

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 9, No.6 (Nov-2020)

E-mail: han607@purdue.edu, dltjrrb0729@naver.com, dongho.kim@dgu.edu

 http://journals.uob.edu.bh

Applying Dynamic HTTP Adaptive Streaming over

Unmanned Aerial Vehicle Networks
Heejae Han

1
, Seokgyu Lee

2
 and Dongho Kim

3

1 Department of Computer and Information Technology, Purdue University, USA

2 Department of Computer Science and Engineering, Dongguk University, Seoul, Korea
3 Dongguk Institute of Convergence Education, Dongguk University, Seoul, Korea

Received 25 Nov. 2019, Revised 10 Mar. 2020, Accepted 1 Aug. 2020, Published 1 Nov. 2020

Abstract: With the growing demand for UAVs (Unmanned Aerial Vehicles) such as drones, technology for streaming video using

drones is also improving. However, networks for drones are not as stable as the topology continuously changes. To provide optimal

QoE (Quality of Experience) in these networks, DASH (Dynamic Adaptive Streaming over HTTP) can be applied to drones. In

DASH, the source video is segmented into short duration chunks of 2–10 seconds, each of which is encoded at several different

bitrate levels and resolutions. This paper provides prototypes for applying DASH to drones. The prototype consists of a Raspberry Pi,

a video processing server, web servers, a dash.js, and Exoplayer-based client.

Keywords: DASH (Dynamic Adaptive Streaming over HTTP); UAV (Unmanned Aerial Vehicle)

1. INTRODUCTION

UAV, also commonly known as a drone, is an
unmanned aircraft which had been first developed and

utilized during World War Ⅰ for military purpose.

Owing to technological advances, both hardware and on-
board computing system for UAVs have made great
strides. In recent years, UAVs are not only being used
for military purpose, but they are vigorously being
utilized for public and civil applications such as weather
monitoring [1], surveillance [2, 3], search and rescue [4],
and live-event broadcasts. Accordingly, there exists a
necessity for stable video streaming and robust
communication. However, UAVs keep moving and
network topology of drones changes every second.
Therefore, there exists a drawback that the drone's
communication bitrate is unstable, and this may cause
problem such as delay or disconnection when clients get
live video streaming from drones.

With the growth of companies such as Youtube and
Netflix, multimedia delivery has become a major source
of Internet traffic. Cisco VNI predicts IP video traffic to
be above 80% of all Internet traffic by 2020 [5]. In the
early stage, a stateful protocol such as Real-Time
Streaming Protocol (RSTP) over User Datagram
Protocol (UDP) or Transmission Control Protocol (TCP)
had been used for streaming [6]. It works in a way that
once a connection between a streaming server and a
client is set up, the server keeps track of the client’s state
until the client terminates the connection. Hence,

communication between the server and the client occurs
frequently during a single session. However, these days,
HTTP has become a main protocol for multimedia
delivery thanks to its advantageous properties. In
contrast with RSTP, HTTP is stateless protocol. If a
client requests some data, the server responds to that
specific request and the connection between them is
terminated. Above all, HTTP-based delivery can utilize
the existing infrastructure of internet.

DASH (Dynamic Adaptive Streaming over HTTP) is

an adaptive bitrate streaming technology based on HTTP

which enhances clients’ Quality of Experience (QoE) [6,

7]. In this paper, we implemented a prototype for

applying DASH to a single drone [8]. With Raspberry Pi

and its camera module Pi Camera, we recorded a video

and sent it to a video processing server. On the server,

using FFmpeg and MP4Box libraries, we converted

videos into several bitrate versions and DASH’ed these

files. These files were uploaded on a web server and

could be accessed through its URL by clients. Clients

can stream a live video on either a dash.js-based web

video player or an ExoPlayer-based Android application.

2. RELATED WORK

As UAV technology gets advanced, various
researches utilizing UAVs have been actively carried out.
Among many different areas of research, aerial
monitoring using video streaming is one of the areas
which would likely to be applied to a variety of real
world matters, from traditional surveillance tasks, such

http://dx.doi.org/10.12785/ijcds/090603

1050 Heejae Han, et. al.: Applying Dynamic HTTP Adaptive Streaming over Unmanned …

http://journals.uob.edu.bh

as natural disaster prevention, accident and terrorism
prevention, or security of strategic national facilities or
military sites, to emerging use cases, such as live-event
broadcasts [9, 10]. There are many different approaches
to improve video based aerial monitoring systems, and
in this section we introduce a couple of approaches
which have been background of our research.

