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Abstract: In this paper, an advanced-and-reliable road-lanes detection and tracking solution is proposed and implemented. The 

proposed solution is well suited for use in Advanced Driving Assistance Systems (ADAS) or Self-Driving Cars (SDC). The main 

emphasis of the proposed solution is the precision and the predictability in identifying the driving-lane boundaries (linear or curved) 

and tracking it throughout the drive. Moreover, the solution provides fast enough computation to be embedded in affordable CPUs that 

are employed by ADAS systems. The proposed solution is mainly a pipeline of reliable computer-vision algorithms that augment each 

other and take in raw RGB images to produce the required lane boundaries that represent the front driving space for the car. The main 

contribution of this paper is the precise fusion of the employed algorithms where some of them work in parallel to strengthen each 

other in order to produce a sophisticated real-time output. Each used algorithm is described in detail, implemented and its performance 

is evaluated using actual road images and videos captured by the front-mounted camera of the car. The whole pipeline performance is 

also tested and evaluated on real videos. The evaluation of the proposed solution shows that it reliably detects and tracks road 

boundaries under various conditions. 
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1. INTRODUCTION 

Increasing safety, reducing road accidents and 
enhancing comfort and driving experience are the major 
motivations behind equipping modern cars with Advanced 
Driving Assistance Systems (ADAS) [1]. These 
motivations represent incremental steps toward a 
hypothetical future of safe fully autonomous vehicles [3]. 

In the past couple of decades, major car manufacturers 
introduce many sophisticated ADAS functions like 
Electronic Stability Control (ESC), Anti-lock Brake 
System (ABS), Lane Departure Warning (LDW), Lane 
Keep Assist (LKA), etc. Both LDW and LKA functions 
are examples of how important for the car to detect and 
track the road lane lines or the road boundaries accurately 
and in real-time. Future ADAS functions like Collision 
Avoidance, Automated Highway Driving (Autopilot), 
Automated Parking and Cooperative Manoeuvring require 
more and more fast and reliable road boundaries detection, 
which is among the most complex and challenging tasks. 
In order to successfully detect the lane boundaries, 
accurate localization of the road is required, the relative 
position of the car with respect to road lane needs to be 

determined, and the vehicle heading direction should be 
measured and analyzed as well [9]. 

Computer-vision techniques are considered the main 
tools that provide the capabilities of sensing the 
surrounding environment for the detection, identification, 
and tracking of road-lane lines. The detection of lanes 
consists mainly of the finding of specific patterns/features 
such as the lane markings (colored segments) on painted 
road surfaces. Such kind of specification streamlines or 
guides the process of lane detection. However, there are 
some situations, when it happens, can obstruct the lane 
detection. As an example, the existence of other cars on 
the same lane that hides out, fully or partially, the lane 
markings ahead of the ego car. Another example is the 
existence of scattered shadow regions caused by highway 
walls, buildings, trees, etc. This paper presents an 
approach based on refined computer-vision algorithms 
working together to reach a real-time performance in 
detection and tracking of structured road boundaries 
(painted or faintly painted lane markings) with substantial 
curvature, which is robust enough in presence of shadow 
conditions. 

http://dx.doi.org/10.12785/ijcds/090302 
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There are currently several vision-based road lane 
detection algorithms proposed in the literature to improve 
driving and avoid fatal driving accidents [10]. One of these 
early endeavors is what is called the “GOLD” system, 
which is developed by Brogg [10]. In this system, the lane 
detection is performed based on edge detection. The 
captured image is transformed to a new mapping based 
bird’s eye view of the road. In this view, the lane 
boundaries or dashed lines appear very close to vertical 
lines with contrast color on a dark background. An 
adaptive filtering method is employed to detect and isolate 
vertical line segments that can be interpolated to construct 
longer lane lines. 

Moreover, concurrently, the LOIS algorithm is 
proposed by Kreucher et al [11], which is based on a 
deformable template approach. All possible forms that 
lane markings can take place in an image are 
parameterized as a collection of shapes. Then, an 
evaluation function is constructed to give a numerical 
value to how well a particular lane shape/marking is 
matching the pre-specified parameterized lane forms. 
Then, the maximum value of this function, at a particular 
position in the image, is used to highlight that a lane is 
detected. 

An earlier endeavor is carried out by Carnegie Mellon 
University by developing a system called AURORA [12]. 
This system uses a color camera mounted on the side of 
the car and pointed downwards the road. The camera is 
used to track the lane markings that exist in a structured 
road surface. AURORA uses only a single scan line and 
applied it to the image to detect the lane markings.  

Ran et al in [13] proposed an algorithm that can deal 
with painted and unpainted roads. The algorithms use 
some color cues to perform image segmentation and 
remove shadows. Specifically, Hough transformation [14] 
is used and applied to edged images to detect the lane 
boundaries with the assumption that the lane lines are long 
enough with soft curving. 

Hough transform is used again by Assidiq et al [15] in 
his proposed vision-based lane detection algorithm. 
Assidiq et al tried to reach real-time performance with 
adequate robustness for lighting change and to perform 
well in images with shadow areas. The algorithm used a 
pair of hyperbolas that are fitted to the lane edge positions. 

M. Aziz et al [16] discussed, in recent work, the results 
of the implementation of a lane detection algorithm on toll 
roads using classical computer-vision algorithms like 
Canny [17] and Hough Transform [15][19]. The authors 
concluded that adaptive methodologies need to be 
integrated into the methods used to compensate for the 

change in lighting conditions.   

Approaches based on neural networks [20] and deep 
learning [21], and specifically Convolutional Neural 
Networks (CNN) stimulate a promising research direction 
despite its overwhelming computational overhead. 

However, considering that the lane detection runs on 
vehicle-based systems, where computation resources are 
severely limited, the computational cost of a lane detection 
method should also be considered as a key indicator of the 
overall performance. 

