

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 9, No.6 (Nov-2020)

E-mail: reem.jaffal@ku.edu.kw, s.abed@ku.edu.kw, imtiaz.ahmad@ku.edu.kw and mahmoud.bennaser@ku.edu.kw

 http://journals.uob.edu.bh

Approximate Population Count Using the Harley-Seal Method

for Error-Tolerant Applications

Reem Jaffal1, Sa’ed Abed1, Imtiaz Ahmad1 and Mahmoud Bennaser1

1Department of Computer Engineering, Kuwait University, Safat 13060, Kuwait

Received 26 Mar. 2020, Revised 11 May 2020, Accepted 31 Jul. 2020, Published 1 Nov. 2020

Abstract: Population count is a necessary process in several fields, such as cryptography, database search, data mining, and machine

learning. Real-time problems have very large datasets, which require enhanced performance. Therefore, the objective of this paper was

to propose a modified approach to the hamming weight algorithm to allow the implementation of approximate calculations on error-

tolerant applications, such as machine learning and database searches, which do not require precise results. The proposed approach

used approximate adders, rather than the exact carry save adder computations used in the Harley-Seal methodology of bit counting,

along with modified imprecise error-tolerant adder type II (ETAII), named Approximate Harley-Seal with Modified ETAII (AHS-

METAII). The precise versus imprecise designs of Harley-Seal approach were tested, evaluated, and compared to show that

implementing partial logic functions instead of fully logic functions resulted in 27% power reductions with a slight decrease (9%) in

the accuracy level over traditional adders on a 64-bit stream. The simulation results demonstrated that the proposed approximate

approach model using Verilog was faster than the exact methods by 3% and consumed 16% less area.

Keywords: Population Count, Harley-Seal, Error-Tolerant Adder, Approximation, Delay, Power, Area

1. INTRODUCTION

The term hamming weight, also known as population

count, popcount, or sideway sum, is the number of bits set

to one in any binary stream given as an input of bits appears

at the same time. Implementing this calculation can be done

using both hardware and software [1] on strings that vary

in length ranges. This paper tackles the never-ending issue

of bit counting, a process that deals with the fundamentals

of computer organization and has been debated ever since

the infancy of launching the computer science field [2].

Hamming weight carries importance in many fields

including -but not limited to- cryptography [3], data mining

[4], machine learning [5], and database search [6].

Therefore, the need to enhance the speed of the hamming

weight calculations has been increased to the point where

some processors have a specialized population count

method [7]. Suggested solutions expose either scalar

parallelism or vector parallelism. However, certain

applications are precision-loss tolerant by nature, and due

to their existence, the need to implement inexact computing

has gained popularity. Many evolving application classes

like mining and synthesis that reveal intrinsic error

resilience have redundancies in their input data sets, where

some of them do not have a correct answer. Thus, the

concept of error-tolerance resources was introduced, which

delivers approximate results at an enhanced speed while

showing improvement in power consumption, latency, and

area at the expense of accuracy. Consequently, utilizing the

mentioned characteristic to enhance the computation’s

speed performance through a simplified inaccurate circuit

is required [8, 9].

Therefore, to keep up with the progressively high

demands of applications requiring high-speed and power-

efficiency, a new approach has been proposed to speed up

the calculation of counting set bits in a stream by modifying

the internal circuit blocks to boost the operation’s

performance. Since the discussed pop count method in this

paper requires the use of traditional adders which play a

vital role, the chosen approximate error-tolerance adders

are not directly compatible for population count use.

Hence, focusing our work-attention to this compatibility

challenge allowed us to consider combining both (the exact

and approximate adders) to compute the hamming weight

at a narrow range of accuracy loss [10] which resulted in

faster addition compared to previous results.

An abstract visualization of this approach is shown in

Figure 1. The approach proposes the usage of the existing

vectorized Harley-Seal algorithm [11] with approximate

adders instead of exact adders to perform the addition

process. Thus, decreasing dependencies between two

related operations. The chosen approximate adder is Error-

Tolerant Adder Type II (ETAII) [12], which is further

modified to Modified Error-Tolerant Adder Type II

(METAII) to be compatible with the mentioned

implementation. The hybrid popcount approach consumes

less power by 27% and utilized 16% less area as compared

the use of exact adders only. In addition, it is faster than the

http://dx.doi.org/10.12785/ijcds/0906016

1188 Reem Jaffal, et al.: Approximate Population Count Using the Harley-Seal Method for …

http://journals.uob.edu.bh

Figure 1. Modified Harley-Seal

exact methods by 3% with a slight loss in the accuracy level

(i.e., 9%).

The main objective of this paper is to present an

improved hybrid popcount approach based on the

approximate adder principle, named as Approximate

Harley-Seal with Modified ETAII (AHS-METAII)

implemented using Verilog. Our contributions can be

summarized as follows:

• Proposing an approximate method to count the

number of ones inspired by the vectorized version

of the Harley-Seal method.

• Proposing a modified version of the approximate

error-tolerant adder type II (ETAII).

• Combining the approximate Harley-Seal with the

modified ETAII to enhance speed and reduce

power with a slight loss in accuracy.

• Comparing the exact Harley-Seal method results

in terms of speed, accuracy, power and area with

the modified approximate Harley-Seal method.

• Studying the effect of varying the number of

words implemented in our Approximate Harley-

Seal with Modified ETAII (AHS-METAII)

approach using different popcount functions.

• Determining the best implementation in terms of

performance metrics considered.

The organization of this paper is as follows: Section 2

provides an overview of the key existing algorithms

related to counting-ones and then introduces current

approximate adders. Section 3 gives a more detailed

background of the Harley-Seal method and ETAII.

Section 4 proposes the enhanced version of the

approximate Harley-Seal methodology, which utilizes

modified ETAII. Section 5 discusses the experimental

results and compares the exact and approximate adders’

performances. Finally, Section 6 concludes the paper and

presents some future trends.

2. EXISTING ALGORITHMS AND RELATED WORK

This section discusses various existing non-complex

methodologies to calculate the hamming weight with

different effectiveness. Then, approximate adders are

presented to accelerate the process of counting ones.

