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Abstract: The efficiency of handwritten digit recognition models greatly relies on the classification technique used and the 

optimization technique involved. Motivated to explore the efficacy of machine learning for handwritten digit recognition, this study 

assesses the performance of three machine learning techniques, logistic regression, multilayer perceptron, and convolutional neural 

network for recognition of handwritten digits. The experimental results reveal that convolutional neural network outperforms logistic 

regression and multilayer perceptron in terms of accuracy. This study also evaluates the performance of three optimizers, namely 

stochastic gradient descent, adadelta, and adam for handwritten digit recognition. The experiments conducted in the study 

demonstrate that adam performs better than stochastic gradient descent and adadelta. It is concluded that convolutional neural 

network with adam is the best choice for handwritten digit recognition in terms of accuracy. However, the convolutional neural 

network is quite expensive in terms of training time and execution time. To this purpose, this paper proposes a methodology for the 

design of a light-weight convolutional neural network model. 

 

Keywords: Logistic Regression, Multilayer Perceptron, Convolutional Neural Network, Stochastic Gradient Descent, Adadelta, 

Adam. 

1. INTRODUCTION 

The current resurgence in the arena of machine 
learning is a direct consequence of the efficiency of the 
machine learning techniques in solving intricate 
classification and regression tasks on huge datasets [1]. 
The prime objective of machine learning is to acquire 
knowledge from experience and to construct a model that 
can execute prediction tasks for effectual decision-
making.  

 Machine learning techniques are classified into three 
categories: Supervised learning, unsupervised learning, 
and reinforcement learning. Supervised learning 
approaches model dependencies and associations between 
the target prediction outcome and the input attributes so 
that outputs for upcoming data instances are forecasted 
depending on the associations it learned from the dataset 
[2]. Unsupervised learning applies techniques on the input 
data instances to mine useful information, detect patterns 
and group the data instances so that valuable insights are 
obtained. Reinforcement learning algorithms learn 
incessantly from the experience of the environment in an 
iterative manner until they inspect the full range of 
feasible states. 

Automated recognition of handwritten digits has got 
diverse applications like processing of bank cheques, 
processing of mails in post offices, etc. [3]. Machine 
learning techniques have shown remarkable outcomes in 
diverse pattern recognition tasks, including automated 
handwritten digit recognition. In spite of being a well-
researched domain, handwritten digit recognition is yet a 
hot area of research [4].  

The prime aim of this paper is to evaluate the 
performance of three supervised machine learning 
techniques, namely, logistic regression, multilayer 
perceptron, and convolutional neural network for 
handwritten digit recognition. Moreover, the performance 
analysis of three optimizers, stochastic gradient descent, 
adadelta, and adam is also experimented. The rationale for 
this performance evaluation stems from the fact that 
assessing the efficacy of machine learning techniques and 
the optimizers on MNIST dataset is crucial for deciding 
the suitability of machine learning techniques and 
optimizers for handwritten digit recognition. 

The rest of the paper is structured as follows: Section 
2 presents the related work. Section 3 describes the 
machine learning techniques used. Section 4 provides a 
description of optimizers. Section 5 describes the 
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experimental setup. Section 6 contains the experimental 
results and analysis. Section 7 presents the proposed 
model for convolutional neural network compression. 
Section 8 presents the concluding remarks. 

2. RELATED WORK  

During the recent years, various state-of-the-art 
models have been developed for handwritten digit 
recognition. This section reviews the literature related to 
handwritten digit recognition using machine learning 
techniques.   

