where n = 3, 4, 5,…(8, 16, 32, …). As a result, 

2𝑛 − 1 CSA operations/instances are required and one call 

to a popcount/count function (e.g., Wilkes-Wheeler-Gill) 

[7].  

After observing the significance of the addition 

process within the algorithm, it was concluded that faster 

adders could enhance the performance of the Harley-Seal 

speed wisely. As stated earlier, there has been a lot of 

recent development in the approximation field, more 

specifically in approximate adders. One of the most 

efficient approximate adders currently available is the 

ETAII [10], as it has a reasonable delay compared to exact 

adders where most of their delay rises from carry 

propagation (critical path). Hence, additional aspects of 

ETAII will be provided next. 

B. Error Tolerant Adder Type II (ETAII) 

ETAII is a further development of the ETAI [12]. Even 

though the ETAI reduces the overall delay and consumed 

power by disregarding the carry propagation in the 

approximate portion while proceeding with standard 

addition to the MSBs, it faces larger error rates for small 

figure inputs. In ETAII, carry propagation is not 

eliminated entirely as its predecessor ETAI. 

ETAII divides the carry propagation trail into several 

short trails and ends the carry propagations within the 

short trails simultaneously as shown in Figure 6. ETAII 

divides an N-bit adder into M blocks where M ≥ 2. Each 

block consists of N/M bits and is computed in two 

different circuitries; carry generator and sum generator 

circuits. Those elements are implemented using standard 

design. The first circuit (i.e., the carry generator) produces 

the carry-out signal without needing any previous carry 

signal, and the second circuit (i.e., the sum generator) 

utilizes a carry-in signal from a prior block to produce its 

sum. Therefore, the sum generator block is presented by 

1-bit adder while carry generator block is implemented 

using the carry look-ahead adder (CLA). Thus, carry 

propagations do not lie in the entire adder structure, but 

instead occur between two adjacent blocks. The power 

consumption of the ETAII adder is reduced due to the 

restraints put on the carry propagation delay. Moreover, 

the adder’s speed is enhanced. During the addition of 

binary numbers, the carry signal is provided from the 

previous input bits. In case the signal is generated in the 

LSB and propagated to the current bit position, which is 

considered as a worst-case scenario, then an increased 

amount of power and time are expended in the carry 

propagation trail. However, the occurrence of the previous 

case is infrequent [12]. 

As an example, take two 8-bit streams (N=8); 

A=11001101 and B= 00110110. Add them using ETAII 

with blocks of four (M=4), meaning that the inputs of carry 

and sum generators are 2-bit length. The approximate 

sum=0 11000011 (195), while the exact sum=1 0000 0011 

(259). The error rate in this case is 25%.  
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Figure 6. ETAII Adder 

4. PROPOSED METHODOLOGY 

Harley-Seal utilizes CSAs, and to achieve the objective 

of this paper, this adder will be replaced with ETAIIs. 

However, an obstacle is faced due to incompatibly issues, 

as vectorized Harley-Seal needs word values of both sum 

and carry, not single bits of each. Acknowledging the fact 

that ETAII provides a single carry out bit with a sum word, 

when combined with the Harley-Seal it will provide 

extremely incorrect results. For example, considering the 

following 64-bit stream 0101 0100 0101 1010 1001 0101 

0101 0001 1010 0001 1101 0100 0101 0001 0001 0011, 

using the original Harley-Seal will result in 27 ones.  

On the other hand, taking the same bit stream and using 

ETAII instead will result in 18 ones. Therefore, to 

overcome this problem, ETAII will be modified as 

follows. Since the carry calculation is necessary, an 

additional output register will be added called “Carry 

Register”. This necessity considers that internal carries are 

used for the next step’s calculation and not within the same 

step. At the end, the architecture of ETAII will be modified 

as shown in Figure 7. The sum generator and carry 

calculation for 1-bit are shown by (4) and (5), respectively. 

Si ~ S0

Carry 

Generator

Sum 

Generator
Sj ~ Sm

Carry 

Generator

Sum 

Generator
Carry 

Generator

Sum 

Generator…….

Ai ~ A0

Bi ~B0

Aj ~ Am

Bj ~Bm

An ~ Aj+1

Bn ~Bj+1

Si ~ S0Sj ~ SmSn ~ Sj+1 …….