UAV video streaming systems could be improved
with a focus on different perspectives - improvement
could be done on entire system perspective, or it could
be done by enhancing a single UAV video streaming
performance. Most of the recent studies regarding UAV
video streaming have been done on the entire system
side view, whereas not mush research has been
conducted on the single UAV performance side view.
Thus, in this paper, we propose a practical approach to
improve a single UAV video streaming performance by
demonstrating detailed implementation of the system so
that it could be applied to larger UAV video streaming
systems consist of multiple UAVs and control stations or
vantage points.

Qazi et al. [11] has proposed a UAV based video
surveillance system consists of multiple UAVs and
vantage points, such as outdoor macro cells and indoor
femto cells, by utilizing existing 4G LTE wireless
network cellular infrastructure. They have proposed
closed-circuit monitoring framework for streaming real
time video using the legacy 4G LTE wireless network
and investigated the performance of the framework by
metrics of throughputs, loss rates and delay. As for
another view, Scherer et al. [12] has focused on
implementing an autonomous UAV system for search
and rescue tasks. The proposed system is implemented
in the Robot Operating System (ROS) and it provides
real-time video streaming from a single UAV to multiple
base stations using a wireless network infrastructure.
Overall, many researchers have focused on
implementing and developing entire video based UAV
systems.

However, although many researchers have conducted
investigations on whole UAV networks consists of
multiple UAVs and Ground Control Stations (GCS) [13],
not much work has been done on improving quality of a
single UAV streaming itself. Therefore, we have mainly
focused on enhancing quality of video streaming
operated by a single UAV. Wang et al. [14] have made a
first step toward adaptive video streaming algorithm that
could be applied to UAV video streaming. They have
used two factors - content based compression and video
rate adaptation based on location sensors and client
buffer status - to leverage their system performance.

Different standard bodies have been making efforts
to organize and standardize video streaming technology
as well. Among several different video streaming
deployment methods, such as Microsoft Smooth
Streaming [15], Adobe HTTP Dynamic Streaming [16],

and Apple’s HTTP Live Streaming [17], we have
decided to apply DASH, specifically MPEG-DASH, to
provide enhanced QoE to clients. DASH is an adaptive
streaming technology based on HTTP, which is
specified by Moving Picture Experts Group (MPEG)
and ratified as a standard by ISO (International
Organization of Standardization) [13]. Various standards
bodies have participated in developing DASH and it has
become a primary component of media delivery.
Although there has been a variety of different
deployments for media delivery, HTTP based media
delivery due to advantageous properties of HTTP.

Conventional HTTP-based media delivery
architecture, including DASH architecture, consists of a
media preparation part, HTTP servers, and clients. In the
media preparation part, a video source is segmented into
several chunks and they are encoded applying several
different options. Then, the chunks are hosted on a web
server along with a Media Preparation Description
(MPD) file. The MPD file is a metadata file which
contains descriptive information about the chunk such as
a content location, segment length, encodings, resolution,
and bandwidths range of the chunk. Referring to this
MPD information, clients request for data using HTTP
GET methods. DASH works by cutting each video into
2-10 second chunks and converting them into several
different bitrate versions. Thus, HTTP servers involved
in DASH contains several different bitrate versions of
chunks and clients can get proper bitrate video files
depending on their network conditions and resources.
The proper bitrate is chosen by adaptive bitrate
algorithm (ABR) such as buffer-based ABR,
throughput-based ABR or power-based ABR [6, 13].

3. SYSTEM DESIGN

3.1 System Overview

In the media preparation stage, Raspberry Pi records
a video of which length is less than 10 seconds with its
camera module, Pi Camera. The video recorded by Pi
Camera is then sent to the video processing server over
File Transfer Protocol (FTP). At this point, a format of
the video is H.264 instead of mp4 because Raspberry Pi
records video in a raw format. On the video processing
server, a H.264 video file received from Pi-end is
converted into mp4 file using MP4Box library. Then, the
mp4 video file is encoded into several different quality
videos using FFmpeg library. In this implementation, we
used 360p, 480p and 720p. These three different quality
videos containing the same contents will be DASH’ed
using MP4Box library. As an output of DASH, three
kinds of files – m4s, mp4, and MPD are obtained. A
segment is represented as one m4s file. An mp4 file
contains first 1000 bytes of the original video so that
clients can get information about the video before m4s
files. An MPD file contains descriptive information such
as the content location, segment length, encodings,
resolution, and bandwidths range of each m4s files.

