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Abstract: Software defect prediction is one of the most important task during the development of software systems in order to save 

developers’ time and effort. Discovering defects in an early stage of software development will allow programmers and developers to 

take action and resolve these faulty parts in software before its launch. In this paper, the K- Nearest Neighbor (KNN) machine 

learning algorithm is used to predict faulty software projects. Experimental studies are conducted on five public datasets with 

different similarly measures. Results showed that KNN can be used to predict software faults with accuracy rate that can achieve up 

to 87.2%. 
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1. INTRODUCTION  

The use of software has increased substantially in the 
last two decades. Software has become in demand in all 
areas of life, such as education, banking, medicine and 
many different areas. The maintenance of software 
systems costs more than its establishment. This means 
that finding and correcting errors in software will be more 
expensive when discovered too late.  

The software defects in the computer field is the 
occurrence of the slightest mistake in one of the phases of 
program analysis, design or implementation, resulting in 
mistakes or errors that may adversely affect the 
performance and correctness of the software system. It is 
worth mentioning the Y2K bug, the famous programmatic 
error that would cause disastrous effects if infected 
systems were not fixed. There are defects that do not show 
its effects on software.  These defects may cause damage 
to humans, especially in the field of arms, medicine and 
banks. For example, intrusion systems depend on the 
existence of a loophole in software mainly. 

This was reflected positively on the improved quality 
of software, to increase the ability of developers and to 
improve the software Reliability by reducing energy and 
raising efficiency [1]. Machine learning is used in testing 
repository software, such as defect, effort, forecast 
changes missing, reusing code, etc. Software consists of 
segments classified as correct or faulty. This classification 

is based on machine learning techniques. Coders and 
developers focus their attention on the faulty segments. 
After a fault is detected, they use available resources to 
check those segments, to propose solutions for those 
problems. 

Recently, many of the studies have talked about 
estimating software defects. Artificial intelligence 
techniques were used to build models that identify defects 
through certain software features [2] which is considered 
one of the most important applications of machine 
learning that have been successfully applied to solve a lot 
of issues and problems in various areas such as 
classification, identification and processing.  

There are many modern methods for error 
classification, such as K-Nearest Neighbor (KNN), 
Support Vector Machine (SVM), genetic algorithms, etc. 
These methods use the historical record of data to predict 
future data errors, this method works on the historical 
record of the data to build the scientific predictions about 
future data based on similarities existing between the data.  
Some use KNN as a classifier for defect prediction. KNN 
uses different types of distances for computing closeness 
such as Euclidean distance or Manhattan distance. In this 
paper, KNN with distance measure is used for defect 
prediction. 

The remainder of this paper is organized as follows; 

Section 2 presents the literature review related to software 

http://dx.doi.org/10.12785/ijcds/080503 
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defect prediction followed by the proposed classification 

methodology, which is presented in Section 3. Section 4 

discusses the used datasets and Section 5 presents the 

experimental results. Finally, Section 6 concludes the 

paper and presents possible future works. 

2. RELATED WORK 

D'Ambros [3] made contributions to the field of 
software defect prediction by providing predictive data 
that has been applied to five open source systems with 
five periods. The file generation contains the results of 
examination for several versions of the systems and 
different periods per week. They adopted a 17-element 
metric of the famous performance metrics. Results 
reached to 90% after five applied to systems using 
Shannon entropy approved over the interval of the entropy 
(Shannon entropy) and reach the result that the best 
performance by techniques weighted Churn of source 
code metrics (WCHU) and Linearly Decayed Entropy of 
source code metrics (LDHH). But this method needs a 
large amount of data and calculations using the entropy. 

Gray et al. [4] used the SVM metrics (MDP) that 
contains a set of 13 custom datasets and focused on PC2 
working on major function to count the number of lines of 
code. The system scored better true positive forecasts than 
the false positive forecasts for groups of 13 NASA 
datasets. 

Guoshun, and Wang [5] used multi-agents in the 
autonomy of the software in fault diagnosis by applying 
Spectrum-based Fault Localization (SFL) and setting 
performance standards on the source file and output the 
error and correct statistical. 

Lessmann et al. [6] performed tests to predict the 22 
works on the 10 datasets from NASA MDP warehouse 
and concluded that the use of the results for accuracy 
closest Naïve Bayes. 