…….

Ci ~ C0Cj ~ CmCn ~ Cj+1 …...Carry

Register 

(MSBs)

Sum

Register 

(LSBs)

Ci ~C0Cj ~CmCn ~Cj+1

Ai ~ A0

Bi ~B0

Aj ~ Am

Bj ~Bm

An ~ Aj+1

Bn ~Bj+1

 

Figure 7. Modified ETAII 

 To further improve the speed, we opted to 

approximate the Harley-Seal by applying the modified 

ETAII to it. Since the current exact Harley-Seal considers 

previous sum into the current addition, this step is 

modified so that previous summation is considered only 

into the carry calculations. This new approximate Harley-

Seal with modified ETAII architecture noted as AHS-

METAII is shown in Figure 8 with an example.  

Based on the modified ETAII, the approximate Harley-

Seal is implemented on an N-bit stream input, where N is 

segmented into W vectors. The larger W gets, the more the 

accuracy decreases. As an example, taking the previously 

presented 64-bit stream and applying the approximate 

Harley-Seal with modified ETAII on it, where the input is 

segmented into four words, gives the hamming weight as 

26. On other hand, if the same input is segmented into 

eight words, the hamming weight will result in 21. As can 

be seen, the accuracy has decreased as demonstrated in the 

next section. 
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METAII2Carry Gen. Sum Gen.
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METAII5Carry Gen. Sum Gen.

METAII3Carry Gen. Sum Gen.

METAII6Carry Gen. Sum Gen.

Input: 01010100 01011010 10010101 01010001 10100001 11010100 01010001 00010011

Ai+0

Ones

Ai+1

Ones

Ai+2

Ai+3

Ai+4

Ai+5

Ai+7

Ai+6

Ones

Ones

Ones

TwosA
Twos

TwosB

Twos

TwosA

TwosB

Twos

Fours

FoursA

FoursB

Eights

“01010101”

Fours

“00000000” “00000001” “00001110”

METAII7 Sum Gen.Carry Gen.

    Ai+7               Ai+6                 Ai+5               Ai+4                 Ai+3           Ai+2                   Ai+1                Ai+0     

Step 1 

Step 2 

Step 3 

Step 4(1) 

Step 7 

Step 5 

Step 4(2) 

Step 4(3) 

0

0

0

  
Figure 8. Approximate Harley-Seal with Modified ETAII 

The approximate Harley-Seal follows these steps with 

eight words segments where initially: i = 0, c = 0, Ones = 

0, Twos = 0, Fours = 0, Eights = 0. 

1) Two new words (Ai, Ai+1) are loaded into the sum 

and carry generators of our METAII (i.e., 

Modified ETAII) with Ones word to provide the 

carry bits stored in the temporary register TwosA. 

While the sum is calculated in the sum generator 

with the two inputs only (i.e., Ai, Ai+1) and loaded 

to Ones register. 

2) The same process is repeated with the next inputs 

(Ai+2, Ai+3) loaded in METAII where carry 

calculation is done with carry in equal to Ones, 

then load the result to TwosB temporary register. 

After that, the sum is calculated with the two 

inputs only then overrides Ones register. 

3) Currently, three words with the second LSBs are 

created (Twos, TwosA, and TwosB) and loaded in 

METAII. The result of the sum is stored in the 

Twos register, while carry is stored in a temporary 

register called FoursA. 

Si =  Ai  Bi 

Ci =  (Ai ^ Bi)  ((Ai  B i) ^ Ci) 

Si ~ S0

Ai ~ A0

Bi ~B0

Carry 

Generator

Sum Generator

Sj ~ Sm

Aj ~ Am

Bj ~Bm

Carry 

Generator

Sum Generator

Sn ~ Sj+1

An ~ Aj+1

Bn ~Bj+1

Carry 

Generator

Sum Generator

Cn

…….
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4) Steps (1-3) are repeated with (Ai+4, Ai+5) and (Ai+6, 

Ai+7), three words will be gained (Twos, TwosA, 

and TwosB). The sum is stored in the Twos 

register, while carry is stored in a temporary 

register called FoursB. 