 Int. J. Com. Dig. Sys. 9, No.6, 1049-1056 (Nov-2020) 1051

http://journals.uob.edu.bh

When a client gets access to the streaming service, it will
request an MPD file from a server first. Then, it requests
a sequence of m4s files from the server based on the
MPD file. These m4s files are uploaded on Apache web
server so that clients can access files through the server's
URL. We have developed two different kinds of video
players on the client-side – one is a dash.js-based web
video player and the other is an ExoPlayer-based
Android application. Both two heterogeneous players
can access to MPD files through the server’s URL. The
entire system flow is shown in Figure 1.

Figure. 1. Flow Chart of Prototype.

3.2 System Implementation

3.2.1 Video Recording on UAV

From this section, we cover the specific
implementation of Hardware which is Raspberry Pi. The
reason why we utilized Raspberry Pi for the prototype is
that we can install a Linux-based operating system on it.
Besides, since Raspberry Pi has a comprehensive camera
module, which is Pi Camera, we don't need to
implement networking parts such as Wi-Fi and camera
recording part. Moreover, we can use Python
programming language which has a variety of libraries
including Pi Camera, FTP, and multiprogramming.
Lastly, its size and weight are also suitable to be loaded
on drones and we can supply power easily by using
portable power batteries.

In this prototype, Raspberry Pi repeats recording a
fixed length of video and sending it to a video
processing server. Since recording a video and sending it
should occur at the same time, we have implemented
multiprocessing. As Raspberry Pi completes recording a
video, it forks another process which sends a video file
to an FTP server and the existing process begins
recording the next video. With this multiprocessing
process, we could record the videos without any missing
points.

3.2.2 Servers

The implemented server is an FTP (File Transfer
Protocol) server. First of all, it plays the role of receiving
the H.264 file from Raspberry Pi. A reason why the

server is implemented as an FTP server is that it is the
fastest protocol for transferring files between Raspberry
Pi and the server over TCP.

World Wide Web (WWW) accessed through the
HTTP protocol has an advantage of being able to easily
use general characters, pictures, music or video contents,
but it has a fatal weakness in sending a large number of
files and the file control is troublesome. Therefore, it is
more advantageous to use FTP, which is a file transfer
service, when a large number of files are constantly led
through a network. Since FTP is a protocol designed
solely for sending and receiving files over the Internet,
the operation method is very simple and intuitive. More
than anything, FTP's biggest advantage is that it can
send and receive at a faster speed than HTTP.

The operation principle of FTP is relatively simple.
Two connections are created between the server and the
client, one for sending and receiving signals to control
the data transmission (network 21 port) and the another
for real data (a file) transmission (network 20 port).
Network port refers to the path through which data
travels over a network. Figure 2 shows a data transfer
process between a Raspberry Pi and the FTP server
implemented in this project.

Figure. 2. Connective Operations of FTP.

FFmpeg, an open-source project under the license of
GNU General Public License, which is aimed at
decoding and encoding all the video, music and photo
formats and being developed under the leadership of
Michael Niedermayer, is a computer program that
records and converts various types of digital audio
streams and video streams. FFmpeg works by directly
entering commands and consists of a variety of free
software and open-source libraries. The H.264 file
received by the FTP server is first encoded into MP4
(720p) using FFmpeg. After that, it is encoded into three
resolutions of MP4 (360p, 480p, 720p). This is to
provide each resolution according to the network
environment. As the network condition gets improved,
the original resolution of 720p could be seen.

 However, client sides (Web, Android) do not
receive MP4 files directly. They receive m4s files
instead of the MP4 files. For the preparation of
streaming contents, we used MP4Box. MP4Box is an
opensource software that enables video file conversion
and file hinting for video streaming. In this project, we
utilized MP4Box to divide each MP4 files of 3 different
resolutions into 2 seconds m4s files. In addition,
init.mp4 file and MPD file are generated by MP4Box.

1052 Heejae Han, et. al.: Applying Dynamic HTTP Adaptive Streaming over Unmanned …

http://journals.uob.edu.bh

The init.mp4 file is an initialization segment necessary
to start streaming a video and the MPD file is a metadata
file containing information about m4s files which the
clients can refer to.

