

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 9, No.2 (Mar-2020)

E-mail:hhkim@sol-lin.com

 http://journals.uob.edu.bh

Test Case Generation for Convolutional Neural Network

Hyung Ho Kim1

1 SolutionLink, South Korea

Received 27 Sep. 2019, Revised 24 Feb. 2020, Accepted 26 Feb. 2020, Published 01 Mar. 2020

Abstract: In this paper, we present a test image generation approach for Convolutional Neural Network (CNN) that is widely used for

image recognition. The goal of our approach has to generate an image satisfying the following two conditions. First, this image activates

a specific cell on CNN for checking the effect of this cell. Second, this image looks like a real image as a plausible test case. For this

purpose, we combine the activation maximization technique with GAN (generative adversarial network). Even though quite a large

number of sample data are used for training, it is infeasible to activate every cell and check its effect. Thus, this technique is useful for

verifying cells uncovered in training and, thus, for improving the quality of CNN. To our best knowledge, this is the first attempt to

improve the quality of images using the generative modeling approach. With the famous MNIST example, we illustrate the details and

benefits of the proposed approach.

Keywords: Deep Learning, Convolutional Neural Network, AI Testing, AI Safety, Test Case Design

1. INTRODUCTION

Nowadays, deep learning technologies become widely
used for various critical applications such as autonomous
driving or optimization of infrastructures. Thus, it is crucial
to remove defects before the deployment of these
applications since their faults may cause serious hazards.
To this end, we have been studying testing techniques for
deep learning technologies, and, in this paper, we propose
a novel testing approach for Convolutional Neural Network
(CNN) [1], one of the most widely used deep learning
techniques for image recognition.

We claim that it is necessary to check the effect of every
cell in a CNN before its deployment. One of the most
straightforward criteria for this is activation coverage [2];
that is, every cell must be activated at least once by the
images in test cases. Unfortunately, many cells in a CNN
may remain uncovered in their training and verification
partly because the number of samples in training and
verification data is not enough and partly because there is a
bias on sample data. Note that it is a very low probability
that sample data provide enough edge cases.

To alleviate this phenomenon, we develop a test case
generation approach for satisfying the following two
conditions. The first condition is that the generated image
test case should activate a target cell on CNN for checking
its effect on the classification result of CNN. Of course, this
condition is the most fundamental one for our purpose.
Unfortunately, our experience showed that this condition is

not enough for generating efficient test cases. Blindly
generated images for just activating a target cell look like
noisy patterns and do not resemble real images. Thus, even
though these images activate the uncovered target cell, but
it is difficult to decide the pass-fail of these images because
we cannot assign expected values to these noisy images.

To mitigate this problem, we introduce the second
condition to the test image generation. The second
condition is that the generated image looks like a real
image as a plausible test case. Of course, the resemblance
of a real image is a subjective term, and, thus, it isn't
straightforward to measure the reality of generated images.
Fortunately, recent AI techniques provide remarkable
capabilities for a fake image generation. So, by utilizing
one of these AI techniques, it is possible to achieve the
second condition.

Our approach is based on two research works,
activation maximization [3] and Generative Adversarial
Network (GAN) [4]. Activation maximization allows
achieving the first condition by searching an input image
that results in the maximum value of a target cell in a
network. This technique is based on the gradient search
used in deep learning, and, thus, we can easily implement
it by leveraging the gradient search capability provided by
deep learning frameworks. Current deep learning
frameworks such as Tensorflow [11], PyTorch [12], and
CNTK [13] provide the flexible implementation of the
gradient search with high performance. In this paper, even
though we use Tensorflow with the famous Python

http://dx.doi.org/10.12785/ijcds/090212

272 Hyung Ho Kim: Test Case Generation for Convolutional Neural Network

http://journals.uob.edu.bh

frontend Keras [6], we strongly believe that the proposed
technique can be implemented in other frameworks easily.

Then, we use GAN to achieve the second condition.
GAN is one of the most famous fake image generation
techniques. Our goal of the integration of GAN with
activation maximization is to impose plausibility
constraints on the gradient search. To our best knowledge,
this is the first attempt to improve the quality of images
using the generative modeling approach. For explaining the
details of our approach, we use a CNN for the famous
handwritten digits set MNIST [5].

The structure of this paper is as follows: First, Section
2 briefly summarizes activation maximization and GAN.
Section 3 explains the definition of activation coverage and
how to measure the coverage. Then, Section 4, the main
part of this paper, describes the generation techniques for
activation test cases step by step. First, we show the case of
activation maximization only and discuss its limitation of
plausibility. Secondly, we explain how to utilize the
generator of GAN to overcome this limitation. Then, we
present the integrated approach by defining multi-objective
optimization for image test case generations for satisfying
two conditions. Finally, Section 5 provides concluding
remarks with some proposals for future researches.