5) Currently, three words with the third LSBs are 

created (Fours, FoursA, and FoursB). The process 

is repeated for these three values. The sum result 

is stored in the Fours register, while carry is stored 

in a temporary register called Eights. 

6) Increment i by 8 and repeat until all the words are 

iterated through. 

7) Once the loop terminates, the population count 

will be equal to (3):  

c = 8 * popcount (Eights) + 4 * popcount (Fours) 

+ 2 * popcount (Twos) + popcount (Ones). 

The same previous stream bit example is presented in 

Fig 8 to illustrate the new algorithm segmented into eight 

words (8-bit each):  

01010100 01011010 10010101 01010001 10100001 

11010100 01010001 00010011 

After performing the approximate Harley-Seal, one 

last step is required to calculate the final population count 

that is done below using (3): 

popcnt = (8 * popcnt (Eights)) + (4 * popcnt (Fours)) + (2 

* popcnt (Twos)) + (1 * popcnt (Ones)) = (8*0) + (4*4) + 

(2*1) + (1*3) = 21 

5. EXPERIMENTAL SETUP AND RESULTS 

This section discusses the experimental setup and 

specific simulation tools used to find the effectiveness of 

the proposed methodology under certain metrics (i.e., 

speed, power and area). After that, experimental results are 

presented and analyzed. 

A. Experimental Setup 

Different classical bit-counting techniques were 

implemented in order to show the effectiveness of Harley-

Seal technique. Then, AHS-METAII was implemented 

using 64-bit word for the input. Additionally, the AHS-

METAII was segmented into different number of words 

(i.e., two, four, eight and sixteen) to study the effect of 

varying the number of the words on different performance 

metrics. For each number of word implementation, 

different count function (i.e., Naïve, NTAD and WWG) is 

used for calculating the final population count value using 

(3), in order to determine the best implementation in terms 

of count function as well as the number of segmented 

words. 

To achieve the research goals, the design flow shown 

in Figure 9 was applied. Similar design flows were used in 

other studies as [24-28].  

The design steps were as follows: 

 The design was implemented at the register 

transfer level (RTL) using VerilogTM (i.e., 

hardware description language). The Verilog 

implementation was verified using ModelSimTM 

[29]. ModelSim is a dynamic simulation tool,  

 

RTL Design 

implementation

RTL Simulation

Verified

Synthesis and 

compilation

Resource, timing 

and Power Analysis

Performance 

metrics

No

Yes

 

Figure 9. Design flow 

which provides wave-files capturing the node 

activity used to compute the power dissipation of 

the design. 

 The design was synthesized and compiled using 

the Altera software package Quartus-II [30]. 

 For Quartus-II synthesis, timing constraints were 

used during the compiling process. 

 The design underwent through the following 

analysis using Quartus-II: 

- Timing analysis reported the maximum 

frequency of the design. All designs were 

compiled with clock constraints of 50 MHz. 

- Resource utilization analysis showed the 

number of logic elements (LEs) and the type 

(i.e., combinational, register logic, or both) 

used in the design [25]. LE is the smallest unit 

of logic in the Altera architecture; it is compact 

and facilitates efficient logic utilization.  

- Power analysis computed the average power of 

the design. The computed power was the 

dynamic core power that consists of 

combinational, register, and clock. The power 

required by node activities was extracted from 

the value change dump (VCD) files generated 

by ModelSim simulations. This approach for 

computing power was used in other works, such 

as references [24, 25].  

 Performance metrics including accuracy, delay, 

power and area were calculated based on the 

implementation results in order to show the 

effectiveness of the proposed methodology over 

other techniques. 
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B. Experimental Results 

This subsection summarizes the performance 

effectiveness of the proposed methodology in terms of 

different metrics (i.e., accuracy, delay, power and area). 

The Performance of AHS-METAII proposed 

methodology implemented with different number of 

words (i.e., 2, 4, 8, 16) and different count functions (i.e., 

Naïve, NTAD and WWG) for final population count step 

using (3) is shown in Table II. Exact Harley-seal approach 

with NTAD count function chosen to be compared with 

the approximate Harley-seal approach as it demonstrates 

almost the best results as will be shown below in Table III. 