In this paper, a comprehensive, streamlined, vehicle-
based lane boundary detection solution is implemented. 
This algorithm is given the name Lane Boundary Detection 
(LaneBD). LaneBD is differentiated from the previously 
surveyed algorithms in that it streamlines a pipeline of 
computer vision algorithms beginning with a camera 
calibration algorithm until highlighting the identified lane 
as well as measuring the curvature of the road. In between, 
several edge detection and color identification techniques 
are used employing multiple color spaces. The LaneBD 
focuses on both robustness and speed with a delicate 
balance. The robustness is achieved by removing distortion 
from images and using multiple methods to extract lane 
boundaries working in parallel to strength each other, and 
the speed comes from using effective methods that do not 
depend on iterative searches but rather on a single scan per 
camera frame, as well as concentrates the computation in 
the portion in the image with higher interest. Next sections 
will describe the used algorithms in more detail. 

2. OVERVIEW OF THE LANEBD ALGORITHM 

The LaneBD algorithm is designed to utilize a single 
CCD camera. This camera should be mounted on the front-
windshield mirror of the car to capture the road front view. 
However, stereo cameras can also be utilized, but for the 
matter of convenience, in this paper, a single front camera 
is only considered. In order to simplify the detection 
problem, it can be assumed that the setup makes the 
baseline horizontal, which assures the horizon is in the 
image and it is parallel to the X-axis (i.e. the projected 
intersection of the left and right lane line segments, when 
determined, is referred to as the horizon). Nevertheless, for 
the matter of precision, in the LaneBD, the image 
orientation will be adjusted using the calibration data of 
the front camera in conjunction with removing the visual 
distortions. 

In this work, it is assumed that the input to the 
LaneBD algorithm is a 1200x720 RGB color image. 
Therefore, the first thing the algorithm does is to remove 
the distortion and adjust the orientation using a camera 
calibration routine and chessboard images. This camera 
calibration routine is only executed once at the 
initialization of the LaneBD algorithm not with every 
iteration/frame, hence, not affecting the real-time 
performance. Then, the image will be converted to several 
color spaces [24] (e.g. HSL, HSV, LAB, LUV, YUV, 
etc. [25]) and the associated channels are used to extract 
both white and yellow lane-boundary markings from the 
images. Each lane boundary marking, usually, a rectangle 
(or approximate) forms a pair of edge lines. 
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In addition to the color space conversion, the raw 
images are processed by multiple Sobel operators 
(Magnitude Gradients, Absolute Gradients, and Direction 
Gradients) [26] in order to produce images that emphasize 
edges. These detected edges will contribute as well in the 
detection of the lane boundary markings. Simply, the 
result of applying the Sobel operators [27] will be 
combined with the results of applying the color spaces to 
produce a more precise and complete detection of lane 
boundary markings. 

The Region of Interest (ROI) is then extracted from 
the edged image, and the undesired image details are 
masked to improve the focus and accuracy of finding the 
lane boundaries. Furthermore, the Perspective 
Transform [28] is applied to this ROI to produce what is 
called Perspective ROI (PROI). The resultant image with 
PROI is denoted as the “warped image”. The warped 
image is a binary image where it has the lane lines stand 
out brightly and clearly. 

In the “warped image”, there is a need to decide 
explicitly which pixels are part of the lane lines and more 
explicitly, which belong to the left line and which belong 
to the right line. Therefore, the next step is plotting the 
histogram of the “warped image” where the binary 
activations occur across the image to identify the peaks. So 
the two most prominent peaks in this histogram will be 
good indicators of the x-position of the base of the lane 
lines. These points can be used as a starting point for where 
to search for the lane lines (and their associated pixels). 
From that point, a sliding window can be used, placed 
around the line centers, to find and follow the lines up to 
the top of the frame (image) to determine where the lane 
lines go. 

 

Figure 1.  Detected lane boundaries by the LaneBD algorithm. 

Now, since almost all the pixels belonging to each 
lane line have been found through the sliding window 
method, a polynomial should be fitted to this 
line [29]. Next, the radius of the curvature of this fit as well 
as its center are calculated. Then the image is unwrapped 
to return back to the original view, and the identified lane 
boundaries are drawn in a different color, with the area 
between the boundaries to be highlighted in green. For the 
matter of illustration, a working example of the resultant 

road boundary is displayed on the original color image as 
shown in Figure 1.  

3. SOBEL OPERATOR 

The Sobel operator [30] performs a two-dimensional 
spatial gradient computation on a given image and 
emphasizes regions of high spatial gradient that 
correspond to edges. Typically, it is used to find the 
approximate absolute gradient magnitude at each point in 
an input greyscale image. Compared to other edge 
operators [31], Sobel has two main advantages: 

1. The operator includes an averaging mechanism, 
therefore, it has some smoothing effect on the image’s 
random noise. 

2. The operator includes as well as the differentiation of 
two rows or two columns, therefore, the edge elements 
on both sides are significantly enhanced, and 
consequently, the edge looks thick and bright. 

The Sobel operator is mainly a discrete differential 
operator. It utilizes two 3x3 kernels (this is the minimum 
size, but the kernel size can be an arbitrary odd number), 
as shown in Figure 1, which are convolved with the 
original image to calculate approximations of 
the derivatives (e.g. gradients). 

Taking the gradient in the x-direction (Gx) 
emphasizes edges closer to vertical. Alternatively, taking 
the gradient in the y-direction (Gy) emphasizes edges 
closer to horizontal. Both Gx and Gy can be positive or 
negative; for that reason, the algorithm deals mostly with 
the absolute values |Gx| and |Gy|, and they then can be 
denoted as the absolute gradients. 

At each given point, the magnitude of the gradient (G), 
as well as the orientation (direction) θ, can be 
approximated as: 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2                                                         (1) 

𝜃 =  tan−1 𝐺𝑦

𝐺𝑥
                                                            (2) 

 

Figure 1.  Sobel operator uses a 3x3 kernel mask. 

