

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 8, No.5 (Sep-2019)

E-mail address: mhammad@uob.edu.bh, aqaddumi@uob.edu.bh, halobaidy@uob.edu.bh, Khalil426a@gmail.com

 https://journal.uob.edu.bh

Predicting Software Faults Based on K-Nearest

Neighbors Classification

Mustafa Hammad

1
, Abdulla Alqaddoumi

1
, Hadeel Al-Obaidy

1
 and Khalil Almseidein

2

1Department of Computer Science, University of Bahrain, Sakheer, Bahrain

2Department of Computer Science, Mutah University, Al-Karak, Jordan

Received 8 Apr. 2019, Revised 15 Jul. 2019, Accepted 28 Aug. 2019, Published 1 Sep. 2019

Abstract: Software defect prediction is one of the most important task during the development of software systems in order to save

developers’ time and effort. Discovering defects in an early stage of software development will allow programmers and developers to

take action and resolve these faulty parts in software before its launch. In this paper, the K- Nearest Neighbor (KNN) machine

learning algorithm is used to predict faulty software projects. Experimental studies are conducted on five public datasets with

different similarly measures. Results showed that KNN can be used to predict software faults with accuracy rate that can achieve up

to 87.2%.

Keywords: Software Defect Prediction, Software Engineering, Software Faults, Mccabe, Halstead, KNN, Software Metrics.

1. INTRODUCTION

The use of software has increased substantially in the
last two decades. Software has become in demand in all
areas of life, such as education, banking, medicine and
many different areas. The maintenance of software
systems costs more than its establishment. This means
that finding and correcting errors in software will be more
expensive when discovered too late.

The software defects in the computer field is the
occurrence of the slightest mistake in one of the phases of
program analysis, design or implementation, resulting in
mistakes or errors that may adversely affect the
performance and correctness of the software system. It is
worth mentioning the Y2K bug, the famous programmatic
error that would cause disastrous effects if infected
systems were not fixed. There are defects that do not show
its effects on software. These defects may cause damage
to humans, especially in the field of arms, medicine and
banks. For example, intrusion systems depend on the
existence of a loophole in software mainly.

This was reflected positively on the improved quality
of software, to increase the ability of developers and to
improve the software Reliability by reducing energy and
raising efficiency [1]. Machine learning is used in testing
repository software, such as defect, effort, forecast
changes missing, reusing code, etc. Software consists of
segments classified as correct or faulty. This classification

is based on machine learning techniques. Coders and
developers focus their attention on the faulty segments.
After a fault is detected, they use available resources to
check those segments, to propose solutions for those
problems.

Recently, many of the studies have talked about
estimating software defects. Artificial intelligence
techniques were used to build models that identify defects
through certain software features [2] which is considered
one of the most important applications of machine
learning that have been successfully applied to solve a lot
of issues and problems in various areas such as
classification, identification and processing.

There are many modern methods for error
classification, such as K-Nearest Neighbor (KNN),
Support Vector Machine (SVM), genetic algorithms, etc.
These methods use the historical record of data to predict
future data errors, this method works on the historical
record of the data to build the scientific predictions about
future data based on similarities existing between the data.
Some use KNN as a classifier for defect prediction. KNN
uses different types of distances for computing closeness
such as Euclidean distance or Manhattan distance. In this
paper, KNN with distance measure is used for defect
prediction.

The remainder of this paper is organized as follows;

Section 2 presents the literature review related to software

http://dx.doi.org/10.12785/ijcds/080503

462 M. Hammad, et. al.: Predicting Software Faults Based on K-Nearest Neighbors Classification

https://journal.uob.edu.bh

defect prediction followed by the proposed classification

methodology, which is presented in Section 3. Section 4

discusses the used datasets and Section 5 presents the

experimental results. Finally, Section 6 concludes the

paper and presents possible future works.

2. RELATED WORK

D'Ambros [3] made contributions to the field of
software defect prediction by providing predictive data
that has been applied to five open source systems with
five periods. The file generation contains the results of
examination for several versions of the systems and
different periods per week. They adopted a 17-element
metric of the famous performance metrics. Results
reached to 90% after five applied to systems using
Shannon entropy approved over the interval of the entropy
(Shannon entropy) and reach the result that the best
performance by techniques weighted Churn of source
code metrics (WCHU) and Linearly Decayed Entropy of
source code metrics (LDHH). But this method needs a
large amount of data and calculations using the entropy.

Gray et al. [4] used the SVM metrics (MDP) that
contains a set of 13 custom datasets and focused on PC2
working on major function to count the number of lines of
code. The system scored better true positive forecasts than
the false positive forecasts for groups of 13 NASA
datasets.