Kaur and Kaur [7] used the working principle of area 
under curve (AUC) using three methods: Bagging, 
Boosting, and Rotation Forest using 15 mechanisms for 
learning to predict errors and demonstrate results through 
operating characteristics curve after training in 9 groups 
of data and to adopt performance measures 20 by 
component and automated software defect prediction 
models (ASDPMS) and by (AUC) results show The 
proportion of NB with Poi, 89%. Reached the forest 
rotation is more beneficial to reduce the number of 
performance measures from other methods (Bagging, 
Boosting). 

Zimmermann et al. [8] predicted software faults from 
a defect dataset of Eclipse to source code locations. 
Malhotra et al. [9] presented a new method using 
Artificial Neural Network (ANN) to predict software 
defects. The authors used text mining techniques, feature 
extraction and Radial Basis Function to estimate software 
defects. Many of studies proposed a Bell function based 

on Multilayer perceptron network, such as the one used in 
[10], where Gayathri et al. compared the results using 
various machine learning methods and achieved an 
accuracy of 98.2%. 

Selvaraj et al. [11] used the Support Vector Machine 
for predicting software fault, they compared its 
performance of with Naïve Bayes model and Decision 
stumps. SVM performed better than Naïve Bayes model 
and Decision stumps. Also, Singh et al. [12] used SVM to 
predict the defects of software, but their method was used 
only on object-oriented large systems.  

3. CLASSIFICATION METHODOLOGY 

This section discusses the used classification 
algorithm, as well as, the used similarity measures. 

A. K Nearest Neighbors (KNN) 

KNN is a classification algorithm that depend on N 
vectors. Used datasets have to transform open source code 
into suitable representation for the learning algorithm 
[13]. They represented the code as a vector based on sets 
of criteria such as design complexity, essential complexity 
so on. To define a k-Nearest Neighbors classifier, the 
distance metric used to measure how close two vectors are 
to each other need to be defined [14]. 

Suppose that V is a vector that need to be classified. 
Then, the value of K determines the number of nearest 
neighbors to vector V. Fig. 1 shows an example when the 
value of K is 11 and 5. The classifier selects the k vectors 
in the training set that are closest to C, then it assigns 
whether the vector is a defect or not based on selected k 
vectors. Fig. 1 shows a classification example based on 
the KNN algorithm. In this example, when the value of k 
is equal to 5, the algorithm will investigate the nearest 5 
neighbors for the vector V.  

We opted for the KNN to classify each category in a 
tested class to defect or non- defect classes. The input 
consists of 22 attributes, for k =10, and two output 0 or 1, 
as illustrated in Algorithm 1.  

 

Figure 1.  K-nearest Neighbors classification example 
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Algorithm 1: the proposed training algorithm.  

Step 1: Read the text file from the training set folder 

of software defect dataset from PROMISE repository.  

Step 2: Split the training dataset according to k-cross 

validation.  

Step 3: Create test dataset with N features; N is the 

total number of features.  

Step 4: Save each feature subset in new text file. 

Step 5: Train KNN on the data saved in the previous 

text file. 

Step 6: Calculate the accuracy for all classes. 

 

Figure 2 shows the main steps of the proposed fault 
prediction model, which are mainly divided into six 
stages. First, read report of defects from open source 
stage. After that, the features extraction stage is executed, 
which includes basic complexity, independence of the 
program, complexity of design, and lines of code metrics. 
Then, the process of building the vectors is used to 
generate a training dataset for the prediction model. The 
model is trained for features extraction to classify the 
data. In the classifier stage, a KNN classifier is defined to 
calculate the distance based on Euclidean Distance, 
Manhattan Distance, Hausdorff Distance or Weighted 
Euclidean Distance. In the last stage, the decision on the 
classification of the class to be a defect or non-defect is 
made. 

B. Similarity Measures 

There are many similarity measures that can be used 
int the KNN algorithm. These metrics measure the degree 
of closeness between vectors. 

There is no ideal measure for all kind of vectors and 
problems. This is due to the nature of the vectors. So, 
selecting an appropriate similarity measure is essential. 
There are several ways to compare between vectors and 
measure the proportion of similarities between them. In 
this paper, Euclidean, Manhattan and Weighted 
Euclidean, and Hausdorff distances were used as such 

measures. The following subsections review these 
measures. 

1) Euclidean Distance Metric  
Euclidean distance is one of the most commonly used 

metric in software defect prediction problem. In this 
metric, the vectors are represented as a single point in the 
D-dimensions space, then the distance between them is 
calculated using the following equation: 

 

ED(x,y) = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1          (1) 

where x and y are vectors. 

