

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 9, No.2 (Mar-2020)

E-mail: tausifasaleem19@gmail.com, ahsan@nitsri.net

 http://journals.uob.edu.bh

Assessing the Efficacy of Machine Learning Techniques

for Handwritten Digit Recognition

Tausifa Jan Saleem

1
 and Mohammad Ahsan Chishti

1

1 Department of Computer Science and Engineering, National Institute of Technology Srinagar, India.

Received 16 Feb. 2019, Revised 30 Jan. 2020, Accepted 23 Feb. 2020, Published 01 Mar. 2020

Abstract: The efficiency of handwritten digit recognition models greatly relies on the classification technique used and the

optimization technique involved. Motivated to explore the efficacy of machine learning for handwritten digit recognition, this study

assesses the performance of three machine learning techniques, logistic regression, multilayer perceptron, and convolutional neural

network for recognition of handwritten digits. The experimental results reveal that convolutional neural network outperforms logistic

regression and multilayer perceptron in terms of accuracy. This study also evaluates the performance of three optimizers, namely

stochastic gradient descent, adadelta, and adam for handwritten digit recognition. The experiments conducted in the study

demonstrate that adam performs better than stochastic gradient descent and adadelta. It is concluded that convolutional neural

network with adam is the best choice for handwritten digit recognition in terms of accuracy. However, the convolutional neural

network is quite expensive in terms of training time and execution time. To this purpose, this paper proposes a methodology for the

design of a light-weight convolutional neural network model.

Keywords: Logistic Regression, Multilayer Perceptron, Convolutional Neural Network, Stochastic Gradient Descent, Adadelta,

Adam.

1. INTRODUCTION

The current resurgence in the arena of machine
learning is a direct consequence of the efficiency of the
machine learning techniques in solving intricate
classification and regression tasks on huge datasets [1].
The prime objective of machine learning is to acquire
knowledge from experience and to construct a model that
can execute prediction tasks for effectual decision-
making.

 Machine learning techniques are classified into three
categories: Supervised learning, unsupervised learning,
and reinforcement learning. Supervised learning
approaches model dependencies and associations between
the target prediction outcome and the input attributes so
that outputs for upcoming data instances are forecasted
depending on the associations it learned from the dataset
[2]. Unsupervised learning applies techniques on the input
data instances to mine useful information, detect patterns
and group the data instances so that valuable insights are
obtained. Reinforcement learning algorithms learn
incessantly from the experience of the environment in an
iterative manner until they inspect the full range of
feasible states.

Automated recognition of handwritten digits has got
diverse applications like processing of bank cheques,
processing of mails in post offices, etc. [3]. Machine
learning techniques have shown remarkable outcomes in
diverse pattern recognition tasks, including automated
handwritten digit recognition. In spite of being a well-
researched domain, handwritten digit recognition is yet a
hot area of research [4].

The prime aim of this paper is to evaluate the
performance of three supervised machine learning
techniques, namely, logistic regression, multilayer
perceptron, and convolutional neural network for
handwritten digit recognition. Moreover, the performance
analysis of three optimizers, stochastic gradient descent,
adadelta, and adam is also experimented. The rationale for
this performance evaluation stems from the fact that
assessing the efficacy of machine learning techniques and
the optimizers on MNIST dataset is crucial for deciding
the suitability of machine learning techniques and
optimizers for handwritten digit recognition.

The rest of the paper is structured as follows: Section
2 presents the related work. Section 3 describes the
machine learning techniques used. Section 4 provides a
description of optimizers. Section 5 describes the

http://dx.doi.org/10.12785/ijcds/090215

300 Tausifa Jan Saleem & Mohammad Ahsan Chishti: Assessing the Efficacy of Machine Learning ...

http://journals.uob.edu.bh

experimental setup. Section 6 contains the experimental
results and analysis. Section 7 presents the proposed
model for convolutional neural network compression.
Section 8 presents the concluding remarks.

2. RELATED WORK

During the recent years, various state-of-the-art
models have been developed for handwritten digit
recognition. This section reviews the literature related to
handwritten digit recognition using machine learning
techniques.