All of the previous files processed by FTP server –
init.mp4, MPD, m4s files – are uploaded to the Apache
Web server so that we could implement DASH. The web
server loads Web (dash.js) and Android (ExoPlayer).
Consequently, clients can view the proper quality of
contents seamlessly depending on their network
conditions by referring to the MPD file.

3.2.3 Clients

Here we cover how we have implemented a client-
side of the system. We have developed two different
types of clients to make heterogeneous access to single
video content available. Sample codes for
implementation are included hereafter.

A) Web Client: Dash.js

At this point, only Microsoft Edge, which operates
on Windows 10, supports DASH streaming natively.
Thus, implementing DASH on other browsers and
operating systems is available through Media Source
Extensions (MSE). For instance, although MPEG-
DASH is not directly supported in HTML5, dash.js
provides JavaScript implementations of MPEG-DASH.
It facilitates developing MPEG-DASH in web browsers
by using the HTML5 MSE.

A-1) How to implement a web client: To create a

simple web browser that displays a video player with

expected functions such as play, pause, rewind, etc., you

need to:

1. Create an HTML page

2. Add the video tag

3. Add the dash.js player

4. Initialize the player

5. Add some CSS style

6. View the results in an MSE browser

Initiating a video player can be completed in just a
handful of lines of JavaScript code. Using dash.js, it is
that simple to embed MPEG-DASH video in your
browser-based applications.

The first step of implementing a browser-based video
streamer is to create a standard HTML page which
contains a video element and save this file as
basicPlayer.html. Following is an example code:

<!DOCTYPE html>

 <html>

 <head>

 <title>Adaptive Streaming in

HTML5</title></head>

 <body>

 <h1>Adaptive Streaming with HTML5</h1>

 <video id="videoplayer"

controls></video>

 </body>

 </html>

To add dash.js reference implementation to your
application, you need to grab the dash.all.js file from the
1.0 release of dash.js project. This file should be saved
in the JavaScript folder of your application. It is a
convenience file that pulls all the necessary dash.js code
together into a single file. If you take a look into the
dash.js repository, you can find each files, test codes and
much more. However, if all you want to do is using
dash.js only, the dash.all.js file is all you need. To add
the dash.js player to your applications, add a script tag to
the head section of basicPlayer.html as follow:

<!-- DASH-AVC/265 reference implementation -

->

 < script src="js/dash.all.js"></script>

Next, create a function to initialize the player when
the page loads. Add the following script after the line in
which you load dash.all.js:

<!-- DASH-AVC/265 reference implementation -

->

< script src="js/dash.all.js"></script>

<script>

 // setup the video element and attach it

to the Dash player

 function setupVideo() {

 var url =

"http://wams.edgesuite.net/media/

MPTExpressionData02/BigBuckBunny_1080p24_IYU

V_2ch.ism/

manifest(format=mpd-time-csf)";

 var context = new

Dash.di.DashContext();

 var player = new MediaPlayer(context);

 player.startup();

 player.attachView(document.querySelect

or("#videoplayer"));

 player.attachSource(url);

 }

</script>

The setup video() function above first creates a
DashContext by using Dash.di.DashContext(). This is
used to configure the application for a specific runtime
environment. Next, instantiate a primary class of the
dash.js framework, MediaPlayer. This class contains

 Int. J. Com. Dig. Sys. 9, No.6, 1049-1056 (Nov-2020) 1053

http://journals.uob.edu.bh

core methods of a video player such as play and pause
and manages video elements and interpretations of MPD
files. The startup() function of the MediaPlayer class is
called to ensure that the player is ready to play a video.
It ensures that all the necessary classes have been loaded.
Once the player is ready, you can attach a video element
to the player using the attachView() function. The
startup() function enables the MediaPlayer to inject
video chunks into the element and also control playback
as necessary. Passing URL of the MPD file to the
MediaPlayer allows MediaPlayer to recognize the video
expected to play next. Lastly, the setupVideo() function
mentioned above needs to be executed once the page has
fully loaded. It can be achieved by using the onload
event of the body element. Change your element to:

<body onload="setupVideo()">

Finally, set the size of video elements using CSS. In
an adaptive streaming environment, this is especially
important because the size of the video being played is
changeable as playback adapts to changing network
conditions. In this simple demo, we simply forced the
video element to be 80% of the available browser
window by adding the following CSS to the head section
of the page:

<style>

 video {

 width: 80%;

 height: 80%;

 }

</style>

To play a video, point your browser at the
basicPlayback.html file and click play on the video
player displayed.