Akmaljon et al. [5] provide the performance 
comparison of four machine learning techniques; Logistic 
Regression, Convolutional Neural Network, Resnet and 
Capsule Network for handwritten digit recognition on 
MNIST in a real-time environment. The study concludes 
that Capsule Network achieves the highest accuracy 
(98.1%) and is the most appropriate model among the 
aforementioned models for real-time handwritten digit 
recognition. Eva et al. [6] proposed a novel method based 
on Support Vector Machine (SVM) and Bat algorithm for 
recognition of handwritten digits. The proposed algorithm 
achieved an accuracy of 95.6%. In [7], Ravi et al. carried 
out the proficiency analysis of K-Nearest Neighbor 
(KNN) for handwritten digit recognition. And it is 
concluded that KNN classifier generates results with an 
accuracy of 96.94%. Shruti et al. [8] made use of Spiking 
Neural Networks (SNN) for recognition of handwritten 
digits. The work demonstrates that the network attains an 
accuracy of 98.17%. Savita et al. [9] employed an 
Artificial Neural Network (ANN) for recognition of 
handwritten numerals. The experiments conducted in the 
research work demonstrate that the employed technique 
achieves an accuracy of 97.5%. Yang et al. [10] proposed 
an architecture based on deep neural network for 
classification of handwritten digits. The experiments show 
that the proposed architecture attains the error rate of 
0.47% ± 0.05%. Chayapom et al. [11] presented a 
comparative performance analysis of three classifications 
techniques; ANN, KNN, and SVM for the recognition of 
handwritten digits. The study demonstrates that the SVM 
outperforms the other two techniques and attains an 
accuracy of 96.93%. Renata et al. [12] proposed a hybrid 
model based on SVM and KNN for recognition of 
handwritten digits. The experiments conducted 
demonstrate that the proposed model achieves an 
accuracy of 97.97%. Ahmed et al. [13] employed a 
convolutional neural network for recognition of 
handwritten Arabic digits. The study demonstrates that the 
employed technique shows considerable improvement (an 
error rate of 12 %) over other machine learning 
techniques. Sourav et al. [14] proposed a framework 
based on ANN for recognition of handwritten digits. The 
work demonstrates that the proposed framework attains an 
accuracy of 99 %. Y. LeCun et al. [15] carried out a 
comparison of several classifiers on MNIST dataset. 
Experiments conducted in the study demonstrate that 
Boosted LeNet 4 gives the best results in comparison to 

other classifiers. In [16], authors proposed a model based 
on the SNN for handwritten digit recognition. The 
proposed model achieved an accuracy of 95%. Fabien et 
al. [17] proposed a hybrid model based on LeNet5 and 
SVM for handwritten digit recognition. The proposed 
model outperforms the individual LeNet5 and SVM 
models. Cheng-Lin et al. [18] carried out the comparative 
analysis of the combinations of several classification and 
feature extraction techniques on MNIST dataset. 
Experiments conducted in the study demonstrate that 
support vector classifier with radial basis function 
outperforms other combinations. Oliveira et al. [19] 
proposed a technique based on genetic algorithm for 
feature selection on MNIST dataset. The proposed 
algorithm reduces the number of features in the dataset 
effectively without affecting the classification accuracy. 
In another study, Oliveira et al. [20] carried out a 
comparison of two genetic algorithm approaches on 
MNIST dataset, simple genetic algorithm, and iterative 
genetic algorithm. Experiments conducted in the study 
demonstrate that simple genetic algorithm is more suitable 
for handwritten digit recognition.  Dejan et al. [21] 
proposed a hybrid classification model based on ANN and 
SVM for handwritten digit recognition. Experiments 
demonstrate that the proposed model is on par with the 
state-of-the-art models in terms of classification accuracy 
and time. Bellili et al. [22] proposed a model based on 
multilayer perceptron and SVM for handwritten digit 
recognition. The proposed model achieved an accuracy of 
98.01%. 

3. MACHINE LEARNING TECHNIQUES 

This section provides a brief description of the 
machine learning techniques used in our study. Three 
machine learning models based on logistic regression, 
multilayer perceptron, and convolutional neural network 
have been developed. Following provides a brief 
description of these techniques: 

A. Logistic Regression: 

Logistic Regression (LR) is a machine learning 
algorithm that can be utilized for multivariate 
classification [23]. While as linear regression is utilized 
for predicting the future instances of a dependent variable, 
logistic regression is typically used for classification 
tasks. Logistic regression makes use of a sigmoid function 

(𝑓(𝑧) =
1

1+𝑒−𝑧) to generate the probability values, which 

are then mapped to multiple classes [24].     

B. Multi-Layer Perceptron 

Neuron is the elementary computational unit in ANN. 
It accepts one or more inputs and performs their weighted 
sum, which is then passed as an input to a non-linear 
function called as activation function. Activation function 
may be a threshold function, piecewise linear function, 
logistic function, gaussian function, etc. ANNs can be 
contemplated as a directed weighted graph with neurons 
as nodes and weights as directed edges. Feed-forward 
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ANN with at least one hidden layer is called as a Multi-
Layer Perceptron (MLP) [25]. 