Akmaljon et al. [5] provide the performance
comparison of four machine learning techniques; Logistic
Regression, Convolutional Neural Network, Resnet and
Capsule Network for handwritten digit recognition on
MNIST in a real-time environment. The study concludes
that Capsule Network achieves the highest accuracy
(98.1%) and is the most appropriate model among the
aforementioned models for real-time handwritten digit
recognition. Eva et al. [6] proposed a novel method based
on Support Vector Machine (SVM) and Bat algorithm for
recognition of handwritten digits. The proposed algorithm
achieved an accuracy of 95.6%. In [7], Ravi et al. carried
out the proficiency analysis of K-Nearest Neighbor
(KNN) for handwritten digit recognition. And it is
concluded that KNN classifier generates results with an
accuracy of 96.94%. Shruti et al. [8] made use of Spiking
Neural Networks (SNN) for recognition of handwritten
digits. The work demonstrates that the network attains an
accuracy of 98.17%. Savita et al. [9] employed an
Artificial Neural Network (ANN) for recognition of
handwritten numerals. The experiments conducted in the
research work demonstrate that the employed technique
achieves an accuracy of 97.5%. Yang et al. [10] proposed
an architecture based on deep neural network for
classification of handwritten digits. The experiments show
that the proposed architecture attains the error rate of
0.47% ± 0.05%. Chayapom et al. [11] presented a
comparative performance analysis of three classifications
techniques; ANN, KNN, and SVM for the recognition of
handwritten digits. The study demonstrates that the SVM
outperforms the other two techniques and attains an
accuracy of 96.93%. Renata et al. [12] proposed a hybrid
model based on SVM and KNN for recognition of
handwritten digits. The experiments conducted
demonstrate that the proposed model achieves an
accuracy of 97.97%. Ahmed et al. [13] employed a
convolutional neural network for recognition of
handwritten Arabic digits. The study demonstrates that the
employed technique shows considerable improvement (an
error rate of 12 %) over other machine learning
techniques. Sourav et al. [14] proposed a framework
based on ANN for recognition of handwritten digits. The
work demonstrates that the proposed framework attains an
accuracy of 99 %. Y. LeCun et al. [15] carried out a
comparison of several classifiers on MNIST dataset.
Experiments conducted in the study demonstrate that
Boosted LeNet 4 gives the best results in comparison to

other classifiers. In [16], authors proposed a model based
on the SNN for handwritten digit recognition. The
proposed model achieved an accuracy of 95%. Fabien et
al. [17] proposed a hybrid model based on LeNet5 and
SVM for handwritten digit recognition. The proposed
model outperforms the individual LeNet5 and SVM
models. Cheng-Lin et al. [18] carried out the comparative
analysis of the combinations of several classification and
feature extraction techniques on MNIST dataset.
Experiments conducted in the study demonstrate that
support vector classifier with radial basis function
outperforms other combinations. Oliveira et al. [19]
proposed a technique based on genetic algorithm for
feature selection on MNIST dataset. The proposed
algorithm reduces the number of features in the dataset
effectively without affecting the classification accuracy.
In another study, Oliveira et al. [20] carried out a
comparison of two genetic algorithm approaches on
MNIST dataset, simple genetic algorithm, and iterative
genetic algorithm. Experiments conducted in the study
demonstrate that simple genetic algorithm is more suitable
for handwritten digit recognition. Dejan et al. [21]
proposed a hybrid classification model based on ANN and
SVM for handwritten digit recognition. Experiments
demonstrate that the proposed model is on par with the
state-of-the-art models in terms of classification accuracy
and time. Bellili et al. [22] proposed a model based on
multilayer perceptron and SVM for handwritten digit
recognition. The proposed model achieved an accuracy of
98.01%.

3. MACHINE LEARNING TECHNIQUES

This section provides a brief description of the
machine learning techniques used in our study. Three
machine learning models based on logistic regression,
multilayer perceptron, and convolutional neural network
have been developed. Following provides a brief
description of these techniques:

A. Logistic Regression:

Logistic Regression (LR) is a machine learning
algorithm that can be utilized for multivariate
classification [23]. While as linear regression is utilized
for predicting the future instances of a dependent variable,
logistic regression is typically used for classification
tasks. Logistic regression makes use of a sigmoid function

(𝑓(𝑧) =
1

1+𝑒−𝑧) to generate the probability values, which

are then mapped to multiple classes [24].

B. Multi-Layer Perceptron

Neuron is the elementary computational unit in ANN.
It accepts one or more inputs and performs their weighted
sum, which is then passed as an input to a non-linear
function called as activation function. Activation function
may be a threshold function, piecewise linear function,
logistic function, gaussian function, etc. ANNs can be
contemplated as a directed weighted graph with neurons
as nodes and weights as directed edges. Feed-forward

 Int. J. Com. Dig. Sys. 9, No.2, 299-308 (Mar-2020) 301

http://journals.uob.edu.bh

ANN with at least one hidden layer is called as a Multi-
Layer Perceptron (MLP) [25].

C. Convolutional Neural Network

A Convolutional Neural Network (CNN) receives a
two-dimensional input in the form of an image or a voice
signal and digs out hierarchical characteristics by means
of a sequence of hidden layers [26, 27]. The hidden layers
in case of a CNN comprise of convolutional layers,
pooling layers, and a fully connected layer [28]. The
convolutional layer comprises of filters that have the same
shape as that of the input data. However, the dimensions
of filter are smaller than the dimensions of input. The
output of the convolutional layers are the feature maps
that are obtained by the inner product of input and the
filter. These feature maps are passed through pooling
layers in order to shrink the dimensions of the
representation. This is done to reduce computation time
and avoid over-fitting. Another main part of CNN is the
Rectified Linear Units (ReLU) that constitutes of neurons
with softmax activation function in the form of 𝑓(𝑧) =
max(0, 𝑧).

