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Abstract: In this paper, we present a test image generation approach for Convolutional Neural Network (CNN) that is widely used for 

image recognition. The goal of our approach has to generate an image satisfying the following two conditions. First, this image activates 

a specific cell on CNN for checking the effect of this cell. Second, this image looks like a real image as a plausible test case. For this 

purpose, we combine the activation maximization technique with GAN (generative adversarial network). Even though quite a large 

number of sample data are used for training, it is infeasible to activate every cell and check its effect. Thus, this technique is useful for 

verifying cells uncovered in training and, thus, for improving the quality of CNN. To our best knowledge, this is the first attempt to 

improve the quality of images using the generative modeling approach. With the famous MNIST example, we illustrate the details and 

benefits of the proposed approach. 

 

Keywords: Deep Learning, Convolutional Neural Network, AI Testing, AI Safety, Test Case Design  

1. INTRODUCTION 

Nowadays, deep learning technologies become widely 
used for various critical applications such as autonomous 
driving or optimization of infrastructures. Thus, it is crucial 
to remove defects before the deployment of these 
applications since their faults may cause serious hazards. 
To this end, we have been studying testing techniques for 
deep learning technologies, and, in this paper, we propose 
a novel testing approach for Convolutional Neural Network 
(CNN) [1], one of the most widely used deep learning 
techniques for image recognition.  

We claim that it is necessary to check the effect of every 
cell in a CNN before its deployment. One of the most 
straightforward criteria for this is activation coverage [2]; 
that is, every cell must be activated at least once by the 
images in test cases. Unfortunately, many cells in a CNN 
may remain uncovered in their training and verification 
partly because the number of samples in training and 
verification data is not enough and partly because there is a 
bias on sample data. Note that it is a very low probability 
that sample data provide enough edge cases.  

To alleviate this phenomenon, we develop a test case 
generation approach for satisfying the following two 
conditions. The first condition is that the generated image 
test case should activate a target cell on CNN for checking 
its effect on the classification result of CNN. Of course, this 
condition is the most fundamental one for our purpose. 
Unfortunately, our experience showed that this condition is 

not enough for generating efficient test cases. Blindly 
generated images for just activating a target cell look like 
noisy patterns and do not resemble real images. Thus, even 
though these images activate the uncovered target cell, but 
it is difficult to decide the pass-fail of these images because 
we cannot assign expected values to these noisy images.  

To mitigate this problem, we introduce the second 
condition to the test image generation. The second 
condition is that the generated image looks like a real 
image as a plausible test case. Of course, the resemblance 
of a real image is a subjective term, and, thus, it isn't 
straightforward to measure the reality of generated images. 
Fortunately, recent AI techniques provide remarkable 
capabilities for a fake image generation. So, by utilizing 
one of these AI techniques, it is possible to achieve the 
second condition. 

Our approach is based on two research works, 
activation maximization [3] and Generative Adversarial 
Network (GAN) [4]. Activation maximization allows 
achieving the first condition by searching an input image 
that results in the maximum value of a target cell in a 
network. This technique is based on the gradient search 
used in deep learning, and, thus, we can easily implement 
it by leveraging the gradient search capability provided by 
deep learning frameworks. Current deep learning 
frameworks such as Tensorflow [11], PyTorch [12], and 
CNTK [13] provide the flexible implementation of the 
gradient search with high performance. In this paper, even 
though we use Tensorflow with the famous Python 
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frontend Keras [6], we strongly believe that the proposed 
technique can be implemented in other frameworks easily.  

Then, we use GAN to achieve the second condition. 
GAN is one of the most famous fake image generation 
techniques. Our goal of the integration of GAN with 
activation maximization is to impose plausibility 
constraints on the gradient search. To our best knowledge, 
this is the first attempt to improve the quality of images 
using the generative modeling approach. For explaining the 
details of our approach, we use a CNN for the famous 
handwritten digits set MNIST [5].  

The structure of this paper is as follows: First, Section 
2 briefly summarizes activation maximization and GAN. 
Section 3 explains the definition of activation coverage and 
how to measure the coverage. Then, Section 4, the main 
part of this paper, describes the generation techniques for 
activation test cases step by step. First, we show the case of 
activation maximization only and discuss its limitation of 
plausibility. Secondly, we explain how to utilize the 
generator of GAN to overcome this limitation. Then, we 
present the integrated approach by defining multi-objective 
optimization for image test case generations for satisfying 
two conditions. Finally, Section 5 provides concluding 
remarks with some proposals for future researches. 