Sobel operator is less sensitive to the existing noise in 
images as it has a smoothing effect (Gaussian filtering). 
However, this smoothing affects the accuracy of edge 
detection. Consequently, the Sobel operator does not 
provide very high accuracy for edge detection in images, 
nevertheless, the produced quality is considered adequate 
enough for proper use in a wide variety of applications. 

https://en.wikipedia.org/wiki/Kernel_(image_processing)#Convolution
https://en.wikipedia.org/wiki/Image_Derivatives
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Usually, thresholds are used with the Sobel operator to 
identify the sharp edges from the weak ones (noise). 
Finding out the suitable threshold for each kind of gradient 
operator (Gx, Gy, G, θ) is critical for the proper application 
of this operator.  

In the case of lane lines detection, the emphasis will be 
on the edges of a particular orientation. So the direction, or 
orientation, of the gradient as given by Eq. (2) here is of 
specific interest. After the application of the directional 
gradient, each pixel of the resulting image contains a value 
for the angle of the gradient away from the vertical axis in 
radians, covering a range of -π/2 → π/2. An orientation of 
0 implies a vertical line and orientations of ± π/2 imply 
horizontal lines. 

4. PERSPECTIVE TRANSFORM 

A perspective transform maps the points in a given 
image to different and desired image points with a new 
perspective [32]. The perspective transform that is being 
most emphasized here, is a bird’s-eye view transform, 
which lets a lane be viewed from above. This particular 
view will be useful for fitting the lane polynomial and 
calculating more precisely the radius of the lane curvature. 
Aside from creating a bird’s eye view representation of an 
image, a perspective transform can also be used for all 
kinds of different viewpoints. 

Figure 2 shows 4 points (𝑃1
′, 𝑃2

′ , 𝑃3
′  𝑎𝑛𝑑 𝑃4

′) on a 2D 
plane to be transformed into their corresponding 
perspective points (P1, P2, P3, and P4). The perspective 
transformation is calculated in homogeneous coordinates 
and defined by a 3x3 matrix M. The calculation for a single 
point would be: 

[

𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

] ∗ [
𝑃1

′. 𝑥

𝑃1
′. 𝑦
1

] = [
𝑤 ∗ 𝑃1. 𝑥
𝑤 ∗ 𝑃1. 𝑦

𝑤 ∗ 1
]              (3) 

 

 
Figure 2.  Perspective Transform of four points on a plane. 

To calculate all points simultaneously, all the points 
are grouped together in one matrix A, and analogously for 
the transformed points in a matrix B, as follows in Eq. (4) 
and (5) respectively:  

𝐴 = [
𝑃1

′. 𝑥 𝑃2
′ . 𝑥 𝑃3

′ . 𝑥

𝑃1
′. 𝑦 𝑃2

′ . 𝑦 𝑃3
′ . 𝑦

1 1 1

𝑃4
′. 𝑥

𝑃4
′. 𝑦
1

]                             (4) 

𝐵 = [
𝑃1. 𝑥 𝑃2. 𝑥 𝑃3. 𝑥
𝑃1. 𝑦 𝑃2. 𝑦 𝑃3. 𝑦

1 1 1

𝑃4. 𝑥
𝑃4. 𝑦

1

]                                 (5) 

𝑀 = [

𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

]                                                (6) 

𝑊 = [

𝑊1 0 0
0 𝑊2 0
0 0 𝑊3

0
0
0

0 0 0 𝑊4

]                                           (7) 

𝐵 ∗ 𝑊 = 𝑀 ∗ 𝐴                                                                 (8) 

or        𝑀 = 𝐵 ∗ 𝑊 ∗ 𝐴−1                                                (9) 

where W represents a scaling matrix that can be an 
identity matrix. Likewise, the inverse perspective 
transform (shown in Figure 3) can be implemented using 
the same technique as above. 

 
 

Figure 3.  Inverse Perspective Transform of four points on a plane. 

5. MEASURING LANE CURVATURE 

After extracting the pixels that belong to lane 
boundary (e.g. left and right lane-line segments shown in 
red and blue respectively in Figure 4) from the camera 
image, a polynomial can be fitted to those pixel positions 
to approximate lane boundaries in a concrete mathematical 
form as shown in Figure 4. Usually, 2nd or 3rd order 
polynomials are adopted for this approximation. Based on 
those polynomials, the radius of curvature of them will be 
computed [33]. 
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Figure 4.  Fit Left and Right lane lines with 2nd order polynomials. 

The following equation represents the general form of 
2nd order polynomial that approximate a curved lane line 
in a broader sense, where A, B, and C are the coefficients 
to be found by fitting the polynomial to the extracted lane-
line pixel positions: 

𝑓(𝑦) = 𝐴𝑦2 + 𝐵𝑦 + 𝐶                                                (10) 

The variable “y” is used instead of “x” as the lane lines 
in the warped image are near vertical, and may have the 
same x value for more than one y value. 

The radius of curvature at any arbitrary point x of the 
function “x=f(y)” is calculated as follows [25]: 

𝑅𝑐𝑢𝑟𝑣𝑒 =
[1+(

𝑑𝑥

𝑑𝑦
)

2
]

3
2

|
𝑑2𝑥

𝑑𝑦2|
                                                        (11) 

In the case of the second-order polynomial as above, 
the first and second derivatives are given as follows: 

𝑓′(𝑦) =
𝑑𝑥

𝑑𝑦
= 2𝐴𝑦 + 𝐵                                               (12) 

𝑓′′(𝑦) =
𝑑2𝑥

𝑑𝑦2 = 2𝐴                                                       (13) 

Therefore, the equation for the radius of curvature 
becomes: 

𝑅𝑐𝑢𝑟𝑣𝑒 =
(1+(2𝐴𝑦+𝐵)2)

3
2

|2𝐴|
                                               (14) 

As shown in Eq. (14), the radius of curvature is a 
function of ’y’. As the ‘y’ values of the image increase 
from top to bottom, so if, for example, the radius of 
curvature closest to the vehicle needed to be measured, the 
formula above could be evaluated at the y value 
corresponding to the bottom of the image. 