C. Convolutional Neural Network 

A Convolutional Neural Network (CNN) receives a 
two-dimensional input in the form of an image or a voice 
signal and digs out hierarchical characteristics by means 
of a sequence of hidden layers [26, 27]. The hidden layers 
in case of a CNN comprise of convolutional layers, 
pooling layers, and a fully connected layer [28]. The 
convolutional layer comprises of filters that have the same 
shape as that of the input data. However, the dimensions 
of filter are smaller than the dimensions of input. The 
output of the convolutional layers are the feature maps 
that are obtained by the inner product of input and the 
filter. These feature maps are passed through pooling 
layers in order to shrink the dimensions of the 
representation. This is done to reduce computation time 
and avoid over-fitting. Another main part of CNN is the 
Rectified Linear Units (ReLU) that constitutes of neurons 
with softmax activation function in the form of 𝑓(𝑧) =
max(0, 𝑧).  

4. OPTIMIZERS 

Gradient descent is the most widely used technique 

for optimizing machine learning models. It is a method 

for minimizing a function known as objective function 

represented by 𝐽(𝑤) , where 𝑤  denotes the model 

parameters. It proceeds by updating the values of model 

parameters in the direction opposite to the gradient 

of 𝐽(𝑤), until the point of minima is attained. The length 

of steps taken to reach the point of minima is determined 

by a parameter called as learning rate, 𝜂 . Training 

machine learning models with gradient descent is a slow 

process and consumes a lot of time. To overcome this 

limitation, various optimization algorithms have been 

designed. Following provides a description of the 

commonly used optimizers for gradient descent. 

A. Stochastic Gradient Descent (SGD) 

       SGD computes the model parameter update for every 

input-output pair in the dataset. The parameter update 

equation is given as [29]; 

 

𝑤 = 𝑤 − 𝜂. ∇𝑤 𝐽(𝑤; 𝑦(𝑖); 𝑧(𝑖))           (1) 

 

Where 𝑦(𝑖) represents the 𝑖𝑡ℎ input data instance, and 𝑧(𝑖) 

represents the 𝑖𝑡ℎ  output label. The main advantage of 

SGD over the other optimizers is that it is fast as it 

doesn’t recompute the gradient for similar examples. 
 

B. Adadelta 

      Adadelta doesn’t need the manual fine-tuning of 𝜂. 

The parameter update rule in adadelta consists of the 

following steps [30]: 

 

Step1:  Calculate gradient (𝐺(𝑡)) at time t,  

     

                          𝐺𝑡,𝑖 = ∇wJ(wt,i)                             (2) 

                  

        𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖 − 𝜂. 𝐺𝑡,𝑖                        (3) 

 

Step 2: Calculate the running average of the gradient at 

time t, (𝐸[𝐺2]𝑡), 
 

              𝐸[𝐺2]𝑡 = 𝑚 𝐸[𝐺2]𝑡−1 + (1 − 𝑚) 𝐺2
𝑡      (4) 

 

𝑚 is the decay constant with value of 0.9 approximately. 

 

Step 3: Calculate the parameter update at time t, (∆𝑤𝑡),     

 

                     ∆𝑤𝑡 = −
𝜂

√𝐸[𝐺2]𝑡+∈
 𝐺𝑡                         (5) 

∈ is a small number that is added to prevent division by 

zero. 

                   𝑅𝑀𝑆(𝐺𝑡) = √𝐸[𝐺2]𝑡+∈                       (6) 

 

𝑅𝑀𝑆(𝐺𝑡) is the root mean square of gradient 𝐺𝑡 

        

                       ∆𝑤𝑡 = −
𝜂

𝑅𝑀𝑆[𝐺]𝑡
 𝐺𝑡                              (7) 

 

From equation 4, we have, 

 

      𝐸[∆𝑤2]𝑡 = 𝑚𝐸[∆𝑤2]𝑡−1 + (1 − 𝑚) ∆𝑤2
𝑡      

 

 𝑅𝑀𝑆[∆𝑤]𝑡 = √𝐸[∆𝑤2]𝑡+∈                     (8) 

 

From equations 4, 7, and 8, we get, 

 