2. BACKGROUND  

In this section, we briefly explain two research works, 
Activation Maximization and Generative Adversarial 
Network (GAN), those form the cornerstones of the 
proposed approach.  

A. Activation Maximization 

The original goal of activation maximization is to 
generate a representative image of a class in an image 
classification neural network. For example, let us consider 
activation maximization on VGG16 [14], one of the most 
famous image classification networks. VGG16 can 
recognize 1,000 classes from various input images. When 
you put an image on VGG16, then, VGG16 predicts the 
class of your image by the probability array of the size 
1,000. Higher the cell value in the array, the more likely the 
image is in the class of the cell. That is, the prediction of 
VGG16 takes an image and generates its probabilities of 
classes. 

Activation maximization takes a reverse direction of 
the prediction. That is, activation maximization takes a 
class and generates an image that results in the maximum 
probability of the class. For example, class number 20 in 
VGG16 is ‘water ouzel.’ Figure 1. shows a generated 
image of class 20, water ouzel, by activation maximization 
in VGG16.  

                                                           
1 This image is generated by the example code from  

https://raghakot.github.io/keras-vis/ 

 
Figure 1.  Activation Maximization of Water Ouzel (20) in VGG161.  

The idea behind activation maximization is tricky but 
effective. Generally, when training a network N, we update 
the weights of N with gradients to achieve a minimum loss. 
There are a large number of loss functions for appropriately 
measuring the distance between the labels of inputs and 
their result of a network. Roughly speaking, we update 
weights with respect to inputs in training.  

In activation maximization, we turn the direction of the 
training update. That is, we update input with respect to the 
weights of a classification neural network for maximizing 
the value of a classification cell. This formulation enables 
us to leverage the existing capabilities for gradient search 
and differential calculation in deep learning frameworks. 
Thus, we can implement this technique by a few 
modifications of existing functions and short lines of codes.  

Note that, even though the image of Figure 1.  shows 
representative parts of water ouzel and looks quite realistic, 
this is not a general case in test case image generation. In 
the case of Figure 1. , the target cell is the last layer of the 
network. So, the generated image contains every feature of 
the class corresponding to the target cell. However, when a 
target cell is not the last layer, then it captures only the 
weight of a partial combination of some features. In this 
case, the generated image looks unrealistic and artificial 
because the search of activation maximization only pursues 
the captured features by the target cell and does not 
consider other features.   

B. Generative Adversarial Network 

Generative Adversarial Network (GAN) [4] is one of 
the most famous generative modeling approaches that 
automatically discover and learn the latent distribution of 
sample images. After learning, GAN can generate a new 
plausible image that could have been drawn from the 
original sample images.  

GAN consists of two competing networks referred to as 
generator and discriminator (Figure 2. ). The role of the 
generator is to learn how to generate fake images that fool 
the discriminator. Meanwhile, that of the discriminator is 
to learn how to distinguish between fake and real images. 
As illustrated in Figure 2. , the generator takes a noise 
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vector and generates a fake image while the discriminator 
takes an image and predicts whether it is real or fake. 

 

Figure 2.  Generic Structure of Generative Adversarial Network 

Generally, the training of GAN consists of the 
repetitions of the discriminator learning and generator 
learning. In the discriminator learning, we freeze the 
weights of the generator and train the discriminator on real 
and fake images with their labels. From this learning, the 
discriminator optimizes its weights for discrimination. 
Then, in the generator learning, we freeze the weights of 
the discriminator and train the generator to defraud the 
discriminator with generated images. To this end, we give 
a high penalty on the generated image when the 
discriminator predicts it as ‘fake.’ By updating the weights 
of the generator in the direction to reduce penalties, the 
generator improves its chance to defraud the discriminator.  

As training progresses, the discriminator will no longer 
be able to identify the difference between fake and real 
images. Then, we can use the generator to create new 
realistic data that have never been observed before but 
follow the distribution learned from the sample images. 

 

Figure 3.   Fake Images in GAN for MNIST 

Figure 3. shows the sample of fake images generated 

by the GAN. To evaluate the quality of fake images, we put 

generated images to our MNIST CNN and collect their 

classification results, digits in this case, and their prediction 

probabilities. We put the prediction result as a label for 

each generated image. That is, the label of the top left 

image in Figure 3 means that the classification of the image 

is digit 6, and the prediction probability is 100% (1.00). As 

illustrated in Figure 3. the quality of our GAN is quite good. 