2) Problems and solutions: The first problem we had
faced in a web client is the Cache problem. Since a
video is encoded further on the server-side, MPD file
should be updated periodically on the client. Otherwise,
the same image repeats itself. To resolve this problem,
the HTTP specification allows the server to return
Cache-Control directives that control how, and for how
long, the browser and other intermediate caches can
cache the individual response. And here we use no-cache.
"no-cache" indicates that the returned response can't be
used to satisfy a subsequent request to the same URL
without first checking with the server if the response has
changed. As a result, if a proper validation token (ETag)
is present, no-cache incurs a roundtrip to validate the
cached response but can eliminate the download if the
resource has not changed.

The second problem we had encountered is Cross-
Origin Resource Sharing (CORS) problem. CORS is a
mechanism that uses additional HTTP headers to tell a
browser to let a web application running at one origin

(domain) have permission to access selected resources
from a server at a different origin. A web application
makes a cross-origin HTTP request when it requests a
resource that has a different origin (domain, protocol,
and port) than its origin. Initially, the domain of the
server providing the client page was different from the
domain of the server providing the MPD file, so there
was a problem importing the MPD file from the server.
This is because browsers restrict cross-origin HTTP
requests initiated from within scripts for security reasons.
Allowing CORS has solved the problem. We have used
Chrome's extension to make the CORS request.

B) Android Client: ExoPlayer

ExoPlayer is an application-level media player for
Android and an open-source project which is provided
by Google and distributed separately from the Android
SDK. ExoPlayer supports features not currently
supported by Android’s MediaPlayer API, including
DASH and SmoothStreaming adaptive playbacks.
ExoPlayer’s standard audio and video components are
built on Android’s MediaCodec API, which was
released in Android 4.1(API level 16). ExoPlayer is easy
to customize and extend and is a library and people can
easily take advantage of new features as they become
available by updating their app.

B-1) How to implement a web client: To create an

Android application that displays a video player with

expected functions such as play, pause, rewind, etc., you

need to:

1. Create an Android application

2. Add ExoPlayer

3. Initialize the player

4. Play the video which comes with

DASH protocol

As ExoPlayer can be easily customized, we changed
a lot of features after including ExoPlayer library to
make a smooth DASH player.

We include Exoplayer to depend on the library
modules that need. Adding a dependency to the full
ExoPlayer library is equivalent to adding dependencies
on all of the library modules individually. ‘exoplayer-
dash:2.8.0’ supports DASH contents.

dependencies {
 implementation 'com.android.support:appcompat-v7:27.1.1'
 implementation 'com.android.support:support-v4:27.1.1'
 implementation 'com.google.android.exoplayer:exoplayer-

core:2.8.0'
 implementation 'com.google.android.exoplayer:exoplayer-

dash:2.8.0'
 implementation 'com.google.android.exoplayer:exoplayer-

ui:2.8.0'
}

1054 Heejae Han, et. al.: Applying Dynamic HTTP Adaptive Streaming over Unmanned …

http://journals.uob.edu.bh

These lines should be included in ‘build-gradle’.

Next, we put URL we got from the server side in
‘MediaSource source’ to play the video server-side
sends.

MediaSource source =

buildMediaSource(Uri.parse("http://210.94.185.47/test/test.mpd

"));
player.prepare(source, true, false);
player.setPlayWhenReady(playWhenReady);

We put ‘initializePlayer’ in ‘onStart()’ to make the
player play videos when the application is turned on.

public void onStart() {
 super.onStart();
 if (Util.SDK_INT > 23) {
 initializePlayer();
 }
}

Also, we made it keep receiving the video segments
from the server by put ‘initializePlayer’ in ‘onStop()’. It
made the player keep getting video segments and we
were able to make it live-streaming.

public void onStop() {
 super.onStop();
 if (Util.SDK_INT > 23) {
 initializePlayer();
 }
}

B-2) Problems and Solutions: We came across some

problems in the early stage and the biggest problem was

that the player keeps playing the same video segments

even though we tried to make a live-streaming DASH

player. We figured out what the problem was and it

turned out that the problem was that the player didn't

get fresh video chunk when the previous one ends. So we

made the player get the new chunk by making the player

get the same URL when one video segment ends.

case Plyaer.STATE_ENDED
stateString = “ExoPlayer.STATE_ENDED -”;

 MediaSource mediaSource =

buildMediaSource(Uri.parse(“MPD URI”));

 Player.prepare(mediaSource, restPosition: true, resetState:

false);

break;

Another problem we encountered is a buffer problem.
When we tried to play a video file which we got from
the server-side, it had a problem which skipped some
video segments or played the previous segments. We
tried to figure out what the problem was and we found

that this problem occurred because we didn't make a
proper buffer for the player. So, we modified the code to
make a buffer and when we played it later on, it worked
well.