The computed radius of curvature is in pixels, 
however, to calculate it in actual units (meters) as the real 
world, a reference needs to be set in order to convert the 
dimensions in pixels to real dimensions in meters. This 
reference is selected to be the width of the lane. By 
knowing or measuring out the physical lane width, and 
comparing it with the projected one in warped images, the 

conversion ratio can be determined. The US 
regulations [34] requires a minimum lane width of 12 feet 
or 3.7 meters, which also can be taken as the required 
reference. For example, if the measured width in the 
warped image is 700 pixels, then the conversion ratio will 
be 3.7/700 meter per pixel. This ratio can then be used to 
convert the radius of curvature from pixels to meters. 

6. CAMERA CALIBRATION 

The conversion from three dimensional (3D) real-
world scene to a two dimensional (2D) one, exhibits by a 
camera, results in image distortion, as the transformation 
from 3D→2D is not perfect. Actually, the shape and size 
of objects get distorted (changed) in the resulting 2D 
image from the original 3D appearance. Therefore, before 
using the resulting 2D camera images, this distortion needs 
to be undone so that the correct and useful information can 
be extracted and analyzed.    

The construction of real cameras includes using a 
curved lens to form an image. The light rays usually bend 
around the edges of these lenses with low or high degrees 
depends on the focus and position of objects. Therefore, 
distortion at the edges of the image happens, in a way that 
lines or objects appear to be more or less curved than their 
actual reality. This effect is called the “radial distortion”, 
and represents the principal source of distortion. 

Moreover, there is another main source of distortion 
which is the “tangential distortion”. This distortion 
happens when the camera’s lens is not perfectly aligned 
parallel to the image plane that is associated with the 
camera sensor. This produces a tilt effect to the image, 
which shows objects nearer or farther away than they 
actually are. 

There are three needed coefficients to correct 
for radial distortion: k1, k2, and k3. To correct the 
appearance of radially distorted points in an image, one 
can use a correction formula. 

In the following equations Eq. (10), and Eq. (11), (x, 
y) is a point in a distorted image. To undistort these points, 
the first step is using OpenCV [35] to calculate r, which is 
the known distance between a point in an undistorted 
(corrected) image (xcorrected, ycorrected) and the center of the 
image distortion, which is often the center of that image (xc

, yc). This center point (xc, yc) is sometimes referred to as 
the distortion center. These points are illustrated below in 
Figure 5. 

 

Figure 5.  Points in a distorted and undistorted (corrected) images. 
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𝑥𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 =  𝑥𝑖𝑑𝑒𝑎𝑙 + (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)    (10) 

𝑦𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 =  𝑦𝑖𝑑𝑒𝑎𝑙 + (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)    (11) 

There are two more coefficients that account 
for tangential distortion: p1 and p2, and this distortion can 
be corrected using a different correction formula as given 
by Eq. (12) and (13).  

𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟2 + 2𝑥2)]               (12) 

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦 + [2𝑝1(𝑟2 + 2𝑦2) + 2𝑝2𝑥𝑦]            (13) 

To correct for the mentioned distortions, images of 
known shapes (chessboard images) are used. Selected 
points in the distorted plans are then mapped to undistorted 
plans as shown in Figure 6. Accordingly, the camera 
images will be calibrated. The following procedure is 
implemented to undistort the captured camera images and 
improve the image quality: 

1) Step 1 – finding the chessboard corners: Using 20 
chessboard images that have different sizes and 
orientations as depicted in Figure 7, the 
“cv2.findChessboardCorners()” function from the 
OpenCv3 library [35] is used to locate the chessboard 
corners. The detected number of corners is 9x6 as 
shown in the 17 out of the 20 images that are depicted 
in Figure 7. In the other 3 images, only 9x5 corners have 
been detected. The corners are drawn using the 
“cv2.drawChessboardCorners()” function of openCv3. 

2) Step 2 – get camera matrices: A test chessboard image 
that has not been used before in finding the corners; is 
used; after being converted to a greyscale; along with 
the found corners in step one; to find the camera 
matrices. “cv2.CalibrateCamera()” function is used to 
perform this step. To check the quality of the 
calibration, the gray test image together with the camera 
matrices to remove the distortion of this image as shown 
in Figure 8. 

 
Figure 6.  Mapping from a distorted chessboard image to an undistorted 

one. 

 

Figure 7.  Chessboard images used for calibration with corners drawn. 

 

Figure 8.  A test chessboard image with distortion removal. 

3) Step 2 – saving camera matrices: using Pickle 
library [36], the camera data (the camera matrix as well 
as the distortion coefficients) are saved in the pickle file 
“camera_calibration.p” for easy retrieval later. 

Figure 9 provides an example of applying the camera 
calibration procedure on one of the test images. 

 

Figure 9.  Camera calibration effect (undistortion of images). 

7. IMAGE PROCESSING PIPELINE 

The pipeline is implemented using Python and 
OpenCV computer vision library [35] and the following 
steps describe the implemented pipeline in order of 
execution: 

1. HLS conversion: the images which are received in RGB 
color space are converted to HLS color space using the 
“cv2.cvtColor(img, cv2.COLOR_RGB2HLS)” OpenCV 
function. Then the “S” (saturation) channel is then 
extracted and stored in a specific image file. A threshold 
value of “170” is used to filter out weak associations 
with white or yellow color segments. 

2. HSV conversion: the images which are received in 
RGB color space are converted to HSV color space 
using the “cv2.cvtColor(img, 
cv2.COLOR_RGB2HSV)” openCV function. Then, the 
“V” (value) channel is extracted.  
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3. LAB conversion: the RGB images are converted to 
LAB color space using the “cv2.cvtColor(img, 
cv2.COLOR_RGB2LAB)” OpenCV function. Then the 
“B” (color b) channel is then extracted and stored in a 
specific image file. A threshold value of “170” is used 
to filter out weak associations with yellow color 
segments as shown in Figure 10. 