That is, it is difficult to distinguish the fake images 

generated by our GAN from the real image in MNIST data. 

3. ACTIVATION COVERAGE TESTING FOR CNN 

In this section, we explain how to define activation 
coverage with the MNIST CNN example. The idea of 
activation coverage is based on the fact that many layer 
types in deep neural networks have activation functions for 
introducing non-linearity on decisions. First, we explain 
the types of layers in MNIST CNN, and, then, we describe 
their activation functions. 

TABLE I.  THE STRUCTURE OF EXEMPLAR MNIST CNN 

 

Layer 

 

Output 

Activation 

Function 

Activation 

Coverage 

1. Conv2d 26, 26, 32  ReLu Yes 

2. Conv2d 24, 24, 64  ReLu Yes 

3. MaxPooling2d  12, 12, 64 - No  

4. Dropout 12, 12, 64 - No  

5. Flatten 9216 - No 

6. Dense 128 ReLu Yes 

7. Dropout 128 - No 

8. Dense 10 Softmax Yes 

 

TABLE I. shows the structure of MNIST CNN used in 
this paper. In this network, there are eight layers of five 
types. For each type, its description is as follows: 

 Conv2d: This layer creates a 2D-convolution kernel. 
In short, a kernel is a matrix of weights. In this paper, 

we use the 33 kernel. The 2D convolution operation 
performs an elementwise multiplication of the kernel 
with the part of the 2D input and summing up the 
results into a single output value. Then, the layer 
applies an assigned activation function to the summed 
output value.  

 MaxPooling2d: This layer performs a 2D pooling 

with the max filtering. In this paper, we use the 22 
filter. For the part of the 2D input covered by the filter, 
this layer takes the maximum value of that part and 
generates a 2D output consisting of these maximum 

values. Because we use the 22 filter, the size of the 
2D output is a quarter of that of the 2D input. This 
layer has no activation function. 

 Dropout: This layer is a kind of regularization 
techniques for preventing over-fitting in training. In 
short, this layer randomly ignores the input in training. 
Generally, this layer does not work when predicting. 
This layer has no activation function. 

 Flatten: This layer transforms the 2D input to the 1D 
output that has the same elements of the 2D input. This 
layer has no activation function. 

 Dense: This layer performs a linear operation. The 
number of weights in this layer is the multiplication of 
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the output size with the input size. Also, this layer has 
a set of biases for each input. For example, the layer 6 

in MNIST CNN has 1,179,648 (9,216128) weights 
and 9,126 biases. For each output cell, this layer 
performs the multiplication of every input with 
weights and summing up the result with the bias into 
an output value. Then, the layer applies an assigned 
activation function to the output value.  

Based on these characteristics of layer types, we 
exclude some layers from the measurement of activation 
coverage. Firstly, we exclude Layer 3 of MaxPooling2D 
because it has no activation function. The output of this 
layer can be derived from the input and has no non-
linearity. Secondly, we do not measure Layers 4 and 7 of 
Dropout because they work in training only and has no 
activation function, again. Finally, we omit Layer 5 of 
Flatten because it has no activation function and only 
transforms the shape of the input. From this exclusion, we 
only measure Layers 1, 2, 6, and 8. In this case, the number 

of cells in the measurement is 58,634 (262632 + 

242464 + 128 + 10). The types of the selected layers are 
Conv2d and Dense. 

In these layers, there are two types of activation 
functions, ReLu and softmax. First, ReLu is the acronym 
for rectified linear unit and defined by the following 
function: 

𝑓(𝑥) = max(0, 𝑥) 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡 

So, the graph of ReLu looks like Figure 4.  

 

 

Figure 4.  The Graph of ReLu Activation Function 

Second, softmax is a function that transforms a vector 
of real numbers to a probability vector that sums to one. 
Before applying softmax, some values in the input vector 
could be negative or greater than one. Also, the input vector 
might not sum to 1. The function softmax transforms this 
input vector into an output vector that each component is in 
the interval (0,1), and the sum of all components in the 
output vector is one. So, the value of the output vector can 
be interpreted as probabilities. 

Based on these characteristics of activation functions, 
we define the thresholds for activation coverage as follows:  

 ReLu: Threshold is 0; that is, any output value greater 
than 0 is assumed to be activation.  

 softmax: When the value of a cell C is a maximum in 
the vector, then the cell C is assumed to be activated; 
The maximum means that the cell C in the vector is 
most probable. 