2. BACKGROUND

In this section, we briefly explain two research works,
Activation Maximization and Generative Adversarial
Network (GAN), those form the cornerstones of the
proposed approach.

A. Activation Maximization

The original goal of activation maximization is to
generate a representative image of a class in an image
classification neural network. For example, let us consider
activation maximization on VGG16 [14], one of the most
famous image classification networks. VGG16 can
recognize 1,000 classes from various input images. When
you put an image on VGG16, then, VGG16 predicts the
class of your image by the probability array of the size
1,000. Higher the cell value in the array, the more likely the
image is in the class of the cell. That is, the prediction of
VGG16 takes an image and generates its probabilities of
classes.

Activation maximization takes a reverse direction of
the prediction. That is, activation maximization takes a
class and generates an image that results in the maximum
probability of the class. For example, class number 20 in
VGG16 is ‘water ouzel.’ Figure 1. shows a generated
image of class 20, water ouzel, by activation maximization
in VGG16.

1 This image is generated by the example code from

https://raghakot.github.io/keras-vis/

Figure 1. Activation Maximization of Water Ouzel (20) in VGG161.

The idea behind activation maximization is tricky but
effective. Generally, when training a network N, we update
the weights of N with gradients to achieve a minimum loss.
There are a large number of loss functions for appropriately
measuring the distance between the labels of inputs and
their result of a network. Roughly speaking, we update
weights with respect to inputs in training.

In activation maximization, we turn the direction of the
training update. That is, we update input with respect to the
weights of a classification neural network for maximizing
the value of a classification cell. This formulation enables
us to leverage the existing capabilities for gradient search
and differential calculation in deep learning frameworks.
Thus, we can implement this technique by a few
modifications of existing functions and short lines of codes.

Note that, even though the image of Figure 1. shows
representative parts of water ouzel and looks quite realistic,
this is not a general case in test case image generation. In
the case of Figure 1. , the target cell is the last layer of the
network. So, the generated image contains every feature of
the class corresponding to the target cell. However, when a
target cell is not the last layer, then it captures only the
weight of a partial combination of some features. In this
case, the generated image looks unrealistic and artificial
because the search of activation maximization only pursues
the captured features by the target cell and does not
consider other features.

B. Generative Adversarial Network

Generative Adversarial Network (GAN) [4] is one of
the most famous generative modeling approaches that
automatically discover and learn the latent distribution of
sample images. After learning, GAN can generate a new
plausible image that could have been drawn from the
original sample images.

GAN consists of two competing networks referred to as
generator and discriminator (Figure 2.). The role of the
generator is to learn how to generate fake images that fool
the discriminator. Meanwhile, that of the discriminator is
to learn how to distinguish between fake and real images.
As illustrated in Figure 2. , the generator takes a noise

https://raghakot.github.io/keras-vis/

 Int. J. Com. Dig. Sys. 9, No.2, 271-280 (Mar-2020) 273

http://journals.uob.edu.bh

vector and generates a fake image while the discriminator
takes an image and predicts whether it is real or fake.

Figure 2. Generic Structure of Generative Adversarial Network

Generally, the training of GAN consists of the
repetitions of the discriminator learning and generator
learning. In the discriminator learning, we freeze the
weights of the generator and train the discriminator on real
and fake images with their labels. From this learning, the
discriminator optimizes its weights for discrimination.
Then, in the generator learning, we freeze the weights of
the discriminator and train the generator to defraud the
discriminator with generated images. To this end, we give
a high penalty on the generated image when the
discriminator predicts it as ‘fake.’ By updating the weights
of the generator in the direction to reduce penalties, the
generator improves its chance to defraud the discriminator.

As training progresses, the discriminator will no longer
be able to identify the difference between fake and real
images. Then, we can use the generator to create new
realistic data that have never been observed before but
follow the distribution learned from the sample images.

Figure 3. Fake Images in GAN for MNIST

Figure 3. shows the sample of fake images generated

by the GAN. To evaluate the quality of fake images, we put

generated images to our MNIST CNN and collect their

classification results, digits in this case, and their prediction

probabilities. We put the prediction result as a label for

each generated image. That is, the label of the top left

image in Figure 3 means that the classification of the image

is digit 6, and the prediction probability is 100% (1.00). As

illustrated in Figure 3. the quality of our GAN is quite good.

That is, it is difficult to distinguish the fake images

generated by our GAN from the real image in MNIST data.

3. ACTIVATION COVERAGE TESTING FOR CNN

In this section, we explain how to define activation
coverage with the MNIST CNN example. The idea of
activation coverage is based on the fact that many layer
types in deep neural networks have activation functions for
introducing non-linearity on decisions. First, we explain
the types of layers in MNIST CNN, and, then, we describe
their activation functions.