Guoshun, and Wang [5] used multi-agents in the
autonomy of the software in fault diagnosis by applying
Spectrum-based Fault Localization (SFL) and setting
performance standards on the source file and output the
error and correct statistical.

Lessmann et al. [6] performed tests to predict the 22
works on the 10 datasets from NASA MDP warehouse
and concluded that the use of the results for accuracy
closest Naïve Bayes.

Kaur and Kaur [7] used the working principle of area
under curve (AUC) using three methods: Bagging,
Boosting, and Rotation Forest using 15 mechanisms for
learning to predict errors and demonstrate results through
operating characteristics curve after training in 9 groups
of data and to adopt performance measures 20 by
component and automated software defect prediction
models (ASDPMS) and by (AUC) results show The
proportion of NB with Poi, 89%. Reached the forest
rotation is more beneficial to reduce the number of
performance measures from other methods (Bagging,
Boosting).

Zimmermann et al. [8] predicted software faults from
a defect dataset of Eclipse to source code locations.
Malhotra et al. [9] presented a new method using
Artificial Neural Network (ANN) to predict software
defects. The authors used text mining techniques, feature
extraction and Radial Basis Function to estimate software
defects. Many of studies proposed a Bell function based

on Multilayer perceptron network, such as the one used in
[10], where Gayathri et al. compared the results using
various machine learning methods and achieved an
accuracy of 98.2%.

Selvaraj et al. [11] used the Support Vector Machine
for predicting software fault, they compared its
performance of with Naïve Bayes model and Decision
stumps. SVM performed better than Naïve Bayes model
and Decision stumps. Also, Singh et al. [12] used SVM to
predict the defects of software, but their method was used
only on object-oriented large systems.

3. CLASSIFICATION METHODOLOGY

This section discusses the used classification
algorithm, as well as, the used similarity measures.

A. K Nearest Neighbors (KNN)

KNN is a classification algorithm that depend on N
vectors. Used datasets have to transform open source code
into suitable representation for the learning algorithm
[13]. They represented the code as a vector based on sets
of criteria such as design complexity, essential complexity
so on. To define a k-Nearest Neighbors classifier, the
distance metric used to measure how close two vectors are
to each other need to be defined [14].

Suppose that V is a vector that need to be classified.
Then, the value of K determines the number of nearest
neighbors to vector V. Fig. 1 shows an example when the
value of K is 11 and 5. The classifier selects the k vectors
in the training set that are closest to C, then it assigns
whether the vector is a defect or not based on selected k
vectors. Fig. 1 shows a classification example based on
the KNN algorithm. In this example, when the value of k
is equal to 5, the algorithm will investigate the nearest 5
neighbors for the vector V.

We opted for the KNN to classify each category in a
tested class to defect or non- defect classes. The input
consists of 22 attributes, for k =10, and two output 0 or 1,
as illustrated in Algorithm 1.

Figure 1. K-nearest Neighbors classification example

 Int. J. Com. Dig. Sys. 8, No.5, 461-467 (Sep-2019) 463

https://journal.uob.edu.bh

Algorithm 1: the proposed training algorithm.

Step 1: Read the text file from the training set folder

of software defect dataset from PROMISE repository.

Step 2: Split the training dataset according to k-cross

validation.

Step 3: Create test dataset with N features; N is the

total number of features.

Step 4: Save each feature subset in new text file.

Step 5: Train KNN on the data saved in the previous

text file.

Step 6: Calculate the accuracy for all classes.

Figure 2 shows the main steps of the proposed fault
prediction model, which are mainly divided into six
stages. First, read report of defects from open source
stage. After that, the features extraction stage is executed,
which includes basic complexity, independence of the
program, complexity of design, and lines of code metrics.
Then, the process of building the vectors is used to
generate a training dataset for the prediction model. The
model is trained for features extraction to classify the
data. In the classifier stage, a KNN classifier is defined to
calculate the distance based on Euclidean Distance,
Manhattan Distance, Hausdorff Distance or Weighted
Euclidean Distance. In the last stage, the decision on the
classification of the class to be a defect or non-defect is
made.

B. Similarity Measures

There are many similarity measures that can be used
int the KNN algorithm. These metrics measure the degree
of closeness between vectors.

There is no ideal measure for all kind of vectors and
problems. This is due to the nature of the vectors. So,
selecting an appropriate similarity measure is essential.
There are several ways to compare between vectors and
measure the proportion of similarities between them. In
this paper, Euclidean, Manhattan and Weighted
Euclidean, and Hausdorff distances were used as such

measures. The following subsections review these
measures.