For measuring the activation coverage of Layers 1, 2, 
6, and 8, it is necessary to modify the implementation of 
MNIST CNN to expose the output of target layers This 
modification is simple in our experiment environment 
Keras [6], and the famous book [7] written by the author of 
Keras provides a detailed explanation for it.  

 

 
Figure 5.  Activation Coverage of MNIST CNN for Training Data 

Figure 5.  shows the accumulated activation coverage 
of 60,000 training digit images in MNIST for MNIST 
CNN. Note that, as the number of tested images increases, 
the activation coverage of MNIST CNN grows quickly, but 
it is soon reaching its limit and not reaching 100% even 
though the size of the training set is huge. This result 
reveals that it is difficult to achieve 100% activation 
coverage.  

4. IMAGE TEST CASE GENERATION FOR CNN 

In this section, the main part of this paper, we explain 
the techniques for achieving the following two conditions 
by test image generation. 

 The image should activate an uncovered cell in CNN 
for checking its effect. 

 The image should resemble a real image for the pass-
fail decision of testing. 

First, we demonstrate the result of the case where we 
use activation maximization only. Even though this 
technique can satisfy the first condition, the resulting image 
looks absurd. Thus, we try to overcome this limitation by 
utilizing the generator of GAN in the next subsection. For 
some cells, this attempt generates an image that satisfies the 
first and second conditions at the same time. Finally, in the 
last subsection, we present the integrated approach for 
image test case generations.  

A. Activation Maximization for Image Generation 

For generating an image for activating a target cell, we 
can use the activation maximization by the gradient search. 
This image generation is conceptually simple, but there are 
some subtleties for implementation. First, we illustrate the 
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core concept of the image generation, and, then, explain 
implementation subtleties.  

As noted earlier, the activation maximization uses the 
gradient search capability of deep learning frameworks. 
For a given target cell t in CNN, we start with the blank 
image denoted by image0 as an input of CNN. For image0, 
we get the output of t and calculate the gradient  𝑔0 =

𝜕 𝑡

𝜕 𝑖𝑚𝑎𝑔𝑒0 
. Then, we can get the next image1 by 𝑖𝑚𝑎𝑔𝑒1 =

 𝑖𝑚𝑎𝑔𝑒0 +  𝛾 ∙  𝑔0 with a learning rate 𝛾. By generalizing 
this calculation, we can get the following image update 
formula:  

𝑖𝑚𝑎𝑔𝑒(𝑖+1) =  𝑖𝑚𝑎𝑔𝑒𝑖 +  𝛾 ∙  𝑔𝑖 

We repeat the update formula until the value of t is 
larger than zero, that is, activated in ReLu activation 
function.  

For implementing the activation maximation in Keras, 
there are two implementation subtleties. First, it is 
necessary to replace ReLu with the linear activation 
function. Note that the activation function ReLu outputs 
zeros for every negative input and, thus, its gradient for 
negative input is zero. As explained earlier, layers in neural 
networks perform the multiplication of input cells with 
weights and summing up the results with the bias into an 
input of their activation functions. Thus, the fact that a cell 
is not activated in a layer with ReLu activation function 
means that the input of its activation function is negative. 
In this case, the input image does not change because the 
gradient 𝑔𝑖  is zero and, thus,  𝑖𝑚𝑎𝑔𝑒(𝑖+1) is equal to 

𝑖𝑚𝑎𝑔𝑒𝑖. That is, the gradient search gets stuck and does not 
progress. To make the search progress, we must replace 
ReLu with linear to get a non-zero gradient of a minus 
value.  

Second, to leverage the optimizers provided by Keras, 
some modifications are necessary. Generally, in the 
training of neural networks, the input is constant, and the 
weights are variable for updating. However, in the 
activation maximization, the input must be variable while 
the weights of networks are constant. Because there is a 
strict distinction between variables and constants in the 
implementation of Keras, it is necessary to change the types 
of input and weights for using existing optimizers.   

By applying this activation maximization technique, we 
can generate test images for activating uncovered cells by 
MNIST images. For simplicity of presentation, we focus on 
the test image generation for Layer 6 (Dense) of our 
MNIST CNN. As described in TABLE I. Layer 6 has 128 
cells, and among these cells, 18 cells are uncovered by 
60,000 images in MNIST training data. The following list 
enumerates the index of the uncovered cells in Layer 6. 