TABLE I. THE STRUCTURE OF EXEMPLAR MNIST CNN

Layer

Output

Activation

Function

Activation

Coverage

1. Conv2d 26, 26, 32 ReLu Yes

2. Conv2d 24, 24, 64 ReLu Yes

3. MaxPooling2d 12, 12, 64 - No

4. Dropout 12, 12, 64 - No

5. Flatten 9216 - No

6. Dense 128 ReLu Yes

7. Dropout 128 - No

8. Dense 10 Softmax Yes

TABLE I. shows the structure of MNIST CNN used in
this paper. In this network, there are eight layers of five
types. For each type, its description is as follows:

 Conv2d: This layer creates a 2D-convolution kernel.
In short, a kernel is a matrix of weights. In this paper,

we use the 33 kernel. The 2D convolution operation
performs an elementwise multiplication of the kernel
with the part of the 2D input and summing up the
results into a single output value. Then, the layer
applies an assigned activation function to the summed
output value.

 MaxPooling2d: This layer performs a 2D pooling

with the max filtering. In this paper, we use the 22
filter. For the part of the 2D input covered by the filter,
this layer takes the maximum value of that part and
generates a 2D output consisting of these maximum

values. Because we use the 22 filter, the size of the
2D output is a quarter of that of the 2D input. This
layer has no activation function.

 Dropout: This layer is a kind of regularization
techniques for preventing over-fitting in training. In
short, this layer randomly ignores the input in training.
Generally, this layer does not work when predicting.
This layer has no activation function.

 Flatten: This layer transforms the 2D input to the 1D
output that has the same elements of the 2D input. This
layer has no activation function.

 Dense: This layer performs a linear operation. The
number of weights in this layer is the multiplication of

274 Hyung Ho Kim: Test Case Generation for Convolutional Neural Network

http://journals.uob.edu.bh

the output size with the input size. Also, this layer has
a set of biases for each input. For example, the layer 6

in MNIST CNN has 1,179,648 (9,216128) weights
and 9,126 biases. For each output cell, this layer
performs the multiplication of every input with
weights and summing up the result with the bias into
an output value. Then, the layer applies an assigned
activation function to the output value.

Based on these characteristics of layer types, we
exclude some layers from the measurement of activation
coverage. Firstly, we exclude Layer 3 of MaxPooling2D
because it has no activation function. The output of this
layer can be derived from the input and has no non-
linearity. Secondly, we do not measure Layers 4 and 7 of
Dropout because they work in training only and has no
activation function, again. Finally, we omit Layer 5 of
Flatten because it has no activation function and only
transforms the shape of the input. From this exclusion, we
only measure Layers 1, 2, 6, and 8. In this case, the number

of cells in the measurement is 58,634 (262632 +

242464 + 128 + 10). The types of the selected layers are
Conv2d and Dense.

In these layers, there are two types of activation
functions, ReLu and softmax. First, ReLu is the acronym
for rectified linear unit and defined by the following
function:

𝑓(𝑥) = max(0, 𝑥) 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡

So, the graph of ReLu looks like Figure 4.

Figure 4. The Graph of ReLu Activation Function

Second, softmax is a function that transforms a vector
of real numbers to a probability vector that sums to one.
Before applying softmax, some values in the input vector
could be negative or greater than one. Also, the input vector
might not sum to 1. The function softmax transforms this
input vector into an output vector that each component is in
the interval (0,1), and the sum of all components in the
output vector is one. So, the value of the output vector can
be interpreted as probabilities.

Based on these characteristics of activation functions,
we define the thresholds for activation coverage as follows:

 ReLu: Threshold is 0; that is, any output value greater
than 0 is assumed to be activation.

 softmax: When the value of a cell C is a maximum in
the vector, then the cell C is assumed to be activated;
The maximum means that the cell C in the vector is
most probable.

For measuring the activation coverage of Layers 1, 2,
6, and 8, it is necessary to modify the implementation of
MNIST CNN to expose the output of target layers This
modification is simple in our experiment environment
Keras [6], and the famous book [7] written by the author of
Keras provides a detailed explanation for it.

Figure 5. Activation Coverage of MNIST CNN for Training Data

Figure 5. shows the accumulated activation coverage
of 60,000 training digit images in MNIST for MNIST
CNN. Note that, as the number of tested images increases,
the activation coverage of MNIST CNN grows quickly, but
it is soon reaching its limit and not reaching 100% even
though the size of the training set is huge. This result
reveals that it is difficult to achieve 100% activation
coverage.

4. IMAGE TEST CASE GENERATION FOR CNN

In this section, the main part of this paper, we explain
the techniques for achieving the following two conditions
by test image generation.

 The image should activate an uncovered cell in CNN
for checking its effect.

 The image should resemble a real image for the pass-
fail decision of testing.