DefaultAllocator allocator
 = new DefaultAllocator(true,

C.DEFAULT_BUFFER_SEGMENT_SIZE);
LoadControl loadControl =
 new DefaultLoadControl(
 allocator,
 10000,
 30000,
 8000,
 5000,
 C.DEFAULT_BUFFER_SEGMENT_SIZE,
 true
);

EXPERIMENT

To evaluate the performance of the prototype, we
conducted an experiment with different video lengths.
We could adjust two kinds of video lengths in the
prototype. One is the length of the original video which
is being taken on the Raspberry Pi and the other is the
length of video chunks which are cut from the original
video. In some conditions, it occurred that client-side
player skips some video segments. Focusing on this
problem, we tried to find the optimal length of video and
chunk video size for smooth playback.

We conducted the experiment with three different
conditions. In [α, β], we set α as the length of the
original video, and β for the length of chunks. The three
different conditions are shown in Table 1.

TABLE 1. CONDITIONS OF EACH EXPERIMENT

Experimen α β

A 20 4

B 6 2

C 4 2

We have tried to find optimal length of video and
chunk video size for smooth playback by trial and error.
At first, we tried recording a video every 2 seconds.
However, when sending this video to the server,
sometimes it took more than 2 seconds. This can result
in stacking videos on Raspberry Pi. Therefore, we
needed to lengthen the video recording time. Also, we
had to consider a video encoding time on video
processing server because the sum of video transmitting
time and video encoding time should be shorter than
video recording time. As you can see in Figure 3, there

 Int. J. Com. Dig. Sys. 9, No.6, 1049-1056 (Nov-2020) 1055

http://journals.uob.edu.bh

was little miss of timing when we recorded videos every
6 seconds. The video transmission time took about 2.3
seconds and converting time took 3.5 seconds.

Figure. 3. Video Processing Timeline.

CONCLUSIONS

We have made an attempt to apply DASH to
implement UAV video streaming system. One of the key
points of DASH is selecting appropriate segment length
to support smooth playback on client-side. Accordingly,
we experimented 3 different pairs of video length and
chunk length to find out an optimal chunk size for
smooth playback. We have determined those lengths
based on observations and client-end heuristics.
Although network conditions between web server and
clients were erratic, communication between FTP server
and UAV and video processing time on FTP server had
consistency. Thus, based on the consistency, we could
figure out the optimal original video length and chunk
length which support the smooth playback on client-side.

As future work, some alternate adaptive bitrate
algorithms (ABRs) can be applied to improve client’s
QoE. In addition, although we have applied DASH to a
single drone, we can develop more scalable deployment
of network which involves a number of UAVs.
Addressing more complex UAV Ad hoc Networks
(UAANETs) remains as an issue.

ACKNOWLEDGMENT

This work was supported by the MSIT (Ministry of
Science and ICT), Korea, under the National Program
for Excellence in SW supervised by the IITP (Institute
for Information & communications Technology
Planning & Evaluation)"(2016-0-00017)

REFERENCES

[1] Wesley, M. D. (2010). Unmanned aerial vehicle systems for

disaster relief: Tornado alley. In AIAA Infotech@ Aerospace
Conference. AIAA, 2010-3506.

[2] Dieter, H., Werner, Z., Gunter, S., Peter, S. (2005). Monitoring

of gas pipelines-a civil UAV application. Aircraft Engineering
and Aerospace Technology, 77(5), 352–360.

[3] Zainab Z., Atiya U., Ekram K., Mohammed A. Q. (2016). Aerial

surveillance system using UAV. In Thirteenth International
Conference on Wireless and Optical Communications Networks

(WOCN). IEEE.

[4] Jürgen, S., Saeed, Y., Samira, H., Evsen, Y., Torsten, A., Asif, K.,
Vladimir, V., Christian, B., Hermann, H., Bernhard, R. (2015).

An Autonomous Multi-UAV System for Search and Rescue. In

Proceedings of the First Workshop on Micro Aerial Vehicle
Networks, Systems, and Applications for Civilian Use. (pp. 33-

38). ACM.