A. Bit-counting techniques

Hamming weight algorithms can be categorized into

scalar algorithms and vectorized algorithms. Algorithms

using the scalar approach have been discussed for the

longest time [7, 11, and 13] and afterwards the concept of

vectorization appeared [7]. Hence, algorithms shifted to

the use of vectorization due to the enhancement it offers.

Naïve method is an obvious approach presented in

[14], to count the number of ones in a string of bits. The

method goes as follows: the least significant bit (LSB) is

inspected; if it is set to one then the counter is incremented.

As long as the remaining value is not equal to zero, the

string of bits is repeatedly shifted. Although this is a

simple method, it is the poorest in terms of efficiency. As

it does not benefit from the distinct nature of this

calculation, where it could be done in parallel. This

method is further extended by using parallel bit reduction

such that a naïve tree of adders (NTAD) which utilizes less

operations per word as stated in [7]. As shown in Figure 2,

a word of eight-bits (for simplicity) is grouped into levels,

such that each two consecutive bits are summed in parallel.

Next, the results of the previous step are added into a four-

bit sub word. Finally, the four-bit sub words are summed

to provide the final result.

Figure 2. Trees of Adders

Wilkes-Wheeler-Gill (WWG) approach stated in [7,

15], optimizes the tree-of-adders count function such that

it involves fewer instructions as shown in Figure 3. Next,

keeping in mind that the MSB of each sub-word is zero, it

adds consecutive sub-words into bytes. Efficiently, the

multiplication and final shift sum all bytes such that the

total population count is less than 64.

Figure 3. Wilkes-Wheeler-Gill method

Inn [63:0] = Inn - ((Inn [63:0] >> 1) & 64'h5555555555555555);
Inn [63:0] = (Inn [63:0] & 64'h3333333333333333) + ((Inn [63:0]

>> 2) & 64'h3333333333333333);

Inn [63:0] = (Inn [63:0] & 64'h0f0f0f0f0f0f0f0f) + ((Inn [63:0]>>
4) & 64'h0f0f0f0f0f0f0f0f);

Inn [63:0] = (Inn [63:0] * 64'h0101010101010101) >> 56;

METAII

METAII

Ai+0Ones
Ai+1

Ones

Ai+2
Ai+3

Ones

TwosA
Twos

TwosB

TwosFours

METAII

 Int. J. Com. Dig. Sys. 9, No.6, 1187-1197 (Nov-2020) 1189

http://journals.uob.edu.bh

Memoization (Look Up Table) algorithm is based on

tabulations such that, tables are generated only once,

where each row has the matching population count for

each possible value. For example, in a 32-bit device, a

single table size will be equal to 232 and any given word

is used as an index to the LUT to determine its hamming

weight. Hence, a single read operation is enough.

However, the table can be further reduced to be of size 216.

Although the reduction reduces the table size to half, it

also adds extra read operations and a splitting operation.

This as a result, slows down the calculation process as

presented in [16].

Arithmetic logic is another common method based on

subtraction and masking bits, which could compete with

previous methods when population count is expected to be

low (e.g., less than 6.25% of a word) as stated in [12]. The

procedure starts by decrementing the original stream by

one then the decremented value is AND-ed with the

original number. This process is repeated until the checked

value equals zero.

In [11], vectorized technique (Harley-Seal) is

illustrated, where the Carry Save Adder (CSA) is utilized

for calculation. This methodology is chosen in our

approach as it is faster than all of the non-vectorized (or

scalar) functions [7]. It is favored in the case of having

largely sized input bits, as it is quicker to reduce inputs and

then bit count on two outputs; instead of directly bit

counting on three inputs. Thus, reducing data amounts for

which bit counting operate on directly [7]. Further details

on Harley-Seal is presented in the next section.

B. Approximate adder designs

Adders are playing a vital role in Harley-Seal method

[11]. Approximate addition also known as soft addition,

relies on slackening exact and fully deterministic building

blocks (like full adders). Since the approach of this work

concentrate on redesigning a logic circuit into an

approximate version, the result pertains to the

functionalities of different logic circuits because of the

approximate adder. However, there are many approximate

adder approaches with different accuracy levels, as well as

different implementations. Approximate adders are

classified into four categories: Speculative Adders,

Segmented adders, Carry Select Adders and Approximate

Full Adders [10]. Speculative Adders include almost

correct adder (ACA) [18], while segmented adders include

ETAII [12] and Accuracy-Configurable Approximate

Adder (ACAA) [9], carry Select Adders include

Speculative Carry Select Adder (SCSA) [12] and

Approximate Full Adders include Lower-Part-OR Adder

(LOA) [19].

ETAI and ETAII approximate adders are discussed in

[12]. ETAI deals with small input numbers where it

segments the addition into two parts, an accurate part

containing the most significant bits (MSBs) and an

inaccurate one, which adds the least significant bits (LSBs)

of the input. This adder type has a low accuracy result.

Similarly, ETAII is a segmentation-based inaccurate adder

that takes the value of the carry into consideration. The

carry propagation trail is fragmented into several short

routes. More explanation is shown in the following section.

Thus, the carry propagation can be done in the short routes

at the same time as the summation.

In [20], the Speculative Carry Select Adder (SCSA) is

proposed. According to theoretical research, the lower

bound on the critical path delay of an n-width adder has

O(log n), complexity indicating that a sub-logarithmic

delay cannot be attained by traditional adders. On the

contrary, speculative adders revealed sub-logarithmic

delay achievements through neglecting rare critical path

input patterns. Based on the above observation, speculative

adders were built. Differentiating between both adder

types, each traditional adder output depends on all lower or

equal significance preceding bits, while each speculative

adder output only depends on preceding k bits rather than

all preceding bits. Because SCSA is only employed on

blocks instead of individual outputs, it is less vulnerable to

errors.

In Accuracy-Configurable Approximate Adder

(ACAA) introduced in [9], the circuit arrangement changes

during accuracy configuration at runtime, thereby attaining

a trade-off of accuracy against performance. In this n-bit

adder, ⌈n/k - 1⌉ 2k-bit sub-adders are necessary. In order to

correct the errors created by each sub-adder, an Error

Detection and Correction (EDC) circuit is used in a

pipelined architecture with the approximate adder to

implement the accuracy configuration [10].