       ∆𝑤𝑡 = −
𝑅𝑀𝑆[∆𝑤]𝑡−1

𝑅𝑀𝑆[𝐺]𝑡
 𝐺𝑡                        (9) 

 

Step 4: Apply the parameter update, 

                  

       𝑤𝑡+1 = 𝑤𝑡 + ∆𝑤𝑡                                (10) 

C. Adam 

        Adam (Adaptive moment estimation) is an adaptive 

learning technique that calculates the learning rate for 

every model parameter. The parameter update rule in 

Adam consists of the following steps [31]: 

 

Step 1: Compute the average of past gradients, 𝑀𝑡, 

 

           𝑀𝑡 =∝1 𝑀𝑡−1 + (1 −∝1)𝐺𝑡            (11) 

 

Step 2: Compute the average of past squared gradients, 𝑉𝑡 

 

                     𝑉𝑡 =∝2 𝑉𝑡−1 + (1 −∝2) 𝐺2
𝑡            (12) 

 

∝1, ∝2 are the decay rates. 
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Step 3: Calculate the estimate of 𝑀𝑡  (equation 11), 𝑀�̂� 

 

                    𝑀�̂� =  
𝑀𝑡

1−∝1
𝑡                             (13) 

 

Step 4: Calculate the estimate of 𝑉𝑡 (equation 12), 𝑉�̂� 

 

                     𝑉�̂� =
𝑉𝑡

1−∝2
𝑡                              (14) 

 

Step 5: The weight update equation is given as, 

 

                 𝑤𝑡+1 = 𝑤𝑡 −
𝜂

√𝑉�̂�+∈
𝑀�̂�                        (15) 

5. EXPERIMENTAL SETUP 

The experiments conducted in this study were 
performed on an Intel (R) Core i3-6006U CPU@ 
2.00GHz system with 4GB RAM. The machine learning 
techniques were implemented on python 3.5 using keras. 
Three models based on LR, MLP, and CNN were built for 
classification of handwritten digits on MNIST dataset.  

MNIST (Modified National Institute of Standards and 
Technology) dataset was created by Yann LeCun, Corinna 
Cortes, and Christopher J.C. Burges. The dataset consists 
of scanned images of handwritten digits (0-9). Figure 1 
shows the example of handwritten digits in MNIST 
dataset. 

 

 

Figure 1. Handwritten digit examples in MNIST dataset 

Each digit is a 28*28 image. MNIST comprises of 
60,000 samples for training and 10,000 samples for 
testing. Table 1 provides the distribution of various digits 
(classes) in MNIST dataset. The class distribution is 
pictorially represented by figure 2. 

 

TABLE 1. CLASS DISTRIBUTION IN MNIST DATASET 

Digit Number of instances 

0 5923 

1 6742 

2 5958 

3 6131 

4 5842 

5 5421 

6 5918 

7 6265 

8 5851 

9 5949 
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Figure 2. Class distribution in MNIST dataset 

Table 2 lists the various parameter values that are 
common to all three models. 

TABLE 2. PARAMETER VALUES 

Parameter Value 

Number of training samples 60,000 

Number of testing samples 10,000 

Input dimension 784 

Number of classes 10 

Batch size 128 

Number of epochs 15 

Activation Function ReLu, Softmax 

Loss Function categorical_crossentropy 

Optimizers SGD, adadelta, adam 

 

The number of training and testing samples in MNIST 
dataset are 60,000 and 10,000, respectively. Models are 
trained in batches of size 128 and 15 epochs are 
performed on the dataset. This is because after 15 epochs, 
the accuracy almost remains steady. Softmax is used as an 
activation function in case of LR. The MLP model 
consists of an input layer with 784 neurons, one hidden 
layer with 784 neurons and an output layer with 10 
neurons. A dropout with rate of 0.25 is applied on hidden 
layer neurons in order to improve the generalization 
capability of the model and to reduce the chances of 
model overfitting. CNN model consists of two 
convolutional layers, a max-pooling layer, and an output 
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layer. The number of kernels in the convolutional layers is 
32 and 64 respectively with a kernel size of 3*3. ReLu is 
used as an activation function in the convolutional layers. 
A dropout of 0.25 rate is applied after max pooling layer 
in order to avoid overfitting. A Softmax activation 
function is used in the output layer. 