4. OPTIMIZERS

Gradient descent is the most widely used technique

for optimizing machine learning models. It is a method

for minimizing a function known as objective function

represented by 𝐽(𝑤) , where 𝑤 denotes the model

parameters. It proceeds by updating the values of model

parameters in the direction opposite to the gradient

of 𝐽(𝑤), until the point of minima is attained. The length

of steps taken to reach the point of minima is determined

by a parameter called as learning rate, 𝜂 . Training

machine learning models with gradient descent is a slow

process and consumes a lot of time. To overcome this

limitation, various optimization algorithms have been

designed. Following provides a description of the

commonly used optimizers for gradient descent.

A. Stochastic Gradient Descent (SGD)

 SGD computes the model parameter update for every

input-output pair in the dataset. The parameter update

equation is given as [29];

𝑤 = 𝑤 − 𝜂. ∇𝑤 𝐽(𝑤; 𝑦(𝑖); 𝑧(𝑖)) (1)

Where 𝑦(𝑖) represents the 𝑖𝑡ℎ input data instance, and 𝑧(𝑖)

represents the 𝑖𝑡ℎ output label. The main advantage of

SGD over the other optimizers is that it is fast as it

doesn’t recompute the gradient for similar examples.

B. Adadelta

 Adadelta doesn’t need the manual fine-tuning of 𝜂.

The parameter update rule in adadelta consists of the

following steps [30]:

Step1: Calculate gradient (𝐺(𝑡)) at time t,

 𝐺𝑡,𝑖 = ∇wJ(wt,i) (2)

 𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖 − 𝜂. 𝐺𝑡,𝑖 (3)

Step 2: Calculate the running average of the gradient at

time t, (𝐸[𝐺2]𝑡),

 𝐸[𝐺2]𝑡 = 𝑚 𝐸[𝐺2]𝑡−1 + (1 − 𝑚) 𝐺2
𝑡 (4)

𝑚 is the decay constant with value of 0.9 approximately.

Step 3: Calculate the parameter update at time t, (∆𝑤𝑡),

 ∆𝑤𝑡 = −
𝜂

√𝐸[𝐺2]𝑡+∈
 𝐺𝑡 (5)

∈ is a small number that is added to prevent division by

zero.

 𝑅𝑀𝑆(𝐺𝑡) = √𝐸[𝐺2]𝑡+∈ (6)

𝑅𝑀𝑆(𝐺𝑡) is the root mean square of gradient 𝐺𝑡

 ∆𝑤𝑡 = −
𝜂

𝑅𝑀𝑆[𝐺]𝑡
 𝐺𝑡 (7)

From equation 4, we have,

 𝐸[∆𝑤2]𝑡 = 𝑚𝐸[∆𝑤2]𝑡−1 + (1 − 𝑚) ∆𝑤2
𝑡

 𝑅𝑀𝑆[∆𝑤]𝑡 = √𝐸[∆𝑤2]𝑡+∈ (8)

From equations 4, 7, and 8, we get,

 ∆𝑤𝑡 = −
𝑅𝑀𝑆[∆𝑤]𝑡−1

𝑅𝑀𝑆[𝐺]𝑡
 𝐺𝑡 (9)

Step 4: Apply the parameter update,

 𝑤𝑡+1 = 𝑤𝑡 + ∆𝑤𝑡 (10)

C. Adam

 Adam (Adaptive moment estimation) is an adaptive

learning technique that calculates the learning rate for

every model parameter. The parameter update rule in

Adam consists of the following steps [31]:

Step 1: Compute the average of past gradients, 𝑀𝑡,

 𝑀𝑡 =∝1 𝑀𝑡−1 + (1 −∝1)𝐺𝑡 (11)

Step 2: Compute the average of past squared gradients, 𝑉𝑡

 𝑉𝑡 =∝2 𝑉𝑡−1 + (1 −∝2) 𝐺2
𝑡 (12)

∝1, ∝2 are the decay rates.

302 Tausifa Jan Saleem & Mohammad Ahsan Chishti: Assessing the Efficacy of Machine Learning ...

http://journals.uob.edu.bh

Step 3: Calculate the estimate of 𝑀𝑡 (equation 11), 𝑀�̂�

 𝑀�̂� =
𝑀𝑡

1−∝1
𝑡 (13)

Step 4: Calculate the estimate of 𝑉𝑡 (equation 12), 𝑉�̂�

 𝑉�̂� =
𝑉𝑡

1−∝2
𝑡 (14)

Step 5: The weight update equation is given as,

 𝑤𝑡+1 = 𝑤𝑡 −
𝜂

√𝑉�̂�+∈
𝑀�̂� (15)

5. EXPERIMENTAL SETUP

The experiments conducted in this study were
performed on an Intel (R) Core i3-6006U CPU@
2.00GHz system with 4GB RAM. The machine learning
techniques were implemented on python 3.5 using keras.
Three models based on LR, MLP, and CNN were built for
classification of handwritten digits on MNIST dataset.

MNIST (Modified National Institute of Standards and
Technology) dataset was created by Yann LeCun, Corinna
Cortes, and Christopher J.C. Burges. The dataset consists
of scanned images of handwritten digits (0-9). Figure 1
shows the example of handwritten digits in MNIST
dataset.