Other recent researches regarding approximate adders

include [21, 22, and 23]. In [21], block-based carry

speculative approximate adder (BCSA) is proposed. This

adder is built on dividing the exact adder into blocks which

work in parallel. Different type of adders can be

implemented in these blocks as they are non-overlapped.

The carry chain length is reduced and a select logic is

suggested to speculate the carry input of each block based

on some input operand bits of the current and next block.

A new 32-bit Approximate Carry Look Ahead Adder

(CLA) is introduced in [22] for Error Tolerant

Applications. Approximate CLA is built on modified carry

propagation equation of the exact CLA. The proposed

design consumes less power and utilized less area than the

exact one. Lower error obtained when compared to the

other approximate CLA. In [23] four Approximate Full

Adders (AFAs) are proposed for high performance

approximate computing. The proposed adder is built on

shortening the length of carry propagation along with

achieving minimal error rate.

According to the comparison of approximate adders

conducted in [10], ETAII, SCSA and ACAA have the

similar accuracy levels when their parameters are equal and

ETAII is considered as one of the most accurate and

efficient adders among all the compared designs [17].

Moreover, it consumes less power and area and has shorter

delay than ACAA and SCSA, as the logic block of ETAII

is simpler than SCSA and ACAA. Regarding the power-

1190 Reem Jaffal, et al.: Approximate Population Count Using the Harley-Seal Method for …

http://journals.uob.edu.bh

delay-product (PDP) value which is used to estimate the

circuit characteristics of approximate adders since smaller

delay not necessary means lower power consumption,

ETAII has the lowest PDP compared with ACAA and

SCSA [17]. It is found that ETAII is a good and compatible

choice to be implemented with Harley-Seal bit-counting

technique in order to improve its performance in terms of

delay, power and area. To the best of our knowledge, this

is the first work utilizing Harley-seal technique as one of

the efficient and fastest popcount techniques using

approximate adders and a great improvement in delay,

power and area are achieved to be further implemented in

error-tolerant applications.

3. BACKGROUND

This section presents more details on both the Harley-

Seal technique and the ETAII approximate adder. Table I

illustrates the notations used in the presented algorithms.

A. Harley-Seal technique (HS-CSA)

Harley-Seal is a vectorized technique where adders are
used in a specific way to reduce the time it takes to calculate
the hamming weight. The Carry Save Adder (CSA) is
utilized for calculation. The CSA shown in Figure 4 is a
sequence of independent n full adder which requires three
inputs with two outputs, where each of those bits are binary
values [11].

TABLE I. ALGORITHMS NOTATIONS.

Notation Description

N Input length in bits

c Population counter

I Iteration counter

Ai Word at itch iteration

ones First least significant bits

twos Second least significant bits

fours Third least significant bits

eights Fourth least significant bits

M Number of input blocks to ETAII adder, where M ≥

2

N/M Block length in bits of ETAII adder

W Number of segmented words

 XOR operation

^ AND operation

˅ OR operation

Ci Carry of its full adder

Si Sum of ith full adder

In more details, the carry of the ith full adder represents

the overlapping bits such that it equals one when at least

two of the inputs Ai, Bi, or Ci have their bits set. This is

represented by (1):

Figure 4. Carry Save adder

Ci = (Ai ^ Bi) ˅ ((Ai  B i) ^ Ci) 

On the other hand, sum accumulates bits such that the

bit is set only when Ai + Bi + Ci results in an odd number.

The Sum result for each full adder is represented by (2).

Si = Ai  (Bi  Ci) 

The result is calculated using five logical operations,

two of which are repeated (XOR, AND). While, OR

logical operation is used once only, due to dependencies,

the CSA operation takes at least three cycles.

For example, instead of iterating through the 16-bit of

the bit stream 1100 1101 0011 0010, this method segments

the stream into two parts where A=1100 1101, B=0011

0010, then adds them together. Therefore, the result of

sum= 1111 1111 and carry=0000 0000, utilizing one of the

mentioned scalar algorithms to count 8-bit instead of 16-

bit to find the hamming weight.

Subsequently, translating the above explanation into

an algorithm is presented below. As well as, an example

of the algorithm is shown in Figure 5 with 16-bit input

divided into eight words.

Assuming an input of N-bit stream is divided into a

number of words (A0, A1, …) divisible by 8. Starting with

three words (Ones, Twos, Fours) initialized to zero,

represents the first, second and third least significant bits,

respectively. Initializing a population counter c and an

iteration counter i to zero (i.e., c = 0, i =0). The following

steps take place:

1) Two new words (Ai, Ai+1) with Ones word are

loaded into CSA function to write their output sum

to the Ones register, while their resulting carry is

loaded to a temporary register called TwosA.

2) Perform addition to the next inputs (Ones, Ai+2,

Ai+3), where sum is stored to the ones and carry is

loaded to a temporary register called TwosB.

3) Current three words with second LSBs (carry) are

created (Twos, TwosA and TwosB). These three

values are summed, and the result of the sum is

stored in the Twos register, while carry is stored in

a temporary register called FoursA.

4) Steps (1-3) are repeated with (Ai+4, Ai+5) and (Ai+6,

Ai+7). Three words will be gained: Twos, TwosA,

and TwosB. The results are stored in register Twos

(sum) and temporary register called FoursB

(carry).

FA

Cn
An Bn

FA

Ci+1Ai+1 Bi+1

FA

CiAi Bi

Si Sn

…….

Ci ……. Si+1

Ci+1 Cn …….

CSA

 Int. J. Com. Dig. Sys. 9, No.6, 1187-1197 (Nov-2020) 1191

http://journals.uob.edu.bh

CSA1

CSA2

CSA4

CSA5

CSA3

CSA6

Input: 11 00 11 01 00 11 00 10

Ai+0

10Ones

Ai+1

00

Ones = “10”

11
00

Ai+2
Ai+3

01

11

Ai+4

Ai+5

00

11

Ai+7

Ai+6

Ones = “01”

Ones = “11”

Ones

TwosA = “00”

Twos

TwosB = “10”

Twos = “10”

TwosA = “01”

TwosB = “11”

Twos

Fours

FoursA = “00”

FoursB = “11”

Eights

“11”

Fours

“00” “00” “00”

CSA7

Step 1

Step 2

Step 3

Step 5

Step 7

Ai+0Ai+1Ai+2Ai+3Ai+4Ai+5Ai+6Ai+7

0

0

0

Step 4(1)

Step 4(2)

Step 4(3)

Figure 5. Harley-Seal Technique

5) So far, we have obtained three words containing

third LSBs (Fours, FoursA, and FoursB). Once

again, these words are summed. The final sum

result is stored in the Fours register, while carry

bits are stored in the Eights register.