4. YUV conversion: the RGB images are converted to 
YUV color space using the “cv2.cvtColor(img, 
cv2.COLOR_RGB2YUV)” OpenCV function. Then the 
“Y” (color b) channel is then extracted and stored in a 
specific image file. A threshold value of “200” is used 
to filter out weak associations with white color 
segments as shown in Figure 11. 

5. LUV conversion: the RGB images are converted to 
LUV color space using the “cv2.cvtColor(img, 
cv2.COLOR_RGB2LUV)” OpenCV function. Then the 
“L” (color b) channel is then extracted and stored in a 
specific image file. A threshold value of “200” is used 
to filter out weak associations with both white and 
yellow color segments as shown in Figure 10. 

 
Figure 10.  LUV (L-channel), and LAB (B-channel) images. 

6. Absolute Sobel Gradients: the absolute Sobel gradient 
is implemented using the OpenCV “cv2.Sobel()” 
function. It is applied in the pipeline for both the x and 
y-axis. The used minimum and maximum thresholds for 
the Sobelx is ‘20’ and ‘200’ respectively. Moreover, the 
used minimum and maximum threshold for the Sobely 
is ‘150’ and ‘180’ respectively. 

7. Magnitude Sobel Gradients: the magnitude Sobel 
gradient is implemented from the results of applying 
Sobel gradients on both the x and y-axis, by using Eq. 
(1). It is applied in the pipeline with a kernel value of 
‘9’. The used minimum and maximum thresholds are 
‘100’ and ‘200’ respectively. 

8. Direction Sobel Gradients: the direction Sobel gradient 
is implemented from the results of applying Sobel 
gradients on both the x and y-axis, by using Eq. (2). It is 
applied in the pipeline with a kernel value of ‘3’. The 
used minimum and maximum thresholds are ‘0.7’ and 
‘1.3’ radians respectively. 

9. Color Extraction in RGB images: White color is 
masked as well by filtering the RGB color space using 
thresholds of “202→255” for the three color channels. 
Moreover, the yellow color is masked by filtering the 
HSV color space using thresholds of “20→38” on the 
“H” channel, “60→174” on the “S” channel and 

“60→250” on the “V” channel. The resultant binary 
image of the combined white any yellow filtering is 
shown below in Figure 12. Additionally, the resultant 
image of all the techniques combined is shown in the 
same figure. 

10. Combining All: After applying the above operations, 
the combined results produces an output represented by 
Figure 12. 

 
Figure 11.  YUV (Y-channel), and “Sobel + Color Mapping” images. 

 
Figure 12.  White and Yellow Masked, and the Combined Techniques 

images. 

8. THE LANE-BOUNDARY DETECTION PIPELINE 

Like the previous one, this pipeline is also 
implemented using Python and OpenCV computer vision 
library [31], and the following steps describe the 
implemented pipeline in order of execution: 

1. Undistorting the image: removing the distortion of the 
captured images using the described technique in 
Section 6. Figure 9 shows the effect before and after the 
execution.  

2. Applying the image processing pipeline: the image 
processing pipeline described in Section 7 is executed 
sequentially. The resultant binary image is shown in 
Figure 12. The results are due to the several color 
masking and extraction techniques as well as applying 
multiple Sobel operators (Absolute (x and y), 
Magnitude & Direction). 

3. Identifying the region of Interest (ROI): after 
exhaustive trials and errors, the region of interest has 
been identified and applied to the resulting image of 
step 2 as shown in Fig. 13. The vertices of the ROI are: 
the upper-left => (620, 420), the upper-right => (680, 
420), the lower-right => (1200, 720), and the lower-left 
=> (150, 720). 
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Fig. 13  Identification and application of the Region of Interest. 

4. Mask the undesired image details: The regions other 
than the region of interest are then masked (as shown in 
Figure 14) to give the LaneBD algorithm more focus. 

5. Identifying and applying the Perspective Region of 
Interest (PROI): after exhaustive trials and errors, the 
perspective region of interest has been identified and 
applied on (warping) the resulting image of step 1 (the 
undistorted image) as shown in 0. The vertices of the 
PROI are: the upper left => (575, 465), the upper right 
=> (010, 465), the lower right => (1050, 680), and the 
lower-left => (260, 680). 

6. Applying Sliding Windows Search and Fit 
Polynomials: A sliding windows search algorithm has 
been implemented. The algorithm takes the “Warped 
PROI image” (shown in Figure 15) and produces the 
histogram and the left and right fit polynomials shown 
in Figure 16. The purpose of this step is the initial 
identification of lane lines points. 

 
Figure 14.  Masking other than the Region of Interest. 

 
Figure 15.  Identification and application of the Perspective Region of 

Interest. 

7. Applying Recursive Search: A recursive fine search 
algorithm has been implemented. The algorithm takes 
the “Warped PROI image” (shown in Figure 15) and the 
initial left and right polynomial coefficients found in 

step 6, or from the previous iteration (recursive), and 
produces the refined left and right fit polynomials as 
shown in Figure 17. The purpose of this step is 
essentially the recursive identification of lane lines 
points, which consumes less computational overhead 
than the windows based one. 

 
Figure 16.  Histogram and sliding window search and the fitting left and 

right lane polynomials. 

8. Measuring lane curvature and center: the curvature of 
both the left and right lanes is then calculated as well as 
the position of the car with respect to the center of the 
lane. These calculations have been performed as per the 
description in Section 5. 

9. Unwarping the image: the resulting image from step 7 
(Figure 17) is being unwrapped using the 
“cv2.warpPerspective()” function and the calculated 
inverse warp Matrix “Minv” from step 5. 

10. Highlight the identified lane: as the final step in the 
finding lanes pipeline, the unwrapped lane lines are 
drawn back on the undistorted image (Figure 9) with the 
area between the identified lane lines been highlighted 
in green as shown in Figure 18. The values of the lane 
curvatures and the distance of the car from the lane 
center is printed at the top of the image. 