6. RESULTS AND ANALYSIS 

The performance of the models is evaluated based on 
three different optimizers, namely SGD, adadelta, and 
adam. Table 3 presents the validation accuracies of all the 
three models in case of all the optimizers.  

Figure 3 depicts the effect of the increase in the 
number of epochs on validation accuracy of the logistic 
regression model in case of all the three optimizers. It is 
apparent from the figure that the validation accuracy 
increases monotonically with an increase in the number of 
epochs in case of all the optimizers. However, the 
accuracy of adam and adadelta surpass the accuracy of 
SGD.  Also, the accuracy of Adam is slightly greater than 
that of adadelta. Initially, there is a considerable 
difference between the validation accuracies of adam and 
adadelta. At epoch 1, the validation accuracy of adadelta 
is 86.87%, and that of adam is 90.28%, which means that 
the differences in the accuracies at epoch 1 is equal to 
3.41%. And after 15 epochs, the validation accuracy of 
adadelta is 92.31%, and that of adam is 92.71%, and 
hence the difference in accuracies is equal to 0.4%. This 
means that at higher number of epochs adadelta and adam 
perform almost equally in the logistic regression model. 
However, in case of adam and SGD, even after 15 epochs 
there is a considerable difference between accuracies 
which is equal to 2.19%. Hence, it is concluded that in 
case of logistic regression adam and adadelta perform 
almost equally, and the performance of these two 
algorithms surpass the performance of SGD. 
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Figure 3. Validation Accuracy versus epochs in case of Logistic 

Regression 

 

 

 

 

Figure 4 illustrates the effect on validation accuracy of 
multilayer perceptron model with an increase in the 
number of epochs in case of all the three optimizers. It is 
evident from the figure that validation accuracy increases 
monotonically with an increase in the number of epochs 
in case of all the optimizers. However, in this case as well, 
the accuracy of adam and adadelta is greater than the 
accuracy of SGD. And, the accuracy of adam is slightly 
greater than adadelta.  At epoch 1, the difference between 
accuracies of adam and adadelta is equal to 1.82%, and 
after 15 epochs the difference between the accuracies of 
the aforementioned optimizers diminishes to 0.12%. In 
case of adam and SGD, the difference between accuracies 
at epoch 1 is equal to 9.35%, and after 15 epochs the 
difference diminishes to 4.68%. This means that in case of 
multilayer perceptron the difference between the 
accuracies of adam and adadelta is even lesser than that of 
logistic regression. However, there is a considerable 
difference between the accuracies of adam and SGD. 
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Figure 4. Validation Accuracy versus epochs in case of MultiLayer 

Perceptron 

 

        Figure 5 describes the effect on validation accuracy 
of the convolutional neural network model with an 
increase in the number of epochs in case of all the three 
optimizers. It is apparent from the figure that validation 
accuracy increases monotonically with an increase in the 
number of epochs in case of all the optimizers. In this case 
as well, the same order follows for the accuracy: Adam > 
Adadelta > SGD. However, there is a little difference in 
the accuracies of adam and adadelta. At epoch 1, the 
difference in the accuracies of adam and adadelta is equal 
to 0.68%, and after 15 epochs the difference diminishes to 
0.18%. In case of adam and SGD, the difference in the 
accuracies at epoch 1 is equal to 7.81%, and after 15 
epochs the difference diminishes to 1.96%. Hence, it can 
be concluded that in case of CNN as well, there is a little 
difference in the accuracies of adam and adadelta while as 
a considerable difference exists between the accuracies of 
adam and SGD. 
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TABLE 3. VALIDATION ACCURACIES 