6) Increment counter i by 8 and repeat steps (1-6)

until all the words are iterated through.

7) Once the loop terminates, the population count

will be equal to (3):

c = 8 * popcnt (Eights) + 4 * popcnt (Fours) + 2 *

popcnt (Twos) + popcnt (Ones). (3)

It is worth mentioning that population count equation

can be implemented using one of the count functions (e.g.,

Naïve, NTAD, WWG). Using the following stream bit

example: 1100 1101 0011 0010, segmented into eight

words (2-bit each) and performing the Harley-Seal on it,

the final population count is calculated using (3) as shown

below:

popcnt = (8 * popcnt (Eights)) + (4 * popcnt (Fours)) + (2

* popcnt (Twos)) + (1 * popcnt (Ones)) = (8*0) + (4*2) +

(2*0) + (1*0) = 8

In the mentioned implementation, segments of eight

words were used. However, this can be extended to say

that the Harley-Seal method works for segments of 2𝑛

words, where n = 3, 4, 5,…(8, 16, 32, …). As a result,

2𝑛 − 1 CSA operations/instances are required and one call

to a popcount/count function (e.g., Wilkes-Wheeler-Gill)

[7].

After observing the significance of the addition

process within the algorithm, it was concluded that faster

adders could enhance the performance of the Harley-Seal

speed wisely. As stated earlier, there has been a lot of

recent development in the approximation field, more

specifically in approximate adders. One of the most

efficient approximate adders currently available is the

ETAII [10], as it has a reasonable delay compared to exact

adders where most of their delay rises from carry

propagation (critical path). Hence, additional aspects of

ETAII will be provided next.

B. Error Tolerant Adder Type II (ETAII)

ETAII is a further development of the ETAI [12]. Even

though the ETAI reduces the overall delay and consumed

power by disregarding the carry propagation in the

approximate portion while proceeding with standard

addition to the MSBs, it faces larger error rates for small

figure inputs. In ETAII, carry propagation is not

eliminated entirely as its predecessor ETAI.

ETAII divides the carry propagation trail into several

short trails and ends the carry propagations within the

short trails simultaneously as shown in Figure 6. ETAII

divides an N-bit adder into M blocks where M ≥ 2. Each

block consists of N/M bits and is computed in two

different circuitries; carry generator and sum generator

circuits. Those elements are implemented using standard

design. The first circuit (i.e., the carry generator) produces

the carry-out signal without needing any previous carry

signal, and the second circuit (i.e., the sum generator)

utilizes a carry-in signal from a prior block to produce its

sum. Therefore, the sum generator block is presented by

1-bit adder while carry generator block is implemented

using the carry look-ahead adder (CLA). Thus, carry

propagations do not lie in the entire adder structure, but

instead occur between two adjacent blocks. The power

consumption of the ETAII adder is reduced due to the

restraints put on the carry propagation delay. Moreover,

the adder’s speed is enhanced. During the addition of

binary numbers, the carry signal is provided from the

previous input bits. In case the signal is generated in the

LSB and propagated to the current bit position, which is

considered as a worst-case scenario, then an increased

amount of power and time are expended in the carry

propagation trail. However, the occurrence of the previous

case is infrequent [12].

As an example, take two 8-bit streams (N=8);

A=11001101 and B= 00110110. Add them using ETAII

with blocks of four (M=4), meaning that the inputs of carry

and sum generators are 2-bit length. The approximate

sum=0 11000011 (195), while the exact sum=1 0000 0011

(259). The error rate in this case is 25%.

1192 Reem Jaffal, et al.: Approximate Population Count Using the Harley-Seal Method for …

http://journals.uob.edu.bh

Figure 6. ETAII Adder

4. PROPOSED METHODOLOGY

Harley-Seal utilizes CSAs, and to achieve the objective

of this paper, this adder will be replaced with ETAIIs.

However, an obstacle is faced due to incompatibly issues,

as vectorized Harley-Seal needs word values of both sum

and carry, not single bits of each. Acknowledging the fact

that ETAII provides a single carry out bit with a sum word,

when combined with the Harley-Seal it will provide

extremely incorrect results. For example, considering the

following 64-bit stream 0101 0100 0101 1010 1001 0101

0101 0001 1010 0001 1101 0100 0101 0001 0001 0011,

using the original Harley-Seal will result in 27 ones.

On the other hand, taking the same bit stream and using

ETAII instead will result in 18 ones. Therefore, to

overcome this problem, ETAII will be modified as

follows. Since the carry calculation is necessary, an

additional output register will be added called “Carry

Register”. This necessity considers that internal carries are

used for the next step’s calculation and not within the same

step. At the end, the architecture of ETAII will be modified

as shown in Figure 7. The sum generator and carry

calculation for 1-bit are shown by (4) and (5), respectively.

Si ~ S0

Carry

Generator

Sum

Generator
Sj ~ Sm

Carry

Generator

Sum

Generator
Carry

Generator

Sum

Generator…….

Ai ~ A0

Bi ~B0

Aj ~ Am

Bj ~Bm

An ~ Aj+1

Bn ~Bj+1

Si ~ S0Sj ~ SmSn ~ Sj+1 …….

…….

Ci ~ C0Cj ~ CmCn ~ Cj+1 …...Carry

Register

(MSBs)

Sum

Register

(LSBs)

Ci ~C0Cj ~CmCn ~Cj+1

Ai ~ A0

Bi ~B0

Aj ~ Am

Bj ~Bm

An ~ Aj+1

Bn ~Bj+1

Figure 7. Modified ETAII

 To further improve the speed, we opted to

approximate the Harley-Seal by applying the modified

ETAII to it. Since the current exact Harley-Seal considers

previous sum into the current addition, this step is

modified so that previous summation is considered only

into the carry calculations. This new approximate Harley-

Seal with modified ETAII architecture noted as AHS-

METAII is shown in Figure 8 with an example.