 
Figure 17.  Recursive fine search and the fitting left and right lane 

polynomials. 
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Figure 18.  Identified lane lines highlighted in green and the measured 

lane curvatures. 

9. PARAMETER TUNING 

The parameters of the LaneBD pipeline can be 
categorized into three main categories: the color-spaces 
category, the Sobel-operators category, and the region-of-
interest category. The following analysis shed the light on 
the procedures used to find and fine-tune these parameters. 

1.1. Setting the parameters of color spaces 

The LaneBD algorithm uses several color spaces to 
extract the road-lines segments from road images. 
Filtering the selected color spaces requires setting several 
parameters to effectively extract the lanes segments either 
“white” or “yellow”. In this work, the white road-lines 
segments are extracted from: 1) The S channel of HLS, 2) 
The V channel of HSV, 3) The Y channel of YUV, 4) The 
L channel of LUV, 5) The R, G, and B channels of RGB. 
Likewise, the yellow road-lines segments are extracted 
from: 1) The S channel of HLS, 2) The V channel of HSV, 
3) The B channel of LAB, 4) The L channel of LUV, 5) 
The R, G, and B channels of RGB. 

The multiple filters (e.g. 5 filters) used for the 
extraction of each color are strengthening each other to 
improve the robustness of the algorithm. The filters 
parameters (mainly threshold values) are set and tuned 
using a guided trial-and-error procedure. In the following 
steps, the procedure is illustrated in the HLS color space 
(as an example): 

1. Convert several test images (like the ones in Fig. 21 → 
Fig. 28) from RGB to HLS color space using the 
“cv2.cvtColor(img, cv2.COLOR_RGB2HLS)” 
OpenCV function. 

2. Isolate the 3 channels of the HLS (Hue, Lumination, 
and Saturation) and save them in three separate channel 
images using the “cv2.inRange(hls, lower, upper)” 
OpenCV function. 

3. An inspection software tool is developed to allow 
displaying the values of a certain pixel (either hue, 
lumination, or saturation) of the selected image, after 
moving the cursor on this pixel and clicking on it. 

4. By visual inspection of the resulted channel images, 
and directing the cursor towards the areas of lane-lines 
segments, the feasible range of values of the “hue”, 
“lumination”, and “saturation” of the segments can be 
determined. 

5. Based on these observations, it is found that the “S” 
channel is the most effective in isolating both the white 
and yellow segments than the other channels. 
Therefore, only the “S” channel images are kept and 
the other channel images are discarded. 

6. A threshold is created to filter out weak associations 
with white or yellow color segments. After several 
trials-and-errors experimentations, the threshold is 
fine-tuned to “170”. 

The above procedure is repeated to tune the 
parameters of the other color spaces LAB, HSV, YUV, 
RGB, etc. additionally, these threshold values are inserted 
in the header files of the code so they can be tweaked as 
needed. 

1.2. Setting the parameters of Sobel Operators 

All the Sobel operators (Absolute, Magnitude, and 
Direction) depend on thresholds’ values to filter out the 
noise and weak gradients in order to provide robust edge 
detection functionality. In this work, finding out the 
optimal (or in other words, the most suitable) threshold 
value for each operator is done through a guided trial-and-
error procedure. The guidance is carried out using a 
numerical performance indicator developed based on 
Tsallis entropy [37]. The optimal threshold value t* can be 
found by [38] 

𝑡∗(𝑞) = 𝐴𝑟𝑔𝑡∈𝐺𝑚𝑎𝑥[𝑆𝑞
𝐴(𝑡) + 𝑆𝑞

𝐵(𝑡) + (1 −

𝑞). 𝑆𝑞
𝐴(𝑡). 𝑆𝑞

𝐵(𝑡)]                                       (14) 

where t is an arbitrary luminance level (threshold value), 
G is the set of all grayscale levels {0,1,2, … ,255}, “A” 
denotes class A that represents the pixels associated with 
the background of the image, and “B” denotes class B that 
represents the pixels associated with the edges in the 
image. 𝑆𝑞

𝐴  is the Tsallis entropy of class A of order q. 

Likewise, 𝑆𝑞
𝐵 is the Tsallis entropy of class B of order q. 

The Threshold Tuning procedure to select the most 
suitable (i.e. optimal) threshold value t* and q can now be 
described as follows: 

Procedure Threshold Tuning, 

Input: An RGB color image “C” of size M×N×3. 
Output: The suitable threshold t* value of “C”, for q 
≥ 0. 

Begin  
1. Convert“C” to a grayscale image “A” of size 

M×N. 
2. Let f(x, y) be the original gray value of the pixel at 

the point (x, y), x=1... M, y=1… N. 
3. Construct the histogram h(i) for i ∈ G from all the 

pixels of image “A”. 
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4. Calc. the probability distribution 𝑝𝑖 =
ℎ(𝑖)

𝑀×𝑁
 , 𝑖 ∈ 𝐺.  

5. For all t ∈ G 
i. Construct the probability distribution set of class 

A: 𝑝𝐴 = {
𝑝0

𝑃𝐴
,

𝑝1

𝑃𝐴
, … ,

𝑝𝑡

𝑃𝐴
  }, where 𝑃𝐴 = ∑ 𝑝𝑖

𝑡
𝑖=0 . 

ii. Construct the probability distribution set of class 

B: 𝑝𝐵 = {
𝑝𝑡+1

𝑃𝐵
,

𝑝𝑡+2

𝑃𝐵
, … ,

𝑝255

𝑃𝐵
  }, where 𝑃𝐵 =

∑ 𝑝𝑖
255
𝑖=𝑡+1 . 

iii. Calculate the entropy of order q for class A: 

𝑆𝑞
𝐴(𝑡) =

1

𝑞−1
(1 − ∑ (𝑝𝐴

𝑖 )
𝑞𝑡

𝑖=0 ).  

iv. Calculate the entropy of order q for class B: 

𝑆𝑞
𝐵(𝑡) =

1

𝑞−1
(1 − ∑ (𝑝𝐵

𝑖 )
𝑞255

𝑖=𝑡+1 ). 

v. Calculate the entropy of order q: 𝑆𝑞(𝑡) =
𝑆𝑞

𝐴(𝑡) + 𝑆𝑞
𝐵(𝑡) + (1 − 𝑞). 𝑆𝑞

𝐴(𝑡). 𝑆𝑞
𝐵(𝑡). 