 1, 6, 14, 18, 19, 23, 47, 64, 67, 75, 98, 106, 108, 
109, 112, 113, 120, 126 

For understanding why MNIST test images do not 
activate these cells, it is helpful to examine the weights of 

these cells. Figure 6. illustrates the distribution of weights 
of Cell 126 in Layer 6. This cell has 9,216 weights for every 
cell in its previous layer. Because the number of negative 
weights is larger than that of positive weights, and because 
the input value of this cell is always positive, the operation 
of this cell results in negative output with a high 
probability. Thus, this negative output does not pass the 
threshold of ReLu activation function.  

 

Figure 6.  Weights of Cell 126 of Layer 6 

It should be noted that it is theoretically difficult and 
infeasible in practice to decide whether the case to activate 
Cell 126 exists in real situations or not. When the case 
exists in real situations, but test data do not include it, we 
call it ‘edge case’ because it is rare. If the case does not 
exist in real situations, we call it ‘impossible case.’ 
Unfortunately, in many cases, the distribution of real 
situations is unknown and, thus, we cannot distinguish an 
edge case from an impossible case. So, we claim that it is 
necessary to test these uncovered cells for trying the 
detection of edge cases in the previous verification.   

 

Figure 7.  Generated Image for the Cell 126 of the Layer 6 

Figure 7. is one of the generated images for Cell 126 of 
Layer 6. This image looks like just a spread of speckles. 
Note that Layer 6 is the last layer before the classification 
of digit images. It means that each cell of Layer 6 captures 
the significance of specific features in a digit image. Thus, 
when we try the activation of this cell only, the activation 
maximization technique does not consider the remaining 
features handled by other cells. In this case, the activation 
maximization technique results in a nonsensical image that 
signifies the selected specific features only.  

This phenomenon occurs because the activation 
maximization technique in this subsection does not 
consider other features of ordinary digit images except 
those captured by a target cell. Figure 8. shows the current 
setting of the activation maximization technique, where 
there are no ways to incorporate additional features of digit 
image for inner layers. So, the resulting image has arbitrary 
intensities in its image plane that activate the features 
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captured by the target cell only. When we apply activation 
maximization at the classification layer, located at the end 
of networks, this phenomenon is alleviated. Note that each 
cell of the classification layer is related to every feature of 
its corresponding digit. Thus, the resulting image contains 
a combination of features and may look similar to an 
ordinary digit. 

 
Figure 8.  Activation Maximization Only Setting for MNIST CNN 

To alleviate this phenomenon when tackling a target 
cell t in inner layers, we need a way to incorporate 
additional features for complementing the features 
captured in the target cell t. This need is the motivation of 
our second technique explained in the next subsection.  

B. Activation Maximization with GAN 

In this subsection, we try to overcome the limitation of 
the previous technique by providing a novel way to 
incorporate additional features of ordinary digit images.  

The key idea of our approach is to use the generator of 
GAN for incorporating additional features of digit images. 
To our best knowledge, this GAN-based approach is a first 
attempt for test image generation in activation coverage.  

 
Figure 9.  GAN for MNIST 

First, for making a digit image generator, we train a 
GAN network with the structure in Figure 9.  Like MNIST 
CNN training, we use 60,000 MNIST training data. The 
trained generator takes a noise vector with size 100 and 

synthesizes a 2828 image according to the MNIST input 
specification. Figure 3. shows some samples of synthesized 
digit images by our digit generator in GAN. 

For using the trained digit generator, we concatenate it 
with MNIST CNN, like Figure 10. In this setting, the result 
of the activation maximization technique is not a digital 
image of MNIST CNN but a noise vector of Digit 
Generator. In this setting, the backpropagation of gradient 
search in the activation maximization passes through Digit 

Generator. Note that Digit Generator learns how to mimic 
MNIST digit images in the GAN training, and the weights 
of Digit Generator capture this learned knowledge. Thus, 
this passage through the weights of Digit Generator 
incorporates additional features of digit images in the 
activation maximization technique.   

 
Figure 10.  Activation Maximization with GAN Setting 

The key benefit of the proposed approach is that there 
is no modification on neural networks and the algorithm. It 
is enough to connect trained two networks and possible to 
use the same algorithm for the activation maximization 
technique. Thus, it is easy to change the current digit 
generator with others trained by different machine learning 
techniques.  