Based on the modified ETAII, the approximate Harley-

Seal is implemented on an N-bit stream input, where N is

segmented into W vectors. The larger W gets, the more the

accuracy decreases. As an example, taking the previously

presented 64-bit stream and applying the approximate

Harley-Seal with modified ETAII on it, where the input is

segmented into four words, gives the hamming weight as

26. On other hand, if the same input is segmented into

eight words, the hamming weight will result in 21. As can

be seen, the accuracy has decreased as demonstrated in the

next section.

METAII1Carry Gen. Sum Gen.

METAII2Carry Gen. Sum Gen.

METAII4Carry Gen. Sum Gen.

METAII5Carry Gen. Sum Gen.

METAII3Carry Gen. Sum Gen.

METAII6Carry Gen. Sum Gen.

Input: 01010100 01011010 10010101 01010001 10100001 11010100 01010001 00010011

Ai+0

Ones

Ai+1

Ones

Ai+2

Ai+3

Ai+4

Ai+5

Ai+7

Ai+6

Ones

Ones

Ones

TwosA
Twos

TwosB

Twos

TwosA

TwosB

Twos

Fours

FoursA

FoursB

Eights

“01010101”

Fours

“00000000” “00000001” “00001110”

METAII7 Sum Gen.Carry Gen.

 Ai+7 Ai+6 Ai+5 Ai+4 Ai+3 Ai+2 Ai+1 Ai+0

Step 1

Step 2

Step 3

Step 4(1)

Step 7

Step 5

Step 4(2)

Step 4(3)

0

0

0

Figure 8. Approximate Harley-Seal with Modified ETAII

The approximate Harley-Seal follows these steps with

eight words segments where initially: i = 0, c = 0, Ones =

0, Twos = 0, Fours = 0, Eights = 0.

1) Two new words (Ai, Ai+1) are loaded into the sum

and carry generators of our METAII (i.e.,

Modified ETAII) with Ones word to provide the

carry bits stored in the temporary register TwosA.

While the sum is calculated in the sum generator

with the two inputs only (i.e., Ai, Ai+1) and loaded

to Ones register.

2) The same process is repeated with the next inputs

(Ai+2, Ai+3) loaded in METAII where carry

calculation is done with carry in equal to Ones,

then load the result to TwosB temporary register.

After that, the sum is calculated with the two

inputs only then overrides Ones register.

3) Currently, three words with the second LSBs are

created (Twos, TwosA, and TwosB) and loaded in

METAII. The result of the sum is stored in the

Twos register, while carry is stored in a temporary

register called FoursA.

Si = Ai  Bi 

Ci = (Ai ^ Bi)  ((Ai  B i) ^ Ci) 

Si ~ S0

Ai ~ A0

Bi ~B0

Carry

Generator

Sum Generator

Sj ~ Sm

Aj ~ Am

Bj ~Bm

Carry

Generator

Sum Generator

Sn ~ Sj+1

An ~ Aj+1

Bn ~Bj+1

Carry

Generator

Sum Generator

Cn

…….

 Int. J. Com. Dig. Sys. 9, No.6, 1187-1197 (Nov-2020) 1193

http://journals.uob.edu.bh

4) Steps (1-3) are repeated with (Ai+4, Ai+5) and (Ai+6,

Ai+7), three words will be gained (Twos, TwosA,

and TwosB). The sum is stored in the Twos

register, while carry is stored in a temporary

register called FoursB.

5) Currently, three words with the third LSBs are

created (Fours, FoursA, and FoursB). The process

is repeated for these three values. The sum result

is stored in the Fours register, while carry is stored

in a temporary register called Eights.

6) Increment i by 8 and repeat until all the words are

iterated through.

7) Once the loop terminates, the population count

will be equal to (3):

c = 8 * popcount (Eights) + 4 * popcount (Fours)

+ 2 * popcount (Twos) + popcount (Ones).

The same previous stream bit example is presented in

Fig 8 to illustrate the new algorithm segmented into eight

words (8-bit each):

01010100 01011010 10010101 01010001 10100001

11010100 01010001 00010011

After performing the approximate Harley-Seal, one

last step is required to calculate the final population count

that is done below using (3):

popcnt = (8 * popcnt (Eights)) + (4 * popcnt (Fours)) + (2

* popcnt (Twos)) + (1 * popcnt (Ones)) = (8*0) + (4*4) +

(2*1) + (1*3) = 21

5. EXPERIMENTAL SETUP AND RESULTS

This section discusses the experimental setup and

specific simulation tools used to find the effectiveness of

the proposed methodology under certain metrics (i.e.,

speed, power and area). After that, experimental results are

presented and analyzed.

A. Experimental Setup

Different classical bit-counting techniques were

implemented in order to show the effectiveness of Harley-

Seal technique. Then, AHS-METAII was implemented

using 64-bit word for the input. Additionally, the AHS-

METAII was segmented into different number of words

(i.e., two, four, eight and sixteen) to study the effect of

varying the number of the words on different performance

metrics. For each number of word implementation,

different count function (i.e., Naïve, NTAD and WWG) is

used for calculating the final population count value using

(3), in order to determine the best implementation in terms

of count function as well as the number of segmented

words.

To achieve the research goals, the design flow shown

in Figure 9 was applied. Similar design flows were used in

other studies as [24-28].

The design steps were as follows:

 The design was implemented at the register

transfer level (RTL) using VerilogTM (i.e.,

hardware description language). The Verilog

implementation was verified using ModelSimTM

[29]. ModelSim is a dynamic simulation tool,

RTL Design

implementation

RTL Simulation

Verified

Synthesis and

compilation

Resource, timing

and Power Analysis

Performance

metrics

No

Yes

Figure 9. Design flow

which provides wave-files capturing the node

activity used to compute the power dissipation of

the design.

 The design was synthesized and compiled using

the Altera software package Quartus-II [30].

 For Quartus-II synthesis, timing constraints were

used during the compiling process.

 The design underwent through the following

analysis using Quartus-II:

- Timing analysis reported the maximum

frequency of the design. All designs were

compiled with clock constraints of 50 MHz.