1) Euclidean Distance Metric
Euclidean distance is one of the most commonly used

metric in software defect prediction problem. In this
metric, the vectors are represented as a single point in the
D-dimensions space, then the distance between them is
calculated using the following equation:

ED(x,y) = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 (1)

where x and y are vectors.

2) Manhattan Distance Metric
Manhattan distance metric, also called Taxicab

geometry [15,16,17], is calculated by finding the length
between vectors that represented in the X and Y axes. The
most common example of this method is a taxi between
cities, so the distance traveled by car will not differ, in
case it is advancing towards other city [18]. The value of
Manhattan Distance MD between two vectors x and y can
be calculated by the following equation:

MD (x, y) = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1 (2)

3) Weighted Euclidean Distance Metric
It is a common similarity measure used to calculate

similarity between vectors. In this distance, the vector is
represented as a single point in the D-dimensions space,
then calculate the distance between them hit weight for
point by the square root of the sum total of the difference
between those two points box. The value of weighted
Euclidean distance metric between vectors a and b can be
calculated as follows:

D(a, b) = √∑ Wi(xi − yi)
2n

i=0 (3)

where 0 < Wi < 1.

464 M. Hammad, et. al.: Predicting Software Faults Based on K-Nearest Neighbors Classification

https://journal.uob.edu.bh

4) Hausdorff Distance Metric
One of metrics to calculate the distance between two

points according to the following equation:

D(X, Y) = Max (D(x, y), D(y, x)) (4)

where x and y are points of the sets X and Y respectively,
and D(x, y) is any distance metric between these points.
For simplicity, Euclidian Distance will be used to
calculate D(x, y) as the distance between x and y [19].

4. USED DATASET

The systems used five datasets: cm1, jm1, kc1, kc2
and pc1. They are collected from different software
projects in NASA. These datasets are available for
research purposes at
(http://promise.site.uottawa.ca/SERepository/datasets-
page.html). Table 1 summarizes the characteristics of the
datasets used.

TABLE I. CHARACTERISTICS OF USED DATASETS

Dataset Programming

Language

Kilo- Line

of Code

(KLOC)

No. of

modules

No. of

defected

modules

CM1 C language 20 505 48

KC1 C++ language 43 2107 325

PC1 C language 40 1107 76

KC2 C++ language 18 522 105

JM1 C language 315 10878 2102

The datasets contain static code measures, which
include Halstead, McCabe, and LOC metrics along with
the defect rate. The datasets CM1, KC1, KC2, PC1 and
JM1 are publicly available in the NASA repository by
NASA Metrics Data Programmer and are the most
commonly used datasets for defect prediction. They are
used in 60% of the selected primary studies used for
software development, which includes four criteria for
arbitration: Basic complexity, the independence of the
program, the complexity of the design and Lines of Code
(LOC).

To ensure the quality of the software and get the best
productivity, the software needs to be tested before
marketing it through the study of the complexity of the
software. Nevertheless, there are many features of
software that cannot be tested in the same scale. There are
many studies made in the field of software metrics. The
most common metrics are McCabe, Halstead, Line Count,
Operator, and Branch Count. In [20], McCabe presented a
new approach, McCabe measure, for software metrics that
discussed the complexity of software. The McCabe
metrics consists of the following four measurements:
essential complexity, cyclomatic complexity, design
complexity and Lines of Code (LOC). In [21], Maurice
presented a new model measure, Halstead, to test software
without the implementation of the code. It included three
measurements: the base measures, the derived measures,
and lines of code measures. Nguyen et al [22] presented
an algorithm for Source lines of code (SLOC). This
algorithm is used to measure the size of software by
calculating the number of lines in the source code.

Read Report of defects

open source

Start Features extraction

Building of vectors

Euclidean Distance

Manhattan Distance

Weighted Euclidean

Hausdorff Distance

Decisio

n

Defects

No Defects

Training Model

KNN Classifier

Figure 2. Main steps of the proposed classification

 Int. J. Com. Dig. Sys. 8, No.5, 461-467 (Sep-2019) 465

https://journal.uob.edu.bh

Table 2 presents the 21 field structure of the used
dataset. These field are a set software measures, which
depend on the software product, complexity, and size of
the vocabulary. The attribute of number of lines in code,
indicate the lines of code that are executable, the lines of
comments, lines that contain all the code, and comments.
For complexity measurement, it includes cyclomatic,
complexity, essential complexity, and module design
complexity. Twelve of the remaining measure are used to
measure vocabulary. These matrices consist of the
following measures: Halstead programming effort,
number of unique operators, Halstead level, Halstead
intelligent content, Alstead difficulty, Halstead length,
total operators, Halstead error estimate, Halstead
programming time, Halstead volume, number of unique
operands, and total operands. Table 2 summarizes the
class attribute for each data set refers to the defect
classification, the last attribute represents classify
category where it will wither false or true we expressed 0
or 1.