First, we demonstrate the result of the case where we
use activation maximization only. Even though this
technique can satisfy the first condition, the resulting image
looks absurd. Thus, we try to overcome this limitation by
utilizing the generator of GAN in the next subsection. For
some cells, this attempt generates an image that satisfies the
first and second conditions at the same time. Finally, in the
last subsection, we present the integrated approach for
image test case generations.

A. Activation Maximization for Image Generation

For generating an image for activating a target cell, we
can use the activation maximization by the gradient search.
This image generation is conceptually simple, but there are
some subtleties for implementation. First, we illustrate the

 Int. J. Com. Dig. Sys. 9, No.2, 271-280 (Mar-2020) 275

http://journals.uob.edu.bh

core concept of the image generation, and, then, explain
implementation subtleties.

As noted earlier, the activation maximization uses the
gradient search capability of deep learning frameworks.
For a given target cell t in CNN, we start with the blank
image denoted by image0 as an input of CNN. For image0,
we get the output of t and calculate the gradient 𝑔0 =

𝜕 𝑡

𝜕 𝑖𝑚𝑎𝑔𝑒0
. Then, we can get the next image1 by 𝑖𝑚𝑎𝑔𝑒1 =

 𝑖𝑚𝑎𝑔𝑒0 + 𝛾 ∙ 𝑔0 with a learning rate 𝛾. By generalizing
this calculation, we can get the following image update
formula:

𝑖𝑚𝑎𝑔𝑒(𝑖+1) = 𝑖𝑚𝑎𝑔𝑒𝑖 + 𝛾 ∙ 𝑔𝑖

We repeat the update formula until the value of t is
larger than zero, that is, activated in ReLu activation
function.

For implementing the activation maximation in Keras,
there are two implementation subtleties. First, it is
necessary to replace ReLu with the linear activation
function. Note that the activation function ReLu outputs
zeros for every negative input and, thus, its gradient for
negative input is zero. As explained earlier, layers in neural
networks perform the multiplication of input cells with
weights and summing up the results with the bias into an
input of their activation functions. Thus, the fact that a cell
is not activated in a layer with ReLu activation function
means that the input of its activation function is negative.
In this case, the input image does not change because the
gradient 𝑔𝑖 is zero and, thus, 𝑖𝑚𝑎𝑔𝑒(𝑖+1) is equal to

𝑖𝑚𝑎𝑔𝑒𝑖. That is, the gradient search gets stuck and does not
progress. To make the search progress, we must replace
ReLu with linear to get a non-zero gradient of a minus
value.

Second, to leverage the optimizers provided by Keras,
some modifications are necessary. Generally, in the
training of neural networks, the input is constant, and the
weights are variable for updating. However, in the
activation maximization, the input must be variable while
the weights of networks are constant. Because there is a
strict distinction between variables and constants in the
implementation of Keras, it is necessary to change the types
of input and weights for using existing optimizers.

By applying this activation maximization technique, we
can generate test images for activating uncovered cells by
MNIST images. For simplicity of presentation, we focus on
the test image generation for Layer 6 (Dense) of our
MNIST CNN. As described in TABLE I. Layer 6 has 128
cells, and among these cells, 18 cells are uncovered by
60,000 images in MNIST training data. The following list
enumerates the index of the uncovered cells in Layer 6.

 1, 6, 14, 18, 19, 23, 47, 64, 67, 75, 98, 106, 108,
109, 112, 113, 120, 126

For understanding why MNIST test images do not
activate these cells, it is helpful to examine the weights of

these cells. Figure 6. illustrates the distribution of weights
of Cell 126 in Layer 6. This cell has 9,216 weights for every
cell in its previous layer. Because the number of negative
weights is larger than that of positive weights, and because
the input value of this cell is always positive, the operation
of this cell results in negative output with a high
probability. Thus, this negative output does not pass the
threshold of ReLu activation function.

Figure 6. Weights of Cell 126 of Layer 6

It should be noted that it is theoretically difficult and
infeasible in practice to decide whether the case to activate
Cell 126 exists in real situations or not. When the case
exists in real situations, but test data do not include it, we
call it ‘edge case’ because it is rare. If the case does not
exist in real situations, we call it ‘impossible case.’
Unfortunately, in many cases, the distribution of real
situations is unknown and, thus, we cannot distinguish an
edge case from an impossible case. So, we claim that it is
necessary to test these uncovered cells for trying the
detection of edge cases in the previous verification.

Figure 7. Generated Image for the Cell 126 of the Layer 6

Figure 7. is one of the generated images for Cell 126 of
Layer 6. This image looks like just a spread of speckles.
Note that Layer 6 is the last layer before the classification
of digit images. It means that each cell of Layer 6 captures
the significance of specific features in a digit image. Thus,
when we try the activation of this cell only, the activation
maximization technique does not consider the remaining
features handled by other cells. In this case, the activation
maximization technique results in a nonsensical image that
signifies the selected specific features only.