- Resource utilization analysis showed the

number of logic elements (LEs) and the type

(i.e., combinational, register logic, or both)

used in the design [25]. LE is the smallest unit

of logic in the Altera architecture; it is compact

and facilitates efficient logic utilization.

- Power analysis computed the average power of

the design. The computed power was the

dynamic core power that consists of

combinational, register, and clock. The power

required by node activities was extracted from

the value change dump (VCD) files generated

by ModelSim simulations. This approach for

computing power was used in other works, such

as references [24, 25].

 Performance metrics including accuracy, delay,

power and area were calculated based on the

implementation results in order to show the

effectiveness of the proposed methodology over

other techniques.

1194 Reem Jaffal, et al.: Approximate Population Count Using the Harley-Seal Method for …

http://journals.uob.edu.bh

B. Experimental Results

This subsection summarizes the performance

effectiveness of the proposed methodology in terms of

different metrics (i.e., accuracy, delay, power and area).

The Performance of AHS-METAII proposed

methodology implemented with different number of

words (i.e., 2, 4, 8, 16) and different count functions (i.e.,

Naïve, NTAD and WWG) for final population count step

using (3) is shown in Table II. Exact Harley-seal approach

with NTAD count function chosen to be compared with

the approximate Harley-seal approach as it demonstrates

almost the best results as will be shown below in Table III.

Our results presented in Tables II and III and Figures

(10-16) validate the effectiveness of our proposed

methodology in ways we shall explain subsequently in the

following subsections.

TABLE II. PERFORMANCE METRIC COMPARISON FOR PROPOSED

METHODOLOGY WITH DIFFERENT NUMBER OF WORDS AND COUNT

FUNCTIONS.

TABLE III. EXACT HARLEY-SEAL METHOD WITH APPROXIMATE

HARLEY-SEAL METHOD USING 8 WORDS AND NTAD COUNT FUNCTIONS

Type Accuracy Delay

(ns)

LEs Power

(mW)

Exact (HS-CSA)

with NTAD

(8 words)

100% 17.989 151 3.81

Approximate (HS-

CSA) with NTAD

(8 words)

91% 17.498 127 2.8

1) Accuracy

For all designs, the accuracy was computed for 10

different random bit streams. To calculate the accuracy

level, each output value was contrasted with the exact

value after the simulation. Table II shows the accuracy for

all implementations.

The results show the maximum accuracy level of our

AHS-METAII is 100% seen in the two words

implementation, which is equal to exact Harley-Seal

approach (HS-CSA). Implementing the Harley-Seal

approach with ETAII (HS-ETAII) without modifying it,

results in decreasing the accuracy to unacceptable levels

(i.e., 56%) as discussed previously in Section 4. However,

after modifying the ETAII, it demonstrated good accuracy

levels with different number of words. It is noticeable that,

sixteen words implementation shows the lowest accuracy.

The AHS-METAII methodology with four and eight

words shows an acceptable level of accuracy as they are

above 90%. The relationship between the number of words

and accuracy level is inversely proportional as the

proposed algorithm does not consider the previous data

when calculating the sum. As number of words increases,

the word size decreases resulting in ignoring more carry-

in values which reduces the accuracy as shown in Figure

10.

Figure 10. Accuracy for AHS-METAII segmented into different
number of words

2) Delay (Speed)

Table II shows the delay calculated for all the AHS-

METAII methodology implementations with different

number of segmented words and count functions.

Figure 11 represents the delay of AHS-METAII with

different count functions and number of words. It is

noticed that applying NTAD with the AHS-METAII

approach results in minimum delay followed by Naïve.

However, using it with WWG is not recommended as it

demonstrated the maximum delay among all word’s

implementations. In general, increasing number of words,

decreases the average delay as shown in Figure 12. It is

clear that sixteen words implementation has the minimum

delay among all implementations followed by eight words

as the process is divided into smaller bit streams working

on parallel manner which result in better delay results.

Even though, the proposed methodology with sixteen

words shows the best in terms of delay, however, this

design is not recommended as it has the lowest accuracy.

So, the best one to be considered is the proposed one with

eight words using NTAD count function, as it is faster than

the exact Harley-seal approach by 3% as shown by Table

III.

Additionally, it is observed that for all experiments the

performance results are sensitive to the random data values

in the sense that the distribution of ones across the bit-

stream affects the addition processes, which in turn affect

the speed of the pop-count methods correspondingly.

3) Area utilization

Design area is represented by the total number of Logic

Elements (LEs) and calculated for all designs as illustrated

in Table II. To get a clear view of the area utilized by the

75%

80%

85%

90%

95%

100%

W2 W4 W8 W16

A
cc

u
ra

cy
 (

%
)

Number of words

Accuracy level

Proposed

approach with

different

 words

Count

function

Accuracy Delay

(ns)

LEs Power

(mW)

Approximate

Harley-Seal

(AHS-

METAII)

(2 words)

Naïve 100% 19.091 202 4.66

NTAD 100% 18.818 182 4.7

WWG 100% 24.588 265 6.99

Approximate

Harley-Seal

(AHS-

METAII)

 (4 words)

Naïve 95% 18.543 151 3.61

NTAD 95% 18.457 134 3.37

WWG 95% 19.635 198 6.65

Approximate

Harley-Seal

(AHS-

METAII)

 (8 words)

Naïve 91% 17.838 136 3.86

NTAD 91% 17.498 127 2.8

WWG 91% 18.875 162 4.47

Approximate

Harley-Seal

(AHS-

METAII)

 (16 words)

Naïve 86% 17.167 99 2.56

NTAD 86% 17.440 97 2.33

WWG 86% 17.771 97 2.21

 Int. J. Com. Dig. Sys. 9, No.6, 1187-1197 (Nov-2020) 1195

http://journals.uob.edu.bh

Figure 11. The delay of AHS-METAII using different count functions

and number of words.

Figure 12. The average delay of AHS-METAII using different number

of words.

AHS-METAII proposed methodology, Figure 13 plots

all the designs with different words numbers and count

functions. It is observable that our AHS-METAII using

NTAD count function has the least number of LEs using

different number of words. Overall, the number of LEs

decays as number of words doubles due to halving the size

of registers (in number of bits) as it is clear in Figure 14.