2) Manhattan Distance Metric 
Manhattan distance metric, also called Taxicab 

geometry [15,16,17], is calculated by finding the length 
between vectors that represented in the X and Y axes. The 
most common example of this method is a taxi between 
cities, so the distance traveled by car will not differ, in 
case it is advancing towards other city [18]. The value of 
Manhattan Distance MD between two vectors x and y can 
be calculated by the following equation: 

 

MD (x, y) = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1    (2) 

 

3) Weighted Euclidean Distance Metric 
It is a common similarity measure used to calculate 

similarity between vectors. In this distance, the vector is 
represented as a single point in the D-dimensions space, 
then calculate the distance between them hit weight for 
point by the square root of the sum total of the difference 
between those two points box. The value of weighted 
Euclidean distance metric between vectors a and b can be 
calculated as follows:  

 

D(a, b) = √∑ Wi(xi − yi)
2n

i=0  (3) 

where 0 < Wi < 1. 



 

 

464       M. Hammad, et. al.:  Predicting Software Faults Based on K-Nearest Neighbors Classification 

 

https://journal.uob.edu.bh 

 

4) Hausdorff Distance Metric  
One of metrics to calculate the distance between two 

points according to the following equation: 

D(X, Y) = Max (D(x, y), D(y, x))    (4) 

where x and y are points of the sets X and Y respectively, 
and D(x, y) is any distance metric between these points. 
For simplicity, Euclidian Distance will be used to 
calculate D(x, y) as the distance between x and y [19]. 

4. USED DATASET 

The systems used five datasets: cm1, jm1, kc1, kc2 
and pc1. They are collected from different software 
projects in NASA. These datasets are available for 
research purposes at 
(http://promise.site.uottawa.ca/SERepository/datasets-
page.html). Table 1 summarizes the characteristics of the 
datasets used. 

TABLE I.  CHARACTERISTICS OF USED DATASETS  

Dataset Programming 

Language 

Kilo- Line 

of Code 

(KLOC) 

No. of 

modules 

No. of 

defected 

modules 

CM1 C language 20 505 48 

KC1 C++ language 43 2107 325 

PC1 C language 40 1107 76 

KC2 C++ language 18 522 105 

JM1 C language 315 10878 2102 

 

 

 

 

The datasets contain static code measures, which 
include Halstead, McCabe, and LOC metrics along with 
the defect rate. The datasets CM1, KC1, KC2, PC1 and 
JM1 are publicly available in the NASA repository by 
NASA Metrics Data Programmer and are the most 
commonly used datasets for defect prediction. They are 
used in 60% of the selected primary studies used for 
software development, which includes four criteria for 
arbitration: Basic complexity, the independence of the 
program, the complexity of the design and Lines of Code 
(LOC).  

To ensure the quality of the software and get the best 
productivity, the software needs to be tested before 
marketing it through the study of the complexity of the 
software. Nevertheless, there are many features of 
software that cannot be tested in the same scale. There are 
many studies made in the field of software metrics. The 
most common metrics are McCabe, Halstead, Line Count, 
Operator, and Branch Count. In [20], McCabe presented a 
new approach, McCabe measure, for software metrics that 
discussed the complexity of software. The McCabe 
metrics consists of the following four measurements: 
essential complexity, cyclomatic complexity, design 
complexity and Lines of Code (LOC). In [21], Maurice 
presented a new model measure, Halstead, to test software 
without the implementation of the code. It included three 
measurements: the base measures, the derived measures, 
and lines of code measures. Nguyen et al [22] presented 
an algorithm for Source lines of code (SLOC). This 
algorithm is used to measure the size of software by 
calculating the number of lines in the source code. 
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Figure 2.  Main steps of the proposed classification 
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Table 2 presents the 21 field structure of the used 
dataset. These field are a set software measures, which 
depend on the software product, complexity, and size of 
the vocabulary. The attribute of number of lines in code, 
indicate the lines of code that are executable, the lines of 
comments, lines that contain all the code, and comments. 
For complexity measurement, it includes cyclomatic, 
complexity, essential complexity, and module design 
complexity. Twelve of the remaining measure are used to 
measure vocabulary. These matrices consist of the 
following measures: Halstead programming effort, 
number of unique operators, Halstead level, Halstead 
intelligent content, Alstead difficulty, Halstead length, 
total operators, Halstead error estimate, Halstead 
programming time, Halstead volume, number of unique 
operands, and total operands. Table 2 summarizes the 
class attribute for each data set refers to the defect 
classification, the last attribute represents classify 
category where it will wither false or true we expressed 0 
or 1. 