This phenomenon occurs because the activation
maximization technique in this subsection does not
consider other features of ordinary digit images except
those captured by a target cell. Figure 8. shows the current
setting of the activation maximization technique, where
there are no ways to incorporate additional features of digit
image for inner layers. So, the resulting image has arbitrary
intensities in its image plane that activate the features

276 Hyung Ho Kim: Test Case Generation for Convolutional Neural Network

http://journals.uob.edu.bh

captured by the target cell only. When we apply activation
maximization at the classification layer, located at the end
of networks, this phenomenon is alleviated. Note that each
cell of the classification layer is related to every feature of
its corresponding digit. Thus, the resulting image contains
a combination of features and may look similar to an
ordinary digit.

Figure 8. Activation Maximization Only Setting for MNIST CNN

To alleviate this phenomenon when tackling a target
cell t in inner layers, we need a way to incorporate
additional features for complementing the features
captured in the target cell t. This need is the motivation of
our second technique explained in the next subsection.

B. Activation Maximization with GAN

In this subsection, we try to overcome the limitation of
the previous technique by providing a novel way to
incorporate additional features of ordinary digit images.

The key idea of our approach is to use the generator of
GAN for incorporating additional features of digit images.
To our best knowledge, this GAN-based approach is a first
attempt for test image generation in activation coverage.

Figure 9. GAN for MNIST

First, for making a digit image generator, we train a
GAN network with the structure in Figure 9. Like MNIST
CNN training, we use 60,000 MNIST training data. The
trained generator takes a noise vector with size 100 and

synthesizes a 2828 image according to the MNIST input
specification. Figure 3. shows some samples of synthesized
digit images by our digit generator in GAN.

For using the trained digit generator, we concatenate it
with MNIST CNN, like Figure 10. In this setting, the result
of the activation maximization technique is not a digital
image of MNIST CNN but a noise vector of Digit
Generator. In this setting, the backpropagation of gradient
search in the activation maximization passes through Digit

Generator. Note that Digit Generator learns how to mimic
MNIST digit images in the GAN training, and the weights
of Digit Generator capture this learned knowledge. Thus,
this passage through the weights of Digit Generator
incorporates additional features of digit images in the
activation maximization technique.

Figure 10. Activation Maximization with GAN Setting

The key benefit of the proposed approach is that there
is no modification on neural networks and the algorithm. It
is enough to connect trained two networks and possible to
use the same algorithm for the activation maximization
technique. Thus, it is easy to change the current digit
generator with others trained by different machine learning
techniques.

We apply the activation maximization technique in this
setting with the modified version of Adam optimizer [15]
in Keras. In this maximization, we use a learning rate 0.01
and maximum iteration 100,000. We choose Adam
optimizer among various optimizers in Keras because this
optimizer is the most advanced one and provides fast
performance in most situations.

For the learning rate, we select this value through
experiments. The learning rate controls the speed at which

the model learns. For example, the symbol of our image
update formula in the previous subsection is an example of
learning rates. It is important to select an appropriate value
for the learning rate. When a learning rate is too big,
gradient descent search can inadvertently increase the
training error. When a learning rate is too small, training is
not only slower but also may become stuck at a valley of
optimization. Roughly speaking, the learning rate 0.01
means that we update the original image with the 1%
(1/100) of the gradient. Note that there are no theoretical
ways to calculate the optimal learning rate currently, and it
is a hot research topic. So, we perform some experiments
for the gradient search in activation maximization and
select 0.01 as a learning rate because this value shows a
reasonable learning speed without sharp fluctuation.

Finally, we set a limit on the number of image update
iterations in activation maximization. Again, in this case,
we choose 10,000 based on our experience. In most cases,
it is possible to get an image that covers the target cell
before some thousand iterations, and the activation
maximization terminates. However, sometimes, we cannot
generate a test image even though we iterate a million
times. Generally, the 10,000 iteration takes more or less 10
minutes in i5 CPU with 8 GB notebook, and, thus, we think
this limit is reasonable for generating a test image.

 Int. J. Com. Dig. Sys. 9, No.2, 271-280 (Mar-2020) 277

http://journals.uob.edu.bh

In this setting, we perform test image generations and
get activation images for 9 cells but fails for 9 cells among
the uncovered 18 cells of Layer 6. Figure 11. shows the
generated images with the label of the format ‘{index}
{activation or not}.’ For example, the label ‘1 True’ means
that this image is generated for Cell 1 of Layer 6 and
succeeds in its activation. Even though test images look
different from those of activation maximization only in the
previous subsection, their quality is poor in comparison
with synthesized images in Figure 3.