We apply the activation maximization technique in this 
setting with the modified version of Adam optimizer [15]  
in Keras. In this maximization, we use a learning rate 0.01 
and maximum iteration 100,000. We choose Adam 
optimizer among various optimizers in Keras because this 
optimizer is the  most advanced one and provides fast 
performance in most situations.  

For the learning rate, we select this value through 
experiments. The learning rate controls the speed at which 

the model learns. For example, the symbol  of our image 
update formula in the previous subsection is an example of 
learning rates. It is important to select an appropriate value 
for the learning rate. When a learning rate is too big, 
gradient descent search can inadvertently increase the 
training error. When a learning rate is too small, training is 
not only slower but also may become stuck at a valley of 
optimization. Roughly speaking, the learning rate 0.01 
means that we update the original image with the 1% 
(1/100) of the gradient. Note that there are no theoretical 
ways to calculate the optimal learning rate currently, and it 
is a hot research topic. So, we perform some experiments 
for the gradient search in activation maximization and 
select 0.01 as a learning rate because this value shows a 
reasonable learning speed without sharp fluctuation.  

Finally, we set a limit on the number of image update 
iterations in activation maximization. Again, in this case, 
we choose 10,000 based on our experience. In most cases, 
it is possible to get an image that covers the target cell 
before some thousand iterations, and the activation 
maximization terminates. However, sometimes, we cannot 
generate a test image even though we iterate a million 
times. Generally, the 10,000 iteration takes more or less 10 
minutes in i5 CPU with 8 GB notebook, and, thus, we think 
this limit is reasonable for generating a test image.  
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In this setting, we perform test image generations and 
get activation images for 9 cells but fails for 9 cells among 
the uncovered 18 cells of Layer 6. Figure 11. shows the 
generated images with the label of the format ‘{index} 
{activation or not}.’ For example, the label ‘1 True’ means 
that this image is generated for Cell 1 of Layer 6 and 
succeeds in its activation. Even though test images look 
different from those of activation maximization only in the 
previous subsection, their quality is poor in comparison 
with synthesized images in Figure 3.  

 
Figure 11.  Activation Maximization with GAN Setting 

The investigation of generated noise vectors shows why 
these vectors result in poor images. In GAN training, the 
values of a noise vector follow Uniform distribution with 
the range -1.0 ~ +1.0. However, in the activation 
maximization, the assumption of Uniform distribution on 
noise vectors does not hold. Figure 12. shows one of the 
generated noise vectors. As illustrated in this figure, most 
values among 100 cells in the noise vector are -1.0 or + 1.0, 
and only 5 elements are not edge values. 

Further investigation shows that many values after 
gradient updates go over the limit of the range -1.0 ~ +1.0 
but, for the validity of noise vectors, are clipped within the 
range. Because edge cases are necessary to cover 
inactivated target cells generally, these results, that is, 
many values in a noise vector are located at edges, look 
reasonable. However, to achieve the second condition, we 
must alleviate this phenomenon.  

 

Figure 12.  Noise Vector Example of Activation Maximization 

The most intuitive solution for this phenomenon is to 
make a noise vector follow Uniform distribution when 
activation maximization. However, we cannot find a 
practical way of how to impose this constraint on the 
gradient searching. Because the gradient search algorithm 
independently updates each value of a noise vector, it 
seems difficult to integrate Uniform distribution constraint 
with the gradient search algorithm efficiently. Instead of 
following Uniform distribution, we add another constraint 
for improving the image quality directly. The idea behind 
our approach is to use MNIST CNN as a quality checker of 
generated test images. Note that the final output of MNIST 
CNN denotes the probabilistic confidence of its prediction. 
So, we assume that higher confidence of test images, more 
realistic they are. In this paper, we use 0.7 as the confidence 
threshold for dropping poor quality images. Again, we 
choose this confidence threshold empirically.  

Of course, this additional constraint lowers the 
probability that the generated image activates the target 
cell. Figure 13. shows the result of this additional 
constraint. As expected, this constraint improves the 
quality of images, but the rate of activation becomes lower 
than the original one. In this case, we can get only two 
activating images. 