Our results presented in Tables II and III and Figures 

(10-16) validate the effectiveness of our proposed 

methodology in ways we shall explain subsequently in the 

following subsections.  

TABLE II.   PERFORMANCE METRIC COMPARISON FOR PROPOSED 

METHODOLOGY WITH DIFFERENT NUMBER OF WORDS AND COUNT 

FUNCTIONS. 

TABLE III.    EXACT HARLEY-SEAL METHOD WITH APPROXIMATE 

HARLEY-SEAL METHOD USING 8 WORDS AND NTAD COUNT FUNCTIONS 

Type Accuracy Delay 

(ns) 

LEs Power 

(mW) 

Exact (HS-CSA) 

with NTAD  

(8 words) 

100% 17.989 151 3.81 

Approximate (HS-

CSA) with NTAD  

(8 words) 

91% 17.498 127 2.8 

1) Accuracy  

For all designs, the accuracy was computed for 10 

different random bit streams. To calculate the accuracy 

level, each output value was contrasted with the exact 

value after the simulation. Table II shows the accuracy for 

all implementations. 

The results show the maximum accuracy level of our 

AHS-METAII is 100% seen in the two words 

implementation, which is equal to exact Harley-Seal 

approach (HS-CSA). Implementing the Harley-Seal 

approach with ETAII (HS-ETAII) without modifying it, 

results in decreasing the accuracy to unacceptable levels 

(i.e., 56%) as discussed previously in Section 4. However, 

after modifying the ETAII, it demonstrated good accuracy 

levels with different number of words. It is noticeable that, 

sixteen words implementation shows the lowest accuracy. 

The AHS-METAII methodology with four and eight 

words shows an acceptable level of accuracy as they are 

above 90%. The relationship between the number of words 

and accuracy level is inversely proportional as the 

proposed algorithm does not consider the previous data 

when calculating the sum. As number of words increases, 

the word size decreases resulting in ignoring more carry-

in values which reduces the accuracy as shown in Figure 

10. 

  

Figure 10. Accuracy for AHS-METAII segmented into different 
number of words 

2) Delay (Speed) 

Table II shows the delay calculated for all the AHS-

METAII methodology implementations with different 

number of segmented words and count functions.  

Figure 11 represents the delay of AHS-METAII with 

different count functions and number of words. It is 

noticed that applying NTAD with the AHS-METAII 

approach results in minimum delay followed by Naïve. 

However, using it with WWG is not recommended as it 

demonstrated the maximum delay among all word’s 

implementations. In general, increasing number of words, 

decreases the average delay as shown in Figure 12. It is 

clear that sixteen words implementation has the minimum 

delay among all implementations followed by eight words 

as the process is divided into smaller bit streams working 

on parallel manner which result in better delay results. 

Even though, the proposed methodology with sixteen 

words shows the best in terms of delay, however, this 

design is not recommended as it has the lowest accuracy. 

So, the best one to be considered is the proposed one with 

eight words using NTAD count function, as it is faster than 

the exact Harley-seal approach by 3% as shown by Table 

III. 

Additionally, it is observed that for all experiments the 

performance results are sensitive to the random data values 

in the sense that the distribution of ones across the bit-

stream affects the addition processes, which in turn affect 

the speed of the pop-count methods correspondingly.  

 

3) Area utilization 

Design area is represented by the total number of Logic 

Elements (LEs) and calculated for all designs as illustrated 

in Table II. To get a clear view of the area utilized by the  
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Accuracy level

Proposed 

approach with 

different 

 words 

Count 

function 

Accuracy Delay 

(ns) 

LEs Power 

(mW) 

Approximate 

Harley-Seal 

(AHS-

METAII) 

(2 words) 

Naïve 100% 19.091 202 4.66 

NTAD 100% 18.818 182 4.7 

WWG 100% 24.588 265 6.99 

Approximate 

Harley-Seal 

(AHS-

METAII) 

 (4 words) 

Naïve 95% 18.543 151 3.61 

NTAD 95% 18.457 134 3.37 

WWG 95% 19.635 198 6.65 

Approximate 

Harley-Seal 

(AHS-

METAII) 

 (8 words) 

Naïve 91% 17.838 136 3.86 

NTAD 91% 17.498 127 2.8 

WWG 91% 18.875 162 4.47 

Approximate 

Harley-Seal 

(AHS-

METAII) 

 (16 words) 

Naïve 86% 17.167 99 2.56 

NTAD 86% 17.440 97 2.33 

WWG 86% 17.771 97 2.21 
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Figure 11. The delay of AHS-METAII using different count functions 

and number of words. 