Figure 11. Activation Maximization with GAN Setting

The investigation of generated noise vectors shows why
these vectors result in poor images. In GAN training, the
values of a noise vector follow Uniform distribution with
the range -1.0 ~ +1.0. However, in the activation
maximization, the assumption of Uniform distribution on
noise vectors does not hold. Figure 12. shows one of the
generated noise vectors. As illustrated in this figure, most
values among 100 cells in the noise vector are -1.0 or + 1.0,
and only 5 elements are not edge values.

Further investigation shows that many values after
gradient updates go over the limit of the range -1.0 ~ +1.0
but, for the validity of noise vectors, are clipped within the
range. Because edge cases are necessary to cover
inactivated target cells generally, these results, that is,
many values in a noise vector are located at edges, look
reasonable. However, to achieve the second condition, we
must alleviate this phenomenon.

Figure 12. Noise Vector Example of Activation Maximization

The most intuitive solution for this phenomenon is to
make a noise vector follow Uniform distribution when
activation maximization. However, we cannot find a
practical way of how to impose this constraint on the
gradient searching. Because the gradient search algorithm
independently updates each value of a noise vector, it
seems difficult to integrate Uniform distribution constraint
with the gradient search algorithm efficiently. Instead of
following Uniform distribution, we add another constraint
for improving the image quality directly. The idea behind
our approach is to use MNIST CNN as a quality checker of
generated test images. Note that the final output of MNIST
CNN denotes the probabilistic confidence of its prediction.
So, we assume that higher confidence of test images, more
realistic they are. In this paper, we use 0.7 as the confidence
threshold for dropping poor quality images. Again, we
choose this confidence threshold empirically.

Of course, this additional constraint lowers the
probability that the generated image activates the target
cell. Figure 13. shows the result of this additional
constraint. As expected, this constraint improves the
quality of images, but the rate of activation becomes lower
than the original one. In this case, we can get only two
activating images.

Figure 13. Activation Maximization with GAN and Confidence

TABLE II. CLASSIFICATION RESULTS WITH CONFIDENCE

Cells Result Confidence Cells Result Confidence

1 1 0.92 75 1 0.72

6* 4 0.89 98 1 0.70

14 1 0.70 106 1 0.71

18 1 0.70 108 1 0.70

19 1 0.71 109 1 0.72

23 1 0.70 112 1 0.99

47 1 0.71 113 1 0.70

64* 4 0.72 120 1 0.70

67 1 0.71 126 1 0.71

278 Hyung Ho Kim: Test Case Generation for Convolutional Neural Network

http://journals.uob.edu.bh

TABLE II. summarizes the classification result of the
generated images with their confidence. The activating
images are marked with an asterisk in their cell numbers.
The comparison of the images in Figure 11. with those
in Figure 13. illuminates an interesting point on the
characteristics of uncovered cells. For example, let us
consider the case of Cell 1. Its image in Figure 11. succeeds
in activation but that in Figure 13. fails. For
convenience, Figure 14. shows the Cell 1 image of Figure
11. in the left with the label ‘without confidence’ and that
of Figure 13. in the right with the label ‘with confidence.’

Figure 14. Image Test Case Generated by the Proposed Approach

 The fact that the activating image in the left has fewer
intensities than the failing image in the right implies that
Cell 1 is related to a kind of negative features. That is,
stronger intensities in pixels make down the probability of
the activation of Cell 1. We can see this characteristic for
every inactivated cell in Figure 13. This characteristic
explains why these cells are hard to be activated in sample
image data.

In this subsection, we develop the technique to achieve
our second goal. To this end, we use the generator trained
in GAN. To our best knowledge, the approach is a first
attempt to utilize the generative modeling approach and
provides a unique benefit that we can leverage the gradient
search technique used in activation maximization. To
improve the quality of test images, we use the target CNN
as a quality checker. Even though this improvement does
not impose the Uniform distribution constraint on GAN, it
requires no additional efforts in training.

Unfortunately, the technique developed in this
subsection does not provide satisfying activation coverage.
For improving activation coverage as well as quality, we
develop the integration of two techniques developed so far
in the next subsection.

C. Image Test Case Generation Approach

In this subsection, we integrate the previous two
techniques for satisfying two conditions of image test
cases. For improving the activation coverage of generated
test images and their quality, we develop a two-phase
approach.

In the first phase, we use the activation maximization
with GAN and confidence developed in the previous
subsection. If we get an image that activates the target cell,
then we stop the image generation. Otherwise, we perform
the second phase for achieving activation coverage.

In the second phase, we return to the setting of
activation maximization only but with different input and a

different loss function in activation maximization. As an
input, we use the generated image in the first phase. We
claim that this input image is a good starting point because
it is closer than the blank image to the activation of its target
cell and looks similar to digit figures. So, this input results
in a shorter time of the gradient search than the blank
image.