[5] Cisco. (2019). Cisco Visual Networking Index: Forecast and
Trends, 2017–2022 White Paper. Retrieved from

https://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/white-paper-c11-
741490.html

[6] Thomas S. (2011). Dynamic Adaptive Streaming over HTTP --:

Standards and Design Principles. In Proceedings of the second
annual conference on Multimedia systems. (pp. 133-144). ACM.

[7] Jonathan, K., Grenville, A., Philip, B. (2017). A Survey of Rate

Adaptation Techniques for Dynamic Adaptive Streaming over
HTTP. IEEE Communications Surveys & Tutorials, 19(3), 1842-

1866.

[8] Abdelhak B., Ali C. B., Saad H., & Roger, Z. (2018). A
distributed approach for bitrate selection in HTTP adaptive

streaming. In Proceedings of the 26th International Conference

on Multimedia. (pp. 573-581). ACM.

[9] A. Merwaday, A. and I. Guvenc, “UAV assisted heterogeneous

networks for public safety communications”, in Proceedings of

IEEE Wireless Communications and Netwrking Conference
Workshops, pp. 329-334, New Orleans, LA, March 2015

[10] Mike, Ohleger; Geoffrey G Xie and John H. Gibson, “Extending

UAV Video Dissemination via Seamless Handover: A Proof of
Concept Evaluation of the IEEE 802.21 Standard”, in

Proceedings of Hawaii International Conference on System

Sciences, pp. 5106-5114, USA, January 2013

[11] Sameer Q., Ali S. S., Asim I. W. (2015). UAV based Real Time

Video Surveillance Over 4G LTE. In Proceedings of the

International Conference on Open Source Systems and
Technologies. (pp. 141-145). IEEE.

[12] Jurgen S., Saeed Y., Samira H., Evsen Y., Torsten A., Asif K.,

Vladimir V., Christian B., Hermann H., Bernhard R. (2015). An
Autonomous Multi-UAV System for Search and Rescue. In

Proceedings of the First Workshop on Micro Aerial Networks,
Systems, and Applications for Civilian Use. (pp. 33-38). ACM.

[13] Jean-Aimé M., Mohamed-Slim B. M., Nicolas L. (2017). Survey

on UAANET Routing Protocols and Network Security
Challenges. Ad Hoc & Sensor Wireless Networks, PKP

Publishing Services Network. (hal-01465993).

[14] Xiaoli W., Aakanksha C., Mung C. (2016). SkyEyes: Adaptive
Video Streaming from UAVs. In Proceedings of the 3rd

Workshop on Hot Topics in Wireless. (pp. 2-6). ACM.

[15] Microsoft. (2019). Retrieved from

[16] https://www.microsoft.com/silverlight/smoothstreaming

[17] Adobe. (2016). HTTP Dynamic Streaming (HDS). Retrieved

from https://www.adobe.com/devnet/hds.html

[18] Apple. (2016). HTTP Live Streaming (HLS). Retrieved from

https://developer.apple.com/streaming

1056 Heejae Han, et. al.: Applying Dynamic HTTP Adaptive Streaming over Unmanned …

http://journals.uob.edu.bh

Heejae Han Department of

Computer and Information

Technology, Purdue University,

USA … Received her B.S. degree in

Industrial Systems Engineering from

Dongguk University, Seoul, Korea

in 2019 and pursuing her M.S.

degree in Computer and Information

Technology at Purdue University,

West Lafayette, Indiana, USA. Her

research interests include artificial

intelligence, sensor systems, robotics

and multi agent systems.

Seokgyu Lee Department of

Computer Science and Engineering,

Dongguk University, Seoul, Korea.

Received his B.S. degree in

Computer Science Engineering from

Dongguk University, Seoul, Korea

in 2019. He is now an employee of

e-government team, D&T

innovation department, LG CNS.

His research interests include IoT

systems and networks.

Dongho Kim Dongguk Institute of

Convergence Education, Dongguk

University, Seoul, Korea …

Received his B.S. degree in

Computer Engineering from Seoul

National University, Korea in 1990

and his M.S. and Ph.D. degrees in

Computer Science from University

of Southern California, Los Angeles,

California, U.S.A., in 1992 and 2002,

respectively. He is now a professor

at Dongguk Institute of Convergence

Education, Dongguk University, Korea. His research interests

include network security and IoT.