Figure 1. Handwritten digit examples in MNIST dataset

Each digit is a 28*28 image. MNIST comprises of
60,000 samples for training and 10,000 samples for
testing. Table 1 provides the distribution of various digits
(classes) in MNIST dataset. The class distribution is
pictorially represented by figure 2.

TABLE 1. CLASS DISTRIBUTION IN MNIST DATASET

Digit Number of instances

0 5923

1 6742

2 5958

3 6131

4 5842

5 5421

6 5918

7 6265

8 5851

9 5949

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9
C

la
ss

 D
is

tr
ib

u
ti

o
n

 P
e

rc
e

n
ta

g
e

Digit

Figure 2. Class distribution in MNIST dataset

Table 2 lists the various parameter values that are
common to all three models.

TABLE 2. PARAMETER VALUES

Parameter Value

Number of training samples 60,000

Number of testing samples 10,000

Input dimension 784

Number of classes 10

Batch size 128

Number of epochs 15

Activation Function ReLu, Softmax

Loss Function categorical_crossentropy

Optimizers SGD, adadelta, adam

The number of training and testing samples in MNIST
dataset are 60,000 and 10,000, respectively. Models are
trained in batches of size 128 and 15 epochs are
performed on the dataset. This is because after 15 epochs,
the accuracy almost remains steady. Softmax is used as an
activation function in case of LR. The MLP model
consists of an input layer with 784 neurons, one hidden
layer with 784 neurons and an output layer with 10
neurons. A dropout with rate of 0.25 is applied on hidden
layer neurons in order to improve the generalization
capability of the model and to reduce the chances of
model overfitting. CNN model consists of two
convolutional layers, a max-pooling layer, and an output

 Int. J. Com. Dig. Sys. 9, No.2, 299-308 (Mar-2020) 303

http://journals.uob.edu.bh

layer. The number of kernels in the convolutional layers is
32 and 64 respectively with a kernel size of 3*3. ReLu is
used as an activation function in the convolutional layers.
A dropout of 0.25 rate is applied after max pooling layer
in order to avoid overfitting. A Softmax activation
function is used in the output layer.

6. RESULTS AND ANALYSIS

The performance of the models is evaluated based on
three different optimizers, namely SGD, adadelta, and
adam. Table 3 presents the validation accuracies of all the
three models in case of all the optimizers.

Figure 3 depicts the effect of the increase in the
number of epochs on validation accuracy of the logistic
regression model in case of all the three optimizers. It is
apparent from the figure that the validation accuracy
increases monotonically with an increase in the number of
epochs in case of all the optimizers. However, the
accuracy of adam and adadelta surpass the accuracy of
SGD. Also, the accuracy of Adam is slightly greater than
that of adadelta. Initially, there is a considerable
difference between the validation accuracies of adam and
adadelta. At epoch 1, the validation accuracy of adadelta
is 86.87%, and that of adam is 90.28%, which means that
the differences in the accuracies at epoch 1 is equal to
3.41%. And after 15 epochs, the validation accuracy of
adadelta is 92.31%, and that of adam is 92.71%, and
hence the difference in accuracies is equal to 0.4%. This
means that at higher number of epochs adadelta and adam
perform almost equally in the logistic regression model.
However, in case of adam and SGD, even after 15 epochs
there is a considerable difference between accuracies
which is equal to 2.19%. Hence, it is concluded that in
case of logistic regression adam and adadelta perform
almost equally, and the performance of these two
algorithms surpass the performance of SGD.

78

80

82

84

86

88

90

92

94

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

V
al

id
at

io
n

 A
cc

u
ra

cy

Epochs

Adadelta

Adam

SGD

Figure 3. Validation Accuracy versus epochs in case of Logistic

Regression

Figure 4 illustrates the effect on validation accuracy of
multilayer perceptron model with an increase in the
number of epochs in case of all the three optimizers. It is
evident from the figure that validation accuracy increases
monotonically with an increase in the number of epochs
in case of all the optimizers. However, in this case as well,
the accuracy of adam and adadelta is greater than the
accuracy of SGD. And, the accuracy of adam is slightly
greater than adadelta. At epoch 1, the difference between
accuracies of adam and adadelta is equal to 1.82%, and
after 15 epochs the difference between the accuracies of
the aforementioned optimizers diminishes to 0.12%. In
case of adam and SGD, the difference between accuracies
at epoch 1 is equal to 9.35%, and after 15 epochs the
difference diminishes to 4.68%. This means that in case of
multilayer perceptron the difference between the
accuracies of adam and adadelta is even lesser than that of
logistic regression. However, there is a considerable
difference between the accuracies of adam and SGD.