Logistic Regression Multilayer Perceptron Convolutional  Neural Network 

No. of Epochs SGD Adadelta Adam SGD Adadelta Adam SGD Adadelta Adam 

1 
83.79 86.87 90.28 86.94 94.47 96.29 90.46 97.59 98.27 

2 
86.39 89.73 91.25 89.1 95.95 97.33 92.85 98.17 98.84 

3 
87.49 90.71 91.85 90.09 96.7 97.86 93.91 98.53 98.86 

4 
88.13 91.2 92.2 90.95 97.23 97.88 94.8 98.74 98.94 

5 
88.49 91.47 92.36 91.39 97.38 97.9 95.32 98.76 98.99 

6 
88.87 91.65 92.38 91.82 97.51 97.94 95.6 98.83 99.01 

7 
89.16 91.7 92.41 92.11 97.86 98.14 95.91 98.85 99.03 

8 
89.36 91.85 92.46 92.4 97.95 98.18 96.35 98.87 99.05 

9 
89.66 91.92 92.48 92.61 97.97 98.23 96.36 98.9 99.14 

10 
89.77 92.02 92.56 92.83 98.02 98.24 96.62 98.95 99.15 

11 
90.03 92.08 92.63 93.03 98.06 98.26 96.65 98.87 99.17 

12 
90.2 92.27 92.66 93.22 98.08 98.28 96.77 98.98 99.2 

13 
90.31 92.28 92.67 93.41 98.18 98.29 97.03 99.02 99.22 

14 
90.44 92.3 92.69 93.55 98.2 98.31 97.17 99.04 99.23 

15 
90.52 92.31 92.71 93.65 98.21 98.33 97.29 99.07 99.25 
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Figure 5. Validation Accuracy versus epochs in case of 
Convolutional Neural Network 

The comparative analysis of the models is also carried 
out in case of all the three optimizers.  

Figure 6 illustrates the relationship between validation 
accuracy and the number of epochs for all the three 
models in case of SGD optimizer. It is evident from the 
graph that the validation accuracy of all the three models 
increases monotonically with the rise in the number of 
epochs. However, the accuracy of the models is in the 
order: CNN > MLP > LR. The difference in the 
accuracies of CNN and MLP after 15 epochs is equal to 
3.64%. In case of CNN, and LR the difference in the 
accuracies after 15 epochs is equal to 6.77%, which is 
much higher. Therefore, in case of SGD optimizer CNN 
performs better. 
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Figure 6. Validation Accuracy versus epochs in case of SGD 

  Figure 7 illustrates the relationship between 
validation accuracy and the number of epochs for all the 
three models in case of adadelta optimizer. It is obvious 
from the graph that validation accuracy of all the three 
models increases monotonically with the rise in the 
number of epochs. Moreover, the accuracy of the models 
follows the same order as that of SGD: CNN > MLP > 
LR. The difference in the accuracies of CNN and MLP 
after 15 epochs is equal to 0.86%, which is lesser than the 
difference in accuracies in case of SGD optimizer. In case 
of CNN and LR, the difference in the accuracies after 15 
epochs is equal to 6.76%, which is almost of the same 
magnitude as that of SGD. 

Hence, in case of adadelta optimizer as well, CNN 
performs better, and there is a lesser difference in the 
accuracies of CNN and MLP than that of SGD. 
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Figure 7. Validation Accuracy versus epochs in case of Adadelta 

 Figure 8 illustrates the relationship between 
validation accuracy and the number of epochs for all the 
three models in case of adam optimizer. It is evident from 
the graph that the validation accuracy of all the three 
models increases monotonically with the rise in the 
number of epochs. The accuracy of the models in this case 
also follows the same trend: CNN > MLP > LR. The 
difference in the accuracies of CNN and MLP after 15 
epochs is equal to 0.92% which is slightly higher than the 
difference in the accuracies in case of adadelta but lesser 
than that of SGD optimizer. In case of CNN and LR, the 
difference in the accuracies after 15 epochs is equal to 
6.54%, which is slightly lesser than that of SGD and 
adadelta.  

Hence, the same trend follows in case of adam 
optimizer as well, and there is a comparatively lesser 
difference in the accuracies of CNN and LR than that of 
SGD and adadelta.   
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Figure 8. Validation Accuracy versus epochs in case of Adam 

        Figure 9 presents the test accuracy of all the three 
models in case of all the three optimizers. It is evident 
from the figure that the accuracy of CNN with Adam 
optimizer (99.07 %) surpasses all the other models. 
Hence, CNN is the best choice for handwritten digit 
classification in terms of accuracy.  
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Figure 9. Comparison of accuracies 

Figure 10 illustrates the comparison of the training 
times per epoch of all the three models. The training 
times/epoch follows the order: CNN > MLP > LR, which 
means CNN is costly in terms of training time than the 
other two models. The training time per epoch in case of 
CNN is equal to 315 seconds which is far greater than the 
training times of MLP (44 seconds) and LR (22 seconds). 
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 Figure 10. Training time per epoch 