As a loss function, we design a multi-objective
optimization function for the following two goals. The first
goal is that the generated image activates the target cell
(cell activation), and the second goal is that the image is
close to the input image (figure resemblance). To measure
the distance of images, we use the sum of the binary cross
entropy between pixels in images. We choose this distance
measure because it is widely used in image comparison in
machine learning fields. Then, we make a weighted sum of
these two goals. We currently use 14/15 and 1/15 as the
weights for the two goals, respectively. Again, we choose
these weights empirically and these hyperparameters are
easily adjustable.

Figure 14. shows a result of the proposed approach for
18 cells in Layer 6. The format of labels for generated test
images is ‘{cell number} p1/p2-{activation}’ where the
keywords p1 and p2 mean its resulting phases. Let us
examine this result. First, in this activation maximization,
it is possible to get testing images for activating every
uncovered cell. Second, among 18 images, phase 1
succeeds in only two Cells 1 and 64, and the others are the
results of phase 2. Note that, in the previous subsection, we
get two activating images, but their targets are Cell 6 and
64. That is, even though we use the same algorithm, but its
results are different because of its non-deterministic nature.
Thus, some repetition of the proposed approach is
necessary to get satisfiable test images in practice. Thirdly,
the visual quality of generated images quite varies. For
example, testing images for Cell 14 or 18 lose the look of
digit figures. As explained earlier, we use the multi-
objective optimization for the two goals, that is, cell
activation and figure resemblance. When the activation
goal dominates the figure resemblance in the optimization
of two objectives, the quality of images can be poor. In this
case, we can mitigate this situation by adjusting the weights
of these two goals in the second phase search. Of course,
the optimization may take a longer time and fails to activate
the target cell sometimes.

without confidence with confidence

 Int. J. Com. Dig. Sys. 9, No.2, 271-280 (Mar-2020) 279

http://journals.uob.edu.bh

Figure 15. Image Test Case Generated by the Proposed Approach

Like the previous subsection, we provide the
classification result of the generated image in TABLE III.
Some numbers in this table are quite striking. For example,
let us consider the images for Cells 14 or 18. We strongly
believe that nobody may consider these images as digit
figures. However, as shown in TABLE III. MNIST CNN
provides high confidences for these images. Cells 14 and
18 have confidences 0.95 and 0.99, respectively.

Sometimes MNIST CNN may show unreasonable
behavior for unexpected images. It is unfair to blame this
behavior because we only provide plausible samples for its
training. Thus, MNIST CNN doesn’t know how to
distinguish implausible images from real ones and does its
best to predict the classification of implausible input
images. However, it is risky to provide high confidence
numbers for implausible images, and, thus, we feel that
comprehensive testing for detecting these edge cases are
significant before deployment.

TABLE III. CLASSIFICATION RESULTS WITH CONFIDENCE

Cells Result Confidence Cells Result Confidence

1 7 (p1) 1.0 75 1 0.62

6 1 0.93 98 5 0.56

14 5 0.95 106 2 0.82

18 5 0.99 108 1 0.93

19 2 0.72 109 7 1.0

23 4(p1) 0.75 112 2 0.96

47 5 0.83 113 3 0.25

64 1 0.88 120 1 0.56

67 1 0.88 126 2 0.97

In this subsection, we develop the two-phase approach
for trying to achieve two conditions. In the first phase of
our approach, we use the activation maximization with
GAN and confidence checking. If we do not get an
activating image, then we use the activation maximization

only with the multi-objective optimization. By this
combination, we can get activating test images for every
uncovered cell in Layer 6.

Even though the proposed approach improves the
quality of generated test images, some generated images do
not look like digits. This phenomenon raises roughly two
questions. First is how to design the plausibility checker of
generated test images. At least, this result indicates that our
image quality checker, the confidence of MNIST CNN, has
a weakness to pick out implausible images in some cases.
If we provide an effective plausibility checker, it is possible
to improve the quality of generated test images. The second
question is a more fundamental one about the decision of
whether an activating and plausible image exists or not.
Because the input space of a CNN is generally extremely
huge, it is impossible to test it exhaustively. So, if we have
an effective tool for this decision, we can early stop the
generation process of testing images for that target and save
our effort.

5. CONCLUDING REMARKS

In this paper, we presented a test image generation
approach for CNNs. The goal of our approach has to
generate an image satisfying the following two conditions.
First, this image should activate a specific target cell on
CNN for checking the effect of this cell. Second, this image
should look like a real image as a plausible test case. Note
that it is difficult to achieve 100% activation coverage with
a just given training or testing data and, thus, any image
generation techniques of this type are crucial for locating
locate defects for CNN.