80

82

84

86

88

90

92

94

96

98

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Va
lid

at
io

n
A

cc
ur

ac
y

Epochs

Adadelta

Adam

SGD

Figure 4. Validation Accuracy versus epochs in case of MultiLayer

Perceptron

 Figure 5 describes the effect on validation accuracy
of the convolutional neural network model with an
increase in the number of epochs in case of all the three
optimizers. It is apparent from the figure that validation
accuracy increases monotonically with an increase in the
number of epochs in case of all the optimizers. In this case
as well, the same order follows for the accuracy: Adam >
Adadelta > SGD. However, there is a little difference in
the accuracies of adam and adadelta. At epoch 1, the
difference in the accuracies of adam and adadelta is equal
to 0.68%, and after 15 epochs the difference diminishes to
0.18%. In case of adam and SGD, the difference in the
accuracies at epoch 1 is equal to 7.81%, and after 15
epochs the difference diminishes to 1.96%. Hence, it can
be concluded that in case of CNN as well, there is a little
difference in the accuracies of adam and adadelta while as
a considerable difference exists between the accuracies of
adam and SGD.

304 Tausifa Jan Saleem & Mohammad Ahsan Chishti: Assessing the Efficacy of Machine Learning ...

http://journals.uob.edu.bh

TABLE 3. VALIDATION ACCURACIES

Logistic Regression Multilayer Perceptron Convolutional Neural Network

No. of Epochs SGD Adadelta Adam SGD Adadelta Adam SGD Adadelta Adam

1
83.79 86.87 90.28 86.94 94.47 96.29 90.46 97.59 98.27

2
86.39 89.73 91.25 89.1 95.95 97.33 92.85 98.17 98.84

3
87.49 90.71 91.85 90.09 96.7 97.86 93.91 98.53 98.86

4
88.13 91.2 92.2 90.95 97.23 97.88 94.8 98.74 98.94

5
88.49 91.47 92.36 91.39 97.38 97.9 95.32 98.76 98.99

6
88.87 91.65 92.38 91.82 97.51 97.94 95.6 98.83 99.01

7
89.16 91.7 92.41 92.11 97.86 98.14 95.91 98.85 99.03

8
89.36 91.85 92.46 92.4 97.95 98.18 96.35 98.87 99.05

9
89.66 91.92 92.48 92.61 97.97 98.23 96.36 98.9 99.14

10
89.77 92.02 92.56 92.83 98.02 98.24 96.62 98.95 99.15

11
90.03 92.08 92.63 93.03 98.06 98.26 96.65 98.87 99.17

12
90.2 92.27 92.66 93.22 98.08 98.28 96.77 98.98 99.2

13
90.31 92.28 92.67 93.41 98.18 98.29 97.03 99.02 99.22

14
90.44 92.3 92.69 93.55 98.2 98.31 97.17 99.04 99.23

15
90.52 92.31 92.71 93.65 98.21 98.33 97.29 99.07 99.25

86

88

90

92

94

96

98

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Va
lid

at
io

n
A

cc
ur

ac
y

Epochs

Adadelta

Adam

SGD

Figure 5. Validation Accuracy versus epochs in case of
Convolutional Neural Network

The comparative analysis of the models is also carried
out in case of all the three optimizers.

Figure 6 illustrates the relationship between validation
accuracy and the number of epochs for all the three
models in case of SGD optimizer. It is evident from the
graph that the validation accuracy of all the three models
increases monotonically with the rise in the number of
epochs. However, the accuracy of the models is in the
order: CNN > MLP > LR. The difference in the
accuracies of CNN and MLP after 15 epochs is equal to
3.64%. In case of CNN, and LR the difference in the
accuracies after 15 epochs is equal to 6.77%, which is
much higher. Therefore, in case of SGD optimizer CNN
performs better.

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Va
lid

at
io

n
A

cc
ur

ac
y

Epochs

LR

MLP

CNN

Figure 6. Validation Accuracy versus epochs in case of SGD

 Figure 7 illustrates the relationship between
validation accuracy and the number of epochs for all the
three models in case of adadelta optimizer. It is obvious
from the graph that validation accuracy of all the three
models increases monotonically with the rise in the
number of epochs. Moreover, the accuracy of the models
follows the same order as that of SGD: CNN > MLP >
LR. The difference in the accuracies of CNN and MLP
after 15 epochs is equal to 0.86%, which is lesser than the
difference in accuracies in case of SGD optimizer. In case
of CNN and LR, the difference in the accuracies after 15
epochs is equal to 6.76%, which is almost of the same
magnitude as that of SGD.

Hence, in case of adadelta optimizer as well, CNN
performs better, and there is a lesser difference in the
accuracies of CNN and MLP than that of SGD.

 Int. J. Com. Dig. Sys. 9, No.2, 299-308 (Mar-2020) 305

http://journals.uob.edu.bh

80

82

84

86

88

90

92

94

96

98

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

V
a

lid
a

ti
o

n
 A

cc
u

ra
cy

Epochs

LR

MLP

CNN

Figure 7. Validation Accuracy versus epochs in case of Adadelta

 Figure 8 illustrates the relationship between
validation accuracy and the number of epochs for all the
three models in case of adam optimizer. It is evident from
the graph that the validation accuracy of all the three
models increases monotonically with the rise in the
number of epochs. The accuracy of the models in this case
also follows the same trend: CNN > MLP > LR. The
difference in the accuracies of CNN and MLP after 15
epochs is equal to 0.92% which is slightly higher than the
difference in the accuracies in case of adadelta but lesser
than that of SGD optimizer. In case of CNN and LR, the
difference in the accuracies after 15 epochs is equal to
6.54%, which is slightly lesser than that of SGD and
adadelta.