 
Figure 13.  Activation Maximization with GAN and Confidence 

 

TABLE II.  CLASSIFICATION RESULTS WITH CONFIDENCE 

Cells Result Confidence Cells Result Confidence 

1 1 0.92 75 1 0.72 

6* 4 0.89 98 1 0.70 

14 1 0.70 106 1 0.71 

18 1 0.70 108 1 0.70 

19 1 0.71 109 1 0.72 

23 1 0.70 112 1 0.99 

47 1 0.71 113 1 0.70 

64* 4 0.72 120 1 0.70 

67 1 0.71 126 1 0.71 
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TABLE II. summarizes the classification result of the 
generated images with their confidence. The activating 
images are marked with an asterisk in their cell numbers. 
The comparison of the images in Figure 11. with those 
in Figure 13.  illuminates an interesting point on the 
characteristics of uncovered cells. For example, let us 
consider the case of Cell 1. Its image in Figure 11. succeeds 
in activation but that in Figure 13.  fails. For 
convenience, Figure 14. shows the Cell 1 image of Figure 
11. in the left with the label ‘without confidence’ and that 
of Figure 13.  in the right with the label ‘with confidence.’ 

 

Figure 14.  Image Test Case Generated by the Proposed Approach  

 The fact that the activating image in the left has fewer 
intensities than the failing image in the right implies that 
Cell 1 is related to a kind of negative features. That is, 
stronger intensities in pixels make down the probability of 
the activation of Cell 1. We can see this characteristic for 
every inactivated cell in Figure 13. This characteristic 
explains why these cells are hard to be activated in sample 
image data.  

In this subsection, we develop the technique to achieve 
our second goal. To this end, we use the generator trained 
in GAN. To our best knowledge, the approach is a first 
attempt to utilize the generative modeling approach and 
provides a unique benefit that we can leverage the gradient 
search technique used in activation maximization. To 
improve the quality of test images, we use the target CNN 
as a quality checker. Even though this improvement does 
not impose the Uniform distribution constraint on GAN, it 
requires no additional efforts in training.  

Unfortunately, the technique developed in this 
subsection does not provide satisfying activation coverage. 
For improving activation coverage as well as quality, we 
develop the integration of two techniques developed so far 
in the next subsection.  

C. Image Test Case Generation Approach 

In this subsection, we integrate the previous two 
techniques for satisfying two conditions of image test 
cases. For improving the activation coverage of generated 
test images and their quality, we develop a two-phase 
approach.  

In the first phase, we use the activation maximization 
with GAN and confidence developed in the previous 
subsection. If we get an image that activates the target cell, 
then we stop the image generation. Otherwise, we perform 
the second phase for achieving activation coverage.  

In the second phase, we return to the setting of 
activation maximization only but with different input and a 

different loss function in activation maximization. As an 
input, we use the generated image in the first phase. We 
claim that this input image is a good starting point because 
it is closer than the blank image to the activation of its target 
cell and looks similar to digit figures. So, this input results 
in a shorter time of the gradient search than the blank 
image.  

As a loss function, we design a multi-objective 
optimization function for the following two goals. The first 
goal is that the generated image activates the target cell 
(cell activation), and the second goal is that the image is 
close to the input image (figure resemblance). To measure 
the distance of images, we use the sum of the binary cross 
entropy between pixels in images. We choose this distance 
measure because it is widely used in image comparison in 
machine learning fields. Then, we make a weighted sum of 
these two goals. We currently use 14/15 and 1/15 as the 
weights for the two goals, respectively. Again, we choose 
these weights empirically and these hyperparameters are 
easily adjustable.  

Figure 14. shows a result of the proposed approach for 
18 cells in Layer 6. The format of labels for generated test 
images is ‘{cell number} p1/p2-{activation}’ where the 
keywords p1 and p2 mean its resulting phases. Let us 
examine this result. First, in this activation maximization, 
it is possible to get testing images for activating every 
uncovered cell. Second, among 18 images, phase 1 
succeeds in only two Cells 1 and 64, and the others are the 
results of phase 2. Note that, in the previous subsection, we 
get two activating images, but their targets are Cell 6 and 
64. That is, even though we use the same algorithm, but its 
results are different because of its non-deterministic nature. 
Thus, some repetition of the proposed approach is 
necessary to get satisfiable test images in practice. Thirdly, 
the visual quality of generated images quite varies. For 
example, testing images for Cell 14 or 18 lose the look of 
digit figures. As explained earlier, we use the multi-
objective optimization for the two goals, that is, cell 
activation and figure resemblance. When the activation 
goal dominates the figure resemblance in the optimization 
of two objectives, the quality of images can be poor. In this 
case, we can mitigate this situation by adjusting the weights 
of these two goals in the second phase search. Of course, 
the optimization may take a longer time and fails to activate 
the target cell sometimes.  