Our approach is based on two techniques, activation
maximization and Generative Adversarial Network (GAN).
Activation maximization technique allows achieving the
first condition while GAN supports the pursuit of the
second condition by imposing plausibility constraints on
image generation. To our best knowledge, our approach is
a first attempt to utilize the generative modeling approach.
Based on these two techniques, we develop a two-phase
approach for trying to achieve the two conditions. To this
end, we introduce the quality checker using confidence and
multi-objective loss function.

There are some future research directions for improving
our approach: First, it looks promising for incorporating
more advanced styles of GAN, such as CycleGAN [8] or
Style-based GAN [9] for fine controlling the constituents
of images. Because these advanced GANs provide a so-
called disentangled noise vector, we expect that they
support more effective searching and more excellent results.
Second, it is possible to use other generative techniques in
the role of GAN. For example, Variational Auto-Encoder
(VAE) [10], another famous generative model, can be used
for imposing the figure constraints on image generation.
Third, it is necessary to define the notion of plausibility in
test images and to design the plausibility checker of
generated test images. Lastly, even though it is very

280 Hyung Ho Kim: Test Case Generation for Convolutional Neural Network

http://journals.uob.edu.bh

challenging, we hope that we get a practical way to decide
whether an activating and plausible image exists or not.

Acknowledgment: This work was supported by the Ministry of

Trade, Industry and Energy of the Republic of Korea

(Project 20006869 - Development of Self Driving Parts and

Vehicle Mounting Technology for Large Bus).

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet
classification with deep convolutional neural networks”, In NIPS
2012.

[2] Kexin Pei, Yinzhi Cao, Junfeng Yang, Suman Jana, “DeepXplore:
Automated Whitebox Testing of Deep Learning Systems”,
SOSP’17, 2017.

[3] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing
higher-layer features of a deep network”. Dept. IRO, Université de
Montréal, Tech. Rep, 4323, 2009.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. WardeFarley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial
Networks”, In NIPS, 2014.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner "Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278-2324. 1998.

[6] C. Francois and others, Keras, https://keras.io.

[7] C. Francois, Deep Learing with Python, 1st Edition, Manning
Publications, 2017

[8] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efro, “Unpaired image-to-
image translation using cycleconsistent adversarial networks”,
arXiv preprint arXiv:1703.10593, 2017.

[9] T. Karras, S. Laine, and T. Aila, “A Style-Based Geneator
Architecture for Generative Adversarial Network”, in CVPR 2019.

[10] D. P. Kingma and M.Welling, “Auto-encoding variational bayes”,
arXiv preprint arXiv:1312.6114, 2013

[11] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz,
Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
“TensorFlow: Large-scale machine learning on heterogeneous
systems”, 2015. Software available from tensorflow.org.

[12] Paszke, Adam and Gross, Sam and Chintala, Soumith and Chanan,
Gregory and Yang, Edward and DeVito, Zachary and Lin, Zeming
and Desmaison, Alban and Antiga, Luca and Lerer, Adam,
“Automatic differentiation in PyTorch’, 2017

[13] Amit Agarwal, Eldar Akchurin, Chris Basoglu, Guoguo Chen,
Scott Cyphers, Jasha Droppo, Adam Eversole, Brian Guenter, Mark
Hillebrand, T. Ryan Hoens, Xuedong Huang, Zhiheng Huang,
Vladimir Ivanov, Alexey Kamenev, Philipp Kranen, Oleksii
Kuchaiev, Wolfgang Manousek, Avner May, Bhaskar Mitra,
Olivier Nano, Gaizka Navarro, Alexey Orlov, Hari Parthasarathi,
Baolin Peng, Marko Radmilac, Alexey Reznichenko, Frank Seide,
Michael L. Seltzer, Malcolm Slaney, Andreas Stolcke, Huaming
Wang, Yongqiang Wang, Kaisheng Yao, Dong Yu, Yu Zhang,
Geoffrey Zweig (in alphabetical order), "An Introduction to
Computational Networks and the Computational Network Toolkit",
Microsoft Technical Report MSR-TR-2014--112, 2014.

[14] K. Simonyan, A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition”, International Conference on
Learning Representations, 2015

[15] Diederik P. Kingma, Jimmy Ba, “Adam: A Method for Stochastic
Optimization”, the 3rd International Conference for Learning
Representations, San Diego, 2015.

Hyung Ho Kim received the B.S. degree

from Sogang University and M.S and

Ph.D. from KAIST in computer

science. He is a vice president and

principal consultant at Solutionlink, a

system and software engineering

consulting company in South Korea.

After cofounding this company in

2000, he has been working on the

development of safety critical system

and software for various ICT and automotive companies

including Hyundai Motors, LG, and Samsung, Mobis, and

Mando. He is currently interested in safe architectural design on

automotive system.

https://keras.io/