6. 𝑡∗(𝑞) = 𝐴𝑟𝑔𝑡∈𝐺𝑚𝑎𝑥[𝑆𝑞(𝑡)]     
End. 

The above procedure should be repeated several times 
for different values of q. In this work, values from 0.25 → 
4.0 have been tried following the work in [37], and finally, 
q = 3.0 is selected. The above procedure is also used to 
find all the threshold values for all Sobel operators. 

1.3. Selecting the Region of Interest (ROI) vertices 

To make the LaneBD robust and computationally 
effective, the portion of the image which includes the lane 
lines should only be considered. This portion is 
determined by finding the horizon (i.e. the projected 
intersection of the left and right lane line segments, when 
determined, is referred to as the horizon). By examining 
many camera images, the region of interest is found to be 
the lower 60% of the examined images. To be more 
specified and focus only on the front drivable lane, not any 
other neighboring lanes, therefore, the ROI used by the 
LaneBD takes the form of a trapezoidal shape not a 
rectangular. Based on a camera image of size 1200×720, 
the identified ROI vertices are: the upper left => (620, 420), 
the upper right => (680, 420), the lower right => (1200, 
720), and the lower-left => (150, 720) as shown in Figure 
16. 

10. TESTING AND VALIDATION 

The developed LaneBD algorithm is further tested on 
many images representing different scenarios. Samples of 
the results of the testing are shown in Figure 19, Figure 20, 
Figure 21, Figure 22, Figure 23  and Figure 24.  The 
presented results show that the algorithm performs very 
well under different conditions (at full sunrise, at sunset, 
with shadows, without shadows, with cars on the other 
lanes and without). Furthermore, for robustness testing 
and validation of the developed pipeline, the algorithm is 
applied to several real-time video samples representing 
different driving conditions. The LaneBD proved to be 
very robust in all the pre-mentioned conditions. However, 
the scattered areas of shadows have some effect on the 
precision of producing the lane boundaries as shown in 

Figure 22. However, the output is still acceptable and 
produce functional results.  

The pipeline proved to be acceptably fast in execution 
to be used in real-time. Using an Intel Core i5 with 1.6 
GHz and 8 GB RAM which is a very moderate 
computational platform, the following measurements 
(Table 1) are collected for two testing video streams: 

TABLE 1 COMPUTATION SPEED FOR THE LANEBD ALGORITHM. 

Sample Name No. of 
Frames 

Total Time 
Min:Sec 

Frame per 
Sec 

Challenge Video 485 00:46 10.70 

Project Video 1261 02:05 10.12 

The lowest measured processing speed is 10 Frames 
Per Second (FPS), which is considered just adequate as per 
the recommended performance for this application [39]. 
However, more powerful computational hardware is 
required to promote the presented real-time 
performance [40], which mandates testing the 
performance with GPUs. 

The pipeline is executed as well on google Colab 
cloud platform [41] in three different modes: CPU (Intel 
Xeon Processor @2.3GHz (1 core, 2 threads), 13GB 
RAM), GPU (NVIDIA Tesla K80, 13GB RAM) and TPU 
(v2) [41]. Table 2 shows the results of these trials 
indicating that not much difference in performance is 
taking place compared to the previous results. The 
existence of the GPU added only an improvement of 17% 
in computational speed, while the TPU is adding only 
1.5%. The justification for these results is that the GPU is 
mainly speeding the matrix operations and the developed 
pipeline does involve much of matrix operations. 
Moreover, the TPU is mainly designed to speed up 
computation based on tensors which are not used in the 
formulation of the LaneBD algorithm.   

TABLE 2 COMPUTATION SPEED ON GOOGLE COLAB. 

Sample Name 
No. of 
Frames 

FPS 
CPU 

FPS 
GPU 

FPS 
TPU 

Challenge Video 485 11.70 13.90 11.94 

Project Video 1261 11.42 13.43 11.54 

Harder Challenge 

Video 
1200 10.08 12.03 10.35 

Challenge 251 10.93 12.51 11.11 

SolidWhiteRight 222 11.38 13.04 11.51 

SolidYellowLeft 682 11.56 13.64 11.56 
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Figure 19.  Test image with solid yellow and dotted white lane lines 

(bright sunny road (at noon), left lane with cars). 

The LaneBD is compared with the LaneRTD 
algorithm proposed in [42]. The LaneRTD is mainly based 
on Canny edge detection [18] followed by Hough 
transform [14]. The results in Table 3 show that LaneRTD 
algorithm is faster as it utilizes much simpler pipeline, 
however, in terms of robustness, the current LaneBD, 
which is a more complex and comprehensive pipeline, is 
significantly more robust especially in unfavorable 
conditions like scattered shadows as shown by the 
comparison between Figure 22 and Fig. 28. 

TABLE 3 SPEED COMPARISON BETWEEN LANERTD AND LANEBD. 

Sample Name No. of 
Frames 

FPS 
LaneRTD 

FPS 
LaneBD 

Challenge 251 10.93 12.51 

SolidWhiteRight 222 25.60 13.04 

SolidYellowLeft 682 18.76 13.64 

 

 

Figure 20.  Test image with solid yellow and dotted white lane lines 

segments (road at sunset (dusk), left lane with no cars). 

 

 

Figure 21.  Test image with solid yellow and dotted white lane lines 

segments (left turning lane at dusk with cars). 
 

 

Figure 22.  Test image with solid yellow and dotted white lane lines 

segments (left turning lane with scattered shadows, and cars) using 

LaneBD. 
 