  

Figure 12. The average delay of AHS-METAII using different number 

of words. 

AHS-METAII proposed methodology, Figure 13 plots 

all the designs with different words numbers and count 

functions. It is observable that our AHS-METAII using 

NTAD count function has the least number of LEs using 

different number of words. Overall, the number of LEs 

decays as number of words doubles due to halving the size 

of registers (in number of bits) as it is clear in Figure 14. 

The best design of our proposed methodology is AHS-

METAII using NTAD with eight words as it utilizes 16% 

less LEs than the exact Harley-seal as presented in Table 

3. This reduction in the utilized area is due to the reason 

that our proposed methodology uses one less XOR gate to 

calculate the sum. However, there was an increase in the 

area when compared to the original ETAII because a carry 

register equal in size to the sum register, instead of the one-

bit carry that was previously needed. Although the design 

with sixteen words utilizes a smaller number of LEs, it is 

not recommended as stated before because of the low 

accuracy achieved. 

4) Power consumption 

Dynamic power consumption which consists of 

combinational and sequential power is calculated for 

AHS-METAII methodology with different words and 

count functions as presented in Table 2. Figure 15 

represents the power consumption of AHS-METAII 

proposed with different count functions and number of 

words. It is clear that among all word’s implementations, 

AHS-METAII with NTAD approach recorded 

 

 

Figure 13. The utilized area of AHS-METAII using different count 

functions and number of words. 

 

Figure 14. The average utilized area of AHS-METAII using different 

number of words. 

approximately the minimum power consumption followed 

by AHS-METAII proposed with Naïve. Moreover, power 

consumption decreases as the number of words increases, 

until reaching the minimum value at sixteen words 

implementation as demonstrated in Figure 16. This 

decreasing trend is due the number of combinational logic 

elements as they decrease with doubling the number of 

words. The synthesis tool works better with larger number 

of words as it tries to reduce connections and optimize the 

design in an efficient way. It is worth mentioning that the 

best implementation of our AHS-METAII methodology 

(i.e., AHS-METAII with eight words using NTAD) is 

consuming less power than the exact Harley-seal approach 

by an average of 27% as it is noted in Table III. This shows 

the performance of applying approximation methods with 

the pop-counting techniques in reducing the consumed 

power. Although using sixteen words consumes much less 

power than the exact Harley-Seal approach, it recorded 

less accuracy as illustrated in Table II. 

6. CONCLUSION 

This work analyzed the problem of computing the 

hamming weight of bit streams. A review and evaluation 

of the existing approaches revealed that they exposed 

either scalar parallelism or vector parallelism. Therefore, 

a new approximate approach that exposes vector 

parallelism but alters the internal logic gates of the 

approximate adder was proposed. 
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Figure 15. The power of AHS-METAII using different count functions 

and number of words. 

  

Figure 16. The average power of AHS-METAII using different number 

of words. 

This implementation was useful in error-tolerant 

applications. The evaluation showed that the proposed 

hybrid solution (AHS-METAII) outperformed the exact 

Harley-Seal approach (HS-CSA) in all metrics when eight 

words were used as it offered overall enhanced 

performance suitable for error tolerant applications with a 

27% dynamic power reduction, 3% delay reduction, and 

16% area reduction along with a slight decrease (9%) in 

the accuracy level. Applying sixteen words in the 

proposed approach resulted in better performance than 

eight words. However, the accuracy decreased by 14%. 

In the future, the proposed methodology will be tested 

on a larger bit stream (128-bit) to observe the results of the 

methodology when the parameters (e.g., number of words 

and popcount method used) are altered. Additionally, 

different approximate adders can be implemented and 

tested using this approach. Other possibilities include 

implementing the proposed approach using different 

computer architectures, such as Single Instruction 

Multiple Data (SIMD), or using pipelining to enhance the 

delay. 
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