Hence, the same trend follows in case of adam
optimizer as well, and there is a comparatively lesser
difference in the accuracies of CNN and LR than that of
SGD and adadelta.

84

86

88

90

92

94

96

98

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Va
lid

at
io

n
A

cc
ur

ac
y

Epochs

LR

MLP

CNN

Figure 8. Validation Accuracy versus epochs in case of Adam

 Figure 9 presents the test accuracy of all the three
models in case of all the three optimizers. It is evident
from the figure that the accuracy of CNN with Adam
optimizer (99.07 %) surpasses all the other models.
Hence, CNN is the best choice for handwritten digit
classification in terms of accuracy.

86

88

90

92

94

96

98

100

A
d

ad
e

lt
a

A
d

am SG
D

A
d

ad
e

lt
a

A
d

am SG
D

A
d

ad
e

lt
a

A
d

am SG
D

Logistic Regression MultiLayer Perceptron Convolutional Neural
Network

A
cc

u
ra

cy

Figure 9. Comparison of accuracies

Figure 10 illustrates the comparison of the training
times per epoch of all the three models. The training
times/epoch follows the order: CNN > MLP > LR, which
means CNN is costly in terms of training time than the
other two models. The training time per epoch in case of
CNN is equal to 315 seconds which is far greater than the
training times of MLP (44 seconds) and LR (22 seconds).

0

50

100

150

200

250

300

350

Logistic Regression Multilayer Perceptron Convolutional Neural
Network

Tr
ai

n
in

g
ti

m
e

 p
e

r
e

p
o

ch

(s
e

co
n

d
s)

 Figure 10. Training time per epoch

Figure 11 illustrates the comparison of the execution
times of all the three models. The execution time also
follows the same order as that of training time: CNN >
MLP > LR, which means CNN is costly in terms of
execution time as well as compared to the other two
models. The execution time of the CNN model is equal to
8 seconds which is greater than the execution times of
MLP (3.5 seconds) and LR (2 seconds).

0

1

2

3

4

5

6

7

8

9

Logistic Regression Multilayer Perceptron Convolutional Neural
Network

M
o

d
e

l E
xe

cu
ti

o
n

 T
im

e
 (s

e
co

n
d

s)

Figure 11. Model Execution Time

306 Tausifa Jan Saleem & Mohammad Ahsan Chishti: Assessing the Efficacy of Machine Learning ...

http://journals.uob.edu.bh

The following provides a summary of the
experimental findings:

 The validation accuracy increases with an increase

in the number of epochs in case of all the scenarios.

This is because of the reason that the model

parameters are optimized after every epoch and

with the result, the value of the loss function

decreases considerably.

 The accuracy of the models follows the order: CNN

> MLP > LR. This is due to the reason that CNN

has got tremendous feature extraction potential in

comparison to other models.

 The accuracy of the optimizers follows the order:

Adam > Adadelta > SGD. This is because of the

adaptive learning nature of adam.

 Training time and execution time of the models

follow the order: CNN > MLP > LR. This is due to

the large number of computations and the

parameters involved in CNN in comparison to MLP

and LR.
 From the above experimental findings, it is

concluded that although CNN performs better than the
other two models in terms of accuracy, the computational
complexity of CNN is much higher than that of MLP and
LR. Therefore, there exists a tradeoff between accuracy
and model complexity of the applied techniques for
handwritten digit recognition. Moreover, the
computational complexity of the CNN model restricts its
deployment in resource-constrained systems. The solution
to this problem lies in compressing the CNN model
without affecting the model accuracy. The following
section presents a methodology for the design of a
lightweight CNN model.

7. PROPOSED MODEL FOR CNN COMPRESSION

The proposed model consists of the following steps
(Figure 12):

A. Prune the unimportant and redundant weight

connections: The connections in the original CNN

are analyzed, and the weight connections with

values less than a particular threshold are

removed. Also, the network is analyzed for

parameter redundancies, and the redundant

connections in the network are pruned. This results

in a network with a lesser number of parameters.

B. Weight Sharing: This step reduces the number of

effective weights in the network by sharing the

weights between multiple connections. Hence, a

lesser number of bits is required for representing

the weights.

 Suppose 𝑎 is the number of effective weights

and 𝑏 is the total number of connections, the

compression rate 𝐶 will be given as,

𝐶 =
𝑏𝑙

𝑏 log2 𝑎 + 𝑎𝑙

Where 𝑙 is the number of bits used to represent

each connection.
Huffman Encoding: In this step, the frequently

occurring weights are represented with a lesser number of
bits so as to reduce the number of computations.