Figure 11 illustrates the comparison of the execution 
times of all the three models. The execution time also  
follows the same order as that of training time: CNN > 
MLP > LR, which means CNN is costly in terms of 
execution time as well as compared to the other two 
models. The execution time of the CNN model is equal to 
8 seconds which is greater than the execution times of 
MLP (3.5 seconds) and LR (2 seconds). 
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Figure 11. Model Execution Time 
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The following provides a summary of the 
experimental findings: 

 The validation accuracy increases with an increase 

in the number of epochs in case of all the scenarios. 

This is because of the reason that the model 

parameters are optimized after every epoch and 

with the result, the value of the loss function 

decreases considerably. 

 The accuracy of the models follows the order: CNN 

> MLP > LR. This is due to the reason that CNN 

has got tremendous feature extraction potential in 

comparison to other models. 

 The accuracy of the optimizers follows the order: 

Adam > Adadelta > SGD. This is because of the 

adaptive learning nature of adam. 

 Training time and execution time of the models 

follow the order: CNN > MLP > LR. This is due to 

the large number of computations and the 

parameters involved in CNN in comparison to MLP 

and LR. 
      From the above experimental findings, it is 

concluded that although CNN performs better than the 
other two models in terms of accuracy, the computational 
complexity of CNN is much higher than that of MLP and 
LR. Therefore, there exists a tradeoff between accuracy 
and model complexity of the applied techniques for 
handwritten digit recognition. Moreover, the 
computational complexity of the CNN model restricts its 
deployment in resource-constrained systems. The solution 
to this problem lies in compressing the CNN model 
without affecting the model accuracy. The following 
section presents a methodology for the design of a 
lightweight CNN model. 

7. PROPOSED MODEL FOR CNN COMPRESSION 

The proposed model consists of the following steps 
(Figure 12): 

A. Prune the unimportant and redundant weight 

connections: The connections in the original CNN 

are analyzed, and the weight connections with 

values less than a particular threshold are 

removed. Also, the network is analyzed for 

parameter redundancies, and the redundant 

connections in the network are pruned. This results 

in a network with a lesser number of parameters. 

B. Weight Sharing: This step reduces the number of 

effective weights in the network by sharing the 

weights between multiple connections. Hence, a 

lesser number of bits is required for representing 

the weights. 

       Suppose 𝑎 is the number of effective weights 

and 𝑏  is the total number of connections, the 

compression rate 𝐶 will be given as, 

 

𝐶 =
𝑏𝑙

𝑏 log2 𝑎 + 𝑎𝑙
 

 

Where 𝑙 is the number of bits used to represent 

each connection. 
Huffman Encoding: In this step, the frequently 

occurring weights are represented with a lesser number of 
bits so as to reduce the number of computations. 

Pruning

Weight Sharing

Huffman Encoding

Original CNN 

Model

Compressed CNN 

Model  

Figure 12. Proposed Model 

The proposed methodology discussed above reduces 
the number of parameters in the CNN model. Moreover, 
the number of bits used to represent the parameters is also 
reduced. This limits the number of computations, and with 
the result, computational complexity of the model is 
alleviated and that too without affecting accuracy. 

8. CONCLUSION 

This paper assesses the efficacy of three machine 
learning techniques, namely logistic regression, multilayer 
perceptron, and convolutional neural network for 
classification of handwritten digits on MNIST dataset. 
The performance of the aforementioned techniques is 
evaluated for three different optimizers, namely adadelta, 
adam, and SGD. It is evident from the experiments that 
the accuracy of CNN surpasses the other two machine 
learning models in case of all the aforementioned 
optimizers. This study also carries out the performance 
analysis of the optimizers in case of all the three models. 
Experimental results demonstrate that adam outperforms 
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the other two optimizers for all the three machine learning 
models. It is thereby concluded that CNN with adam 
optimizer is the best choice for handwritten digit 
classification in terms of accuracy. However, the 
computational complexity of CNN is quite higher than the 
other two models. To this purpose, this paper proposes a 
methodology for the design of a lightweight CNN model. 
The future work would be to implement the proposed 
model and to analyze the effect of model compression on 
the accuracy and execution time of the model. 
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