 

Figure 23.  Test image with solid yellow and dotted white lane lines 

segments (left turning lane with scattered shadows, and cars). 
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Figure 24.  Test image with solid while and dotted white lane lines 

segments (right straight lane at sunset, and no cars). 
 

 

Figure 25.  Test image with solid yellow and dotted white lane lines 

segments (left turning lane with scattered shadows, and cars) using 

LaneRTD [43]. 

11. TESTING AND VALIDATION 

The following points shed some light on some 
technical tricks and aspects that have been tried or 
implemented in the described pipelines: 

1) HSV color space: The channels H, S and V, have been 
extracted and tried to investigate the worthiness of 
adding any of them to the final overall combination. 
However, we find out that the S channel is exactly the 
same as the one in the HSL color space, so no need for 
duplication. The H and V channels, when got combined 
separately or together with the overall combination, do 
not add significant value to the final result or sometimes 
they make it worse. As a result, it has been decided not 
to integrate the HSV color space in the final 
combination.  

2) S-channel of HLS: It is observed that using the S 
channel in the final pipeline, causes jittering in video 
streams especially in areas with fragmented shades. 
Therefore, using it in the pipeline could be avoided. 

3) B-channel of LAB: The B channel of the LAB color 
space; has proved very effective in extracting the 
yellow color or in other words the yellow segments as 
shown in Figure 10. 

4) L-channel of LUV: The L channel of the LUV color 
space; has proved very effective as well in extracting 
both the white and the yellow lane lines as shown in 
Figure 10. 

5) Y-channel of YUV: The Y channel of the YUV color 
space; has proved very effective in extracting the white 
lane lines as shown in Figure 11. 

6) Perspective Region Of Interest (PROI): some trials are 
carried out to define the lane region of interest of the 
image (ROI) the same as the perspective region of 
interest (PROI). However, these trials were not 
successful, and it has been decided to define them 
separately for accurate perspective transformation. 

7) Sanity Checks: several sanity checks, have been used 
throughout the pipeline, trying to prevent bad lines from 
reaching the final image. The following are a list of 
them: 

a) Order of the fitted left and right lines: in order to 
ensure that the fitted left and right polynomials have 
intercepts with the x-axis in the right order, this 
check is implemented in the code. 

b) Update of the left and right lines: during video 
testing, both the right and left lane polynomial 
coefficients are getting updated each frame. 
Logically, the change of these coefficients should be 
small and if it is found big, this indicated that this 
line fit is not good enough and should be discarded. 
This check is done for the left and right lane 
separately in the implemented code. 

c) Check on the right and left lanes curvatures: 
logically, the right and left lanes radius of curvatures 
should be almost identical all the time. However, 
doing these checks to separate good and bad line fits 
proved very tricky especially when the actual lane 
lines are vertical with no curves. The use of this 
method is not robust and can result in the rejection 
of many good lines. Therefore, it is not applied. 

8) Applying Resets: the initial lane line fits is being 
determined using the sliding windows search function 
mentioned in step 6 of the pipeline in Section 8. Then, 
the recursive fine search function; that is mentioned in 
step 7 of the pipeline; kicks in to calculate the line fits 
for the next frames. However, after several frames, the 
estimation errors accumulate, and the found lines 
diverge and become unrealistic. For this reason, the 
sliding windows function has to be utilized again to 
determine the lane lines from the raw undistorted 
images. In order to avoid this problem, and to make this 
procedure more systematic, a reset procedure is being 
adopted. For each number of frames (determined by 
trial and error, and has been set to “8” in the current 
implementation), the sliding windows function kicks in 
and then followed by the recursive search function for 
several frames. In our current code, “the reset span = 8”, 
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which means that the sliding windows function will 
work for the first frame and then followed by a 
recursive search function for the next 7 frames, and so 
on, etc. This implemented technique works very well to 
avoid divergence and at the same time, reduces the 
video processing time.    

9) Smoothing using FIR filtering: after calculating the left 
or the right fit polynomials on a certain frame, instead 
of using it directly, we average the results over the last 
3 samples to smooth out the determined values and 
reduces noise and unexpected jitters in directions [44]. 
This step is done for both the left and right lanes in the 
implemented code. 

10) Lanes data acquisition: In order to perform a thorough 
analysis of the results, a class (data structure) called 
“Line()” has been constructed and used in the code. 
Using this class, several useful information has been 
recorded regarding the fitted left and right lanes. The 
collected information proved very effective in many 
tasks of the pipeline like “smoothing and FIR filtering”, 
“sanity checks” … etc. 

12. CONCLUSION 

In this paper, a reliable-and-sophisticated lane-
boundaries detection-and-tracking solution based on 
computer-vision algorithms is developed, presented 
thoroughly and given the name LaneBD. The main 
contribution of the LaneBD algorithm is the sophisticated 
fusion of color spaces such as LAB, YUV, LUV, etc., and 
computer-vision algorithms like Sobel operators and 
Perspective Transform to produce a robust fast output. 
Additionally, the pipeline uses a comprehensive image 
distortion suppression and camera calibration techniques 
to produce undistorted road images suitable for more 
accurate lane detection. Moreover, several sanity-check 
tricks are exercised to improve the robustness of the 
techniques used. The proposed LaneBD technique needs 
only raw RGB images from a single CCD camera mounted 
behind the front windshield of the vehicle. The 
performance of the LaneBD is tested and evaluated using 
many stationary images and several real-time videos. The 
validation results show a fairly accurate and robust 
detection with slight insignificant deviation in one 
scenario where complex shadow patterns exist. The 
measured throughput (execution time) using an affordable 
CPU proved that the LaneBD is very suitable for real-time 
lane detection. Therefore, the proposed technique is well 
suited for use in advanced driving assistance systems or 
self-driving cars. A comprehensive discussion and 
analysis regarding the usefulness and the shortcomings of 
the proposed technique are presented. 
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