Pruning

Weight Sharing

Huffman Encoding

Original CNN

Model

Compressed CNN

Model

Figure 12. Proposed Model

The proposed methodology discussed above reduces
the number of parameters in the CNN model. Moreover,
the number of bits used to represent the parameters is also
reduced. This limits the number of computations, and with
the result, computational complexity of the model is
alleviated and that too without affecting accuracy.

8. CONCLUSION

This paper assesses the efficacy of three machine
learning techniques, namely logistic regression, multilayer
perceptron, and convolutional neural network for
classification of handwritten digits on MNIST dataset.
The performance of the aforementioned techniques is
evaluated for three different optimizers, namely adadelta,
adam, and SGD. It is evident from the experiments that
the accuracy of CNN surpasses the other two machine
learning models in case of all the aforementioned
optimizers. This study also carries out the performance
analysis of the optimizers in case of all the three models.
Experimental results demonstrate that adam outperforms

 Int. J. Com. Dig. Sys. 9, No.2, 299-308 (Mar-2020) 307

http://journals.uob.edu.bh

the other two optimizers for all the three machine learning
models. It is thereby concluded that CNN with adam
optimizer is the best choice for handwritten digit
classification in terms of accuracy. However, the
computational complexity of CNN is quite higher than the
other two models. To this purpose, this paper proposes a
methodology for the design of a lightweight CNN model.
The future work would be to implement the proposed
model and to analyze the effect of model compression on
the accuracy and execution time of the model.

REFERENCES

[1] Mark D.McDonnell, Migel D. Tissera, Tony Vladusich, Andrévan
Schaik, and Jonathan Tapson, “Fast, Simple and Accurate
Handwritten Digit Classification by Training Shallow Neural
Network Classifiers with the Extreme Learning Machine
Algorithm,” PLOS ONE, August, 2015.

[2] Tausifa Jan Saleem, and Mohammad Ahsan Chishti, “Data
Analytics in Inernet of Things: A Survey,” Scalable Computing:
Practice and Experience, vol. 20, no. 4, pp. 607-629.

[3] Areej Alsaafin, and Ashraf Elnagar, “A Minimal Subset of
Features Using Feature Selection for Handwritten Digit
Recognition,” Journal of Intelligent Learning Systems and
Applications, vol. 9, pp. 55-68, 2017.

[4] Angelo cardoso, and Andreas Wichert, “Handwritten digit
recognition using biologically inspired features,”
Neurocomputing, vol. 99, pp. 575-580, 2013.

[5] Akmaljon Palvanov, and Young Im Cho, “Comparisons of Deep
Learning Algorithms for MNIST in Real-Time Environment,”
International Journal of Fuzzy Logic and Intelligent Systems, vol.
18, No. 2, pp. 126-134, June 2018.

[6] Eva Tuba, Milan Tuba, and Dana Simian, “Handwritten Digit
Recognition by Support Vector Machine Optimized by Bat
Algorithm,” 24th Conference on Computer Graphics,
Visualization and Computer Vision, 2016.

[7] U Ravi Babu, Dr. Y Venkateswarlu, Aneel Kumar Chintha,
“Handwritten Digit Recognition Using K-Nearest Neighbour
Classifier,” World Congress on Computing and Communication
Technologies, IEEE, 2014.

[8] Shruti R.Kulkarni, and BipinRajendran, “Spiking neural networks
for handwritten digit recognition—Supervised learning and
network optimization,” Neural Networks, vol. 103, pp. 118-127,
April 2018.

[9] Savita Ahlawata, and Rahul Rishib, “Off-line Handwritten
Numeral Recognition using Hybrid Feature Set – A Comparative
Analysis,” Procedia Computer Science, vol. 122, pp. 1092–109,
2017.

[10] Yang Li, Hang Li, Yulong Xu, Jiabao Wang, and Yafei Zhang
“Very Deep Neural Network for Handwritten Digit Recognition,”
IDEAL 2016, Springer, pp. 174–182, 2016

[11] Chayaporn Kaensar “A Comparative Study on Handwriting Digit
Recognition Classifier Using Neural Network, Support Vector
Machine and K-Nearest Neighbor,” IC2IT2013, Springer, pp.
155–163, 2013.

[12] Renata F.P. Neves, Cleber Zanchettin, and Alberto N.G. Lopes
Filho, “An Efficient Way of Combining SVMs for Handwritten
Digit Recognition,” ICANN 2012, Springer, pp. 229–237, 2012.

[13] Ahmed El-Sawy, Hazem EL-Bakry, and Mohamed Loey, “CNN
for Handwritten Arabic Digits Recognition Based on LeNet-5,”
Proceedings of the International Conference on Advanced
Intelligent Systems and Informatics 2016, Advances in Intelligent
Systems and Computing, 2016.

[14] Sourav Saha, Sudipta Saha, Suhrid Krishna Chatterjee and Priya
Ranjan Sinha Mahapatra, “A Machine Learning Framework for
Recognizing Handwritten Digits Using Convexity-Based Feature
Vector Encoding,” Proceedings of International Ethical Hacking
Conference 2018, Advances in Intelligent Systems and
Computing, 2018.