The best design of our proposed methodology is AHS-

METAII using NTAD with eight words as it utilizes 16%

less LEs than the exact Harley-seal as presented in Table

3. This reduction in the utilized area is due to the reason

that our proposed methodology uses one less XOR gate to

calculate the sum. However, there was an increase in the

area when compared to the original ETAII because a carry

register equal in size to the sum register, instead of the one-

bit carry that was previously needed. Although the design

with sixteen words utilizes a smaller number of LEs, it is

not recommended as stated before because of the low

accuracy achieved.

4) Power consumption

Dynamic power consumption which consists of

combinational and sequential power is calculated for

AHS-METAII methodology with different words and

count functions as presented in Table 2. Figure 15

represents the power consumption of AHS-METAII

proposed with different count functions and number of

words. It is clear that among all word’s implementations,

AHS-METAII with NTAD approach recorded

Figure 13. The utilized area of AHS-METAII using different count

functions and number of words.

Figure 14. The average utilized area of AHS-METAII using different

number of words.

approximately the minimum power consumption followed

by AHS-METAII proposed with Naïve. Moreover, power

consumption decreases as the number of words increases,

until reaching the minimum value at sixteen words

implementation as demonstrated in Figure 16. This

decreasing trend is due the number of combinational logic

elements as they decrease with doubling the number of

words. The synthesis tool works better with larger number

of words as it tries to reduce connections and optimize the

design in an efficient way. It is worth mentioning that the

best implementation of our AHS-METAII methodology

(i.e., AHS-METAII with eight words using NTAD) is

consuming less power than the exact Harley-seal approach

by an average of 27% as it is noted in Table III. This shows

the performance of applying approximation methods with

the pop-counting techniques in reducing the consumed

power. Although using sixteen words consumes much less

power than the exact Harley-Seal approach, it recorded

less accuracy as illustrated in Table II.

6. CONCLUSION

This work analyzed the problem of computing the

hamming weight of bit streams. A review and evaluation

of the existing approaches revealed that they exposed

either scalar parallelism or vector parallelism. Therefore,

a new approximate approach that exposes vector

parallelism but alters the internal logic gates of the

approximate adder was proposed.

0

10

20

30

W2 W4 W8 W16

D
el

ay
 (

n
s)

Number of words

Estimated delay

N NTAD WWG

15

16

17

18

19

20

21

22

W2 W4 W8 W16

D
el

ay
 (

n
s)

Number of words

Estimated delay

0

100

200

300

W2 W4 W8 W16

N
u
m

b
er

 o
f

L
E

s

Number of words

Area

N NTAD WWG

0

50

100

150

200

250

W2 W4 W8 W16

N
u
m

b
er

 o
f

L
E

s

Number of words

Area

1196 Reem Jaffal, et al.: Approximate Population Count Using the Harley-Seal Method for …

http://journals.uob.edu.bh

Figure 15. The power of AHS-METAII using different count functions

and number of words.

Figure 16. The average power of AHS-METAII using different number

of words.

This implementation was useful in error-tolerant

applications. The evaluation showed that the proposed

hybrid solution (AHS-METAII) outperformed the exact

Harley-Seal approach (HS-CSA) in all metrics when eight

words were used as it offered overall enhanced

performance suitable for error tolerant applications with a

27% dynamic power reduction, 3% delay reduction, and

16% area reduction along with a slight decrease (9%) in

the accuracy level. Applying sixteen words in the

proposed approach resulted in better performance than

eight words. However, the accuracy decreased by 14%.

In the future, the proposed methodology will be tested

on a larger bit stream (128-bit) to observe the results of the

methodology when the parameters (e.g., number of words

and popcount method used) are altered. Additionally,

different approximate adders can be implemented and

tested using this approach. Other possibilities include

implementing the proposed approach using different

computer architectures, such as Single Instruction

Multiple Data (SIMD), or using pipelining to enhance the

delay.

REFERENCES

[1] Berkovich, S., Lapir, G.M., Mack, M., “A bit‐counting algorithm
using the frequency division principle,” Software: Practice and
Experience, 2000, 30, (14), pp.1531-1540.

[2] Gomuffłkiewicz M., Kutyffłowski M., “Hamming Weight Attacks
on Cryptographic Hardware—Breaking Masking Defense,”
InEuropean Symposium on Research in Computer Security, Berlin,
Heidelberg, 2002, pp. 90-103.

[3] Suciu A., Cobarzan P., Marton K., “The never ending problem of
counting bits efficiently,” In2011 RoEduNet International
Conference 10th Edition: Networking in Education and Research,
2011, pp. 1-4.

[4] Manku GS., Jain A., Das Sarma A., “Detecting near-duplicates for
web crawling,” InProceedings of the 16th international conference
on World Wide Web, 2007, pp. 141-150.

[5] Nugrahaeni RA., Mutijarsa K., “Comparative analysis of machine
learning KNN, SVM, and random forests algorithm for facial
expression classification,” In2016 International Seminar on
Application for Technology of Information and Communication
(ISemantic), 2016, pp. 163-168.

[6] Baldi P., Hirschberg DS., Nasr RJ., “Speeding up chemical
database searches using a proximity filter based on the logical
exclusive OR,” Journal of chemical information and modeling,
2008, 28;48, (7), pp.1367-1378.

[7] Muła W., Kurz N., Lemire D., “Faster population counts using
AVX2 instructions,” The Computer Journal. 2018,61,(1), pp.111-
120.

[8] Liang J., Han J., Lombardi F., “New metrics for the reliability of
approximate and probabilistic adders,” IEEE Transactions on
computers, 2012,62,(9), pp.1760-1771.

[9] Kahng AB., Kang S., “Accuracy-configurable adder for
approximate arithmetic designs,” InProceedings of the 49th Annual
Design Automation Conference, 2012, pp. 820-825.

[10] Jiang H., Han J., Lombardi F., “A comparative review and
evaluation of approximate adders,” InProceedings of the 25th
edition on Great Lakes Symposium on VLSI, 2015, pp. 343-348.

[11] Warren Jr HS., The quest for an accelerated population count,
Beautiful code: leading programmers explain how they think, 2007,
pp.147-60.

[12] Zhu N., Goh WL., Wang G., Yeo KS., “Enhanced low-power high-
speed adder for error-tolerant application,” In2010 International
SoC Design Conference 2010, pp. 323-327.