5. EXPIREMENTAL RESULTS 

The accuracy of a defect predication model is usually 
measured in terms of its effectiveness. The process of 
correct classification is the key factor for any 
classification model. In this paper, we used the accuracy 
measure to evaluate the KNN defect predication model. 
Accuracy rate is calculated as follows: 

Accuracy Rate: =  
│𝑇𝑁│+│𝑇𝑃│

│𝑇𝑁│+│𝑇𝑃│+│𝐹𝑁│+│𝐹𝑃│
 (5) 

where, as shown in Table 3, True positive (TP) is the 
number of vectors that is should be retrieved as related to 
a class and retrieved. True Negative (TN) is the number of 
vectors that is should not retrieved as related to a class and 
not retrieved. False Positive (FP) is the number of vectors 
that is not related to a class but retrieved, and finally, 
False Negative (FN) is the number of classes that is not 
retrieved as related to a category but should be. Table 3 
shows the structure of the confusion matrix. 

In this study, the accuracy percentages are calculated 
based for different classifiers on the five datasets with 
k=10. Based on many experiments, the highest accuracy 
rate was achieved when the classifier parameter K is set to 
equal 10. Table 4 shows the average, maximum, 
minimum, and the slandered deviation predication 
accuracies over the five datasets for different KNN 
classifiers. As shown in the table, the highest accuracy 
rate was achieved by using the KNN classifiers with ED 
similarity measure with 93.9% as a maximum accuracy 
and 87.2% as an overall average accuracy rate. The lowest 
rate was when we use the Hausdorff similarity measure 
with 58.8% overall average accuracy. We believe this is 
because the nature structure of the dataset attributes, 
which may affect the training process significantly based 
on the used similarity measure.  

 

TABLE II.  THE USED DATASET ATTRIBUTES 

 

TABLE III.  THE CONFUSION MATRIX 

 Observed True   Observed False 

Predicted True  True Positive (TP) False Positive (FP) 

Predicted False True Negative (TN) False Negative (FN) 

 

# 
Metric 

Type 
Definition Attribute Type 

1 McCabe's 
line count of 

code 
loc numeric 

2 McCabe 
cyclomatic 
complexity 

v(g) numeric 

3 McCabe 
essential 

complexity 
ev(g) numeric 

4 McCabe 
design 

complexity 
iv(g) numeric 

5 Halstead 
total operators 

+ operands 
N numeric 

6 Halstead Volume v numeric 

7 Halstead 
program 

length 
L numeric 

8 Halstead Difficulty D numeric 

9 Halstead Intelligence I numeric 

10 Halstead Effort E numeric 

11 Halstead 
Effort 

Estimate 
b numeric 

12 Halstead's time estimator T numeric 

13 Halstead's line count lOCode numeric 

14 Halstead's 
count of lines 
of comments 

lOComment numeric 

15 Halstead's 
count of blank 

lines 
lOBlank numeric 

16 LOC LOC lOCodeAndComment numeric 

17 Operator 
unique 

operators 
uniq_Op numeric 

18 operands 
unique 

operands 
uniq_Opnd numeric 

19 Operator total operators total_Op numeric 

20 operands total operands total_Opnd numeric 

21 
branch 
count 

of the flow 
graph 

branchCount numeric 

22 
Name of 

class 

defect / no 

defect 
True / false Boolean 
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To have a closer look to the collected accuracy rate for 
each dataset. Figure 3 presents the accuracy rate for each 
classifier on the used datasets. 

 

Figure 3.  Accuracy rate for KNN algorithm with different similarity 

measures for the five datasets 

6. CONCLUSION 

In this paper, the K-nearest neighbor machine learning 
algorithm is used to predict software defects based on 
software metrics. Four different similarity measures are 
used to build different classifiers. These measures are 
Euclidian distance, weighted ED, Manhattan distance, and 
Hausdorff distance measures. The generated prediction 
models are evaluated based on five public datasets. The 
results showed that the fault prediction model is 
dependable and the KNN algorithm can be used to 
classify software faults. The highest average accuracy rate 
was 87.2%, which achieved when the Euclidian distance 
measure is used to build the KNN algorithm. Using more 
similarity measures, datasets, and classifiers is one way to 
extend this work. Moreover, finding the impact of each 
software metrics in the model can increase the prediction 
accuracy rate. 
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