[15] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker,
H. Drucker, I. Guyon, U. Muller, E. Sackinger, P. Simard, and V.
Vapnik, “Comparison Of Learning Algorithms For Handwritten
Digit Recognition,” International Conference on Artificial Neural
Networks, Paris, pp. 53-60, 1995.

[16] Peter U. Diehl, and Matthew Cook, “Unsupervised learning of
digit recognition using spike-timing-dependent plasticity, ”
Frontiers in computational Neuroscience, vol. 9, 2015.

[17] Fabien Lauera, ChingY. Suen, Gérard Blocha,
“Atrainablefeatureextractorforhandwrittendigitrecognition,”
Pattern Recognition, vol. 40, pp. 1816–1824, 2007.

[18] Cheng-Lin Liu, Kazuki Nakashima,Hiroshi Sako, Hiromichi
Fujisawa, “Handwritten digit recognition: benchmarking of state-
of-the-art technique,” Pattern Recognition, vol. 36, pp. 2271–
2285, 2003.

[19] L. S. Oliveira, R. Sabourin, F. Bortolozzi and C. Y. Suen,
“Feature Selection Using Multi-Objective Genetic Algorithms for
Handwritten Digit Recognition,” Object recognition supported by
user recognition for service robots, IEEE, 2002.

[20] L. S. Oliveira, R. Sabourin, F. Bortolozzi and C. Y. Suen,
“Feature Subset Selection Using Genetic Algorithms for
Handwritten Digit Recognition,” IEEE, 2001.

[21] Dejan Gorgevik, Dusan Cakmakov, “An Efficient Three-Stage
Classifier for Handwritten Digit Recognition,” Proceedings of the
17th International Conference on Pattern Recognition, IEEE, UK,
2004.

[22] A. Bellili, M. Gilloux, P. Gallinari, “An MLP-SVM combination
architecture for offline handwritten digit recognition,” IJDAR, vol.
5, pp. 244–252, 2003.

[23] Tausifa Jan Saleem, and Mohammad Ahsan Chishti, “Exploring
the Applications of Machine Learning in Healthcare,”
International Journal of Sensors, Wireless Communications and
Control. DOI:
http://dx.doi.org/10.2174/2210327910666191220103417.

[24] Jason Brownlee, “Logistic Regression for Machine learning,”
Available at: https://machinelearningmastery.com/logistic-
regression-for-machine-learning/.

[25] Hassan Ramchoun, Mohammed Amine Janati Idrissi, Youssef
Ghanou, and Mohamed Ettaouil, “Multilayer Perceptron:
Architecture Optimization and Training,” International Journal of
Interactive Multimedia and Artificial Intelligence, vol. 4, pp. 26-
30, 2016.

[26] Keiron O’Shea, and Ryan Nash, “An Introduction to
Convolutional Neural Networks,” Available at:
https://arxiv.org/abs/1511.08458.

[27] Tausifa Jan Saleem, and Mohammad Ahsan Chishti, “Deep
Learning for Internet of Things Data Analytics,” Procedia
Computer Science, vol. 163, pp. 381-390.

308 Tausifa Jan Saleem & Mohammad Ahsan Chishti: Assessing the Efficacy of Machine Learning ...

http://journals.uob.edu.bh

[28] L. Jayasinghe, N. Wijerathne, C. Yuen, M. Zhang, "Feature
Learning and Analysis for Cleanliness Classification in
Restrooms", IEEE Access, vol. 7, pp. 14871-14882, Jan 2019.

[29] Rasmus Hall´en, “A Study of Gradient-Based Algorithms,”
Available at:
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId
=8904399&fileOId=8904400.

[30] Matthew D. Zeiler, “Adadelta: An Adaptive Learning Rate
Method,” Available at: https://arxiv.org/pdf/1212.5701.pdf.

[31] DiederikP.Kingma, Jimmy Lei Ba, “Adam: A Method For
Stochastic Optimization,” Available at:
https://arxiv.org/abs/1412.6980.

Tausifa Jan Saleem is pursuing her
PhD at the Department of Computer
Science & Engineering, National
Institute of Technology Srinagar, India.
She has done bachelors in Information
Technology from National Institute of
Technology Srinagar and masters in
Computer Engineering from University
of Jammu, India. Her research focuses

on Internet of Things, Data analytics, and Machine Learning.

Mohammad Ahsan Chishti has done his
Bachelor of Engineering and M.S. in
Computer and Information Engineering
from International Islamic University
Malaysia with specialization in Computer
Networking. He has received his Ph.D.
from National Institute of Technology
Srinagar, India. Presently he is working as
Assistant Professor in the Department of

Computer Science & Engineering, National Institute of
Technology Srinagar, India. He has more than 50 research
publications to his credit and 12 patents with two granted
International Patents. He is Senior Member-Institute of IEEE,
Member IEI, Life Member CSI, and Member IETE. He is a
certified White belt in Six Sigma by Six Sigma Advantage Inc.
of USA (SSAI).

https://arxiv.org/abs/1412.6980