[13] Sun C., del Mundo CC., “Revisiting POPCOUNT Operations in
CPUs/GPUs,” InACM Student Research Competition Posters at the
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis, 2016.

[14] Morancho E., “A hybrid implementation of Hamming weight,”
In2014 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, 2014, pp. 84-92.

[15] Wilkes MV., Wheeler DJ., Gill S. The preparation of programs for
an electronic digital computer,1958.

[16] El-Qawasmeh E., “Beating the popcount.” International Journal of
Information Technology, 2003,9,(1), pp.1-8.

[17] Jiang H., Liu C., Liu L., Lombardi F., Han J., “A review,
classification, and comparative evaluation of approximate
arithmetic circuits,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), 2017, 13, (4), pp.1-34.

[18] Verma AK., Brisk P., Ienne P., “Variable latency speculative
addition: A new paradigm for arithmetic circuit design.,”
InProceedings of the conference on Design, automation and test in
Europe, 2008, pp. 1250-1255.

[19] Mahdiani HR., Ahmadi A., Fakhraie SM., Lucas C., “Bio-inspired
imprecise computational blocks for efficient VLSI implementation
of soft-computing applications,” IEEE Transactions on Circuits and
Systems I: Regular Papers, 2009, 57, (4), pp. 850-862.

[20] Du K., Varman P., Mohanram K., “High performance reliable
variable latency carry select addition,” In2012 Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2012, pp.
1257-1262.

[21] Ebrahimi-Azandaryani F., Akbari O., Kamal M., Afzali-Kusha A.,
Pedram M., “Block-based Carry Speculative Approximate Adder
for Energy-Efficient Applications,” IEEE Transactions on Circuits
and Systems II: Express Briefs, 2019.

[22] Barman J, Kumar V., “Approximate carry look ahead adder (cla)
for error tolerant applications,” In2018 2nd International
Conference on Trends in Electronics and Informatics (ICOEI),
2018, pp. 730-734.

0

2

4

6

8

W2 W4 W8 W16P
o

w
er

 (
m

W
)

Number of words

Estimated Power

N NTAD WWG

0

1

2

3

4

5

6

W2 W4 W8 W16

P
o

w
er

 (
m

W
)

Number of words

Estimated Power

 Int. J. Com. Dig. Sys. 9, No.6, 1187-1197 (Nov-2020) 1197

http://journals.uob.edu.bh

[23] Dutt S., Nandi S., Trivedi G., “Analysis and design of adders for
approximate computing,” ACM Transactions on Embedded
Computing Systems (TECS), 2017, 17, (2), pp. 1-28.

[24] Mohd BJ., Abed S., Alouneh S., “Carry-based reduction parallel
counter design,” International Journal of Electronics, 2013, 100,
(11), pp. 1510-1528.

[25] Abed S., Jaffal R., Mohd BJ., Alshayeji M., “FPGA modeling and
optimization of a Simon lightweight block cipher,” Sensors, 2019,
19, (4), pp. 1-28.

[26] Abed S., AlKandari M., AlRasheedi H., Ahmad I., “FPGA
Implementation of Enhanced JPEG Algorithm for Colored
Images,” International Journal of Computing and Digital Systems,
2020, 1, 20, (1), pp. 13-22.

[27] Hayajneh T., Ullah S., Mohd BJ., Balagani KS., “An Enhanced
WLAN Security System with FPGA Implementation for
Multimedia Applications,” IEEE Systems Journal, 2015, 11, (4),
pp. 2536-2545.

[28] Mohd BJ., Hayajneh T., Abed S., Itradat A., “Analysis and
modeling of FPGA implementations of spatial steganography
methods,” Journal of Circuits, Systems, and Computers, 2014, 23,
(02), pp. 1450018:1-1450018:26.

[29] ModelSim-Altera Software Simulation User Guide. Retrieved
from:
https://www.altera.co.jp/ja_JP/pdfs/literature/ug/ug_gs_msa_qii.p
df, accessed (April 2018).

[30] Altera Quartus II Hnadbook version 13.1, volume 1: Design and
Synthesis. Retrieved from:
https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/hb/qts/archives/quartusii_hand
book_archive_131.pdf, accessed (May 2018).

Reem Jaffal received the B.S. degree
in computer engineering from College of

Engineering and Petroleum, Kuwait

University, Kuwait, in 2014. Her M.Sc.

degree in computer engineering was

received in 2018 from College of

Engineering and Petroleum, Kuwait
University, Kuwait. She is currently a

Research Assistant at Kuwait University.

Her current research interests include
hardware design, power/energy

optimization and cryptography.

Sa’ed Abed received his B.Sc. and

M.Sc. in Computer Engineering from
Jordan University of Science and

Technology in 1994 and 1996,

respectively. In 2008, he received his
Ph.D. in Computer Engineering from

Concordia University, Canada.

Currently, he is an Associate Professor
in the Department of Computer

Engineering at Kuwait University. His

research interests include VLSI Design,
formal methods and Image Processing.

Imtiaz Ahmad has a B.Eng in electrical
engineering, from University of

Engineering & Technology, Lahore,

Pakistan in 1984, M. Eng. in electrical
engineering from King Fahd University

of Petroleum & Minerals, Dhahran,

Saudi Arabia in 1988, and Ph.D. in
computer engineering from Syracuse

University, Syracuse, New York, USA,

in 1992. His research interests are in
design automation of digital systems,

parallel and distributed computing. He is

currently a Professor with the Computer
Engineering Department at Kuwait

University, Kuwait.

Mahmoud Bennaser received his B.Sc.

in Computer Engineering from Kuwait
University in 1999. His M.Sc. in

Computer Engineering was received

from Brown University in 2002. In
2008, he received his Ph.D. in Computer

Engineering from University of

Massachusetts. Currently, he is an
Assistant Professors in the Department

of Computer Engineering at Kuwait

University. His research interests
include VLSI Design, CMOS, Circuit

Analysis and Integrated Circuits

https://www.researchgate.net/topic/CMOS
https://www.researchgate.net/topic/Circuit-Analysis
https://www.researchgate.net/topic/Circuit-Analysis
https://www.researchgate.net/topic/Integrated-Circuits