without confidence with confidence
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Figure 15.  Image Test Case Generated by the Proposed Approach  

Like the previous subsection, we provide the 
classification result of the generated image in TABLE III. 
Some numbers in this table are quite striking. For example, 
let us consider the images for Cells 14 or 18. We strongly 
believe that nobody may consider these images as digit 
figures. However, as shown in TABLE III.  MNIST CNN 
provides high confidences for these images. Cells 14 and 
18 have confidences 0.95 and 0.99, respectively. 

Sometimes MNIST CNN may show unreasonable 
behavior for unexpected images. It is unfair to blame this 
behavior because we only provide plausible samples for its 
training. Thus, MNIST CNN doesn’t know how to 
distinguish implausible images from real ones and does its 
best to predict the classification of implausible input 
images. However, it is risky to provide high confidence 
numbers for implausible images, and, thus, we feel that 
comprehensive testing for detecting these edge cases are 
significant before deployment.  

TABLE III.  CLASSIFICATION RESULTS WITH CONFIDENCE 

Cells Result Confidence Cells Result Confidence 

1 7 (p1) 1.0 75 1 0.62 

6 1 0.93 98 5 0.56 

14 5 0.95 106 2 0.82 

18 5 0.99 108 1 0.93 

19 2 0.72 109 7 1.0 

23 4(p1) 0.75 112 2 0.96 

47 5 0.83 113 3 0.25 

64 1 0.88 120 1 0.56 

67 1 0.88 126 2 0.97 

In this subsection, we develop the two-phase approach 
for trying to achieve two conditions. In the first phase of 
our approach, we use the activation maximization with 
GAN and confidence checking. If we do not get an 
activating image, then we use the activation maximization 

only with the multi-objective optimization. By this 
combination, we can get activating test images for every 
uncovered cell in Layer 6.  

Even though the proposed approach improves the 
quality of generated test images, some generated images do 
not look like digits. This phenomenon raises roughly two 
questions. First is how to design the plausibility checker of 
generated test images. At least, this result indicates that our 
image quality checker, the confidence of MNIST CNN, has 
a weakness to pick out implausible images in some cases. 
If we provide an effective plausibility checker, it is possible 
to improve the quality of generated test images. The second 
question is a more fundamental one about the decision of 
whether an activating and plausible image exists or not. 
Because the input space of a CNN is generally extremely 
huge, it is impossible to test it exhaustively. So, if we have 
an effective tool for this decision, we can early stop the 
generation process of testing images for that target and save 
our effort. 

5. CONCLUDING REMARKS 

In this paper, we presented a test image generation 
approach for CNNs. The goal of our approach has to 
generate an image satisfying the following two conditions. 
First, this image should activate a specific target cell on 
CNN for checking the effect of this cell. Second, this image 
should look like a real image as a plausible test case. Note 
that it is difficult to achieve 100% activation coverage with 
a just given training or testing data and, thus, any image 
generation techniques of this type are crucial for locating 
locate defects for CNN. 

Our approach is based on two techniques, activation 
maximization and Generative Adversarial Network (GAN). 
Activation maximization technique allows achieving the 
first condition while GAN supports the pursuit of the 
second condition by imposing plausibility constraints on 
image generation. To our best knowledge, our approach is 
a first attempt to utilize the generative modeling approach. 
Based on these two techniques, we develop a two-phase 
approach for trying to achieve the two conditions. To this 
end, we introduce the quality checker using confidence and 
multi-objective loss function.  

There are some future research directions for improving 
our approach: First, it looks promising for incorporating 
more advanced styles of GAN, such as CycleGAN [8] or 
Style-based GAN [9] for fine controlling the constituents 
of images. Because these advanced GANs provide a so-
called disentangled noise vector, we expect that they 
support more effective searching and more excellent results. 
Second, it is possible to use other generative techniques in 
the role of GAN. For example, Variational Auto-Encoder 
(VAE) [10], another famous generative model, can be used 
for imposing the figure constraints on image generation. 
Third, it is necessary to define the notion of plausibility in 
test images and to design the plausibility checker of 
generated test images. Lastly, even though it is very 
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challenging, we hope that we get a practical way to decide 
whether an activating and plausible image exists or not. 
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