5. EXPIREMENTAL RESULTS

The accuracy of a defect predication model is usually
measured in terms of its effectiveness. The process of
correct classification is the key factor for any
classification model. In this paper, we used the accuracy
measure to evaluate the KNN defect predication model.
Accuracy rate is calculated as follows:

Accuracy Rate: =
│𝑇𝑁│+│𝑇𝑃│

│𝑇𝑁│+│𝑇𝑃│+│𝐹𝑁│+│𝐹𝑃│
 (5)

where, as shown in Table 3, True positive (TP) is the
number of vectors that is should be retrieved as related to
a class and retrieved. True Negative (TN) is the number of
vectors that is should not retrieved as related to a class and
not retrieved. False Positive (FP) is the number of vectors
that is not related to a class but retrieved, and finally,
False Negative (FN) is the number of classes that is not
retrieved as related to a category but should be. Table 3
shows the structure of the confusion matrix.

In this study, the accuracy percentages are calculated
based for different classifiers on the five datasets with
k=10. Based on many experiments, the highest accuracy
rate was achieved when the classifier parameter K is set to
equal 10. Table 4 shows the average, maximum,
minimum, and the slandered deviation predication
accuracies over the five datasets for different KNN
classifiers. As shown in the table, the highest accuracy
rate was achieved by using the KNN classifiers with ED
similarity measure with 93.9% as a maximum accuracy
and 87.2% as an overall average accuracy rate. The lowest
rate was when we use the Hausdorff similarity measure
with 58.8% overall average accuracy. We believe this is
because the nature structure of the dataset attributes,
which may affect the training process significantly based
on the used similarity measure.

TABLE II. THE USED DATASET ATTRIBUTES

TABLE III. THE CONFUSION MATRIX

 Observed True Observed False

Predicted True True Positive (TP) False Positive (FP)

Predicted False True Negative (TN) False Negative (FN)

Metric

Type
Definition Attribute Type

1 McCabe's
line count of

code
loc numeric

2 McCabe
cyclomatic
complexity

v(g) numeric

3 McCabe
essential

complexity
ev(g) numeric

4 McCabe
design

complexity
iv(g) numeric

5 Halstead
total operators

+ operands
N numeric

6 Halstead Volume v numeric

7 Halstead
program

length
L numeric

8 Halstead Difficulty D numeric

9 Halstead Intelligence I numeric

10 Halstead Effort E numeric

11 Halstead
Effort

Estimate
b numeric

12 Halstead's time estimator T numeric

13 Halstead's line count lOCode numeric

14 Halstead's
count of lines
of comments

lOComment numeric

15 Halstead's
count of blank

lines
lOBlank numeric

16 LOC LOC lOCodeAndComment numeric

17 Operator
unique

operators
uniq_Op numeric

18 operands
unique

operands
uniq_Opnd numeric

19 Operator total operators total_Op numeric

20 operands total operands total_Opnd numeric

21
branch
count

of the flow
graph

branchCount numeric

22
Name of

class

defect / no

defect
True / false Boolean

466 M. Hammad, et. al.: Predicting Software Faults Based on K-Nearest Neighbors Classification

https://journal.uob.edu.bh

To have a closer look to the collected accuracy rate for
each dataset. Figure 3 presents the accuracy rate for each
classifier on the used datasets.

Figure 3. Accuracy rate for KNN algorithm with different similarity

measures for the five datasets

6. CONCLUSION

In this paper, the K-nearest neighbor machine learning
algorithm is used to predict software defects based on
software metrics. Four different similarity measures are
used to build different classifiers. These measures are
Euclidian distance, weighted ED, Manhattan distance, and
Hausdorff distance measures. The generated prediction
models are evaluated based on five public datasets. The
results showed that the fault prediction model is
dependable and the KNN algorithm can be used to
classify software faults. The highest average accuracy rate
was 87.2%, which achieved when the Euclidian distance
measure is used to build the KNN algorithm. Using more
similarity measures, datasets, and classifiers is one way to
extend this work. Moreover, finding the impact of each
software metrics in the model can increase the prediction
accuracy rate.

REFERENCES

[1] Koru, A. Gunes, and Hongfang Liu. "Building effective defect-

prediction models in practice." Software, IEEE 22.6 (2005): 23-
29.

[2] Al-Jamimi, Hamdi A., and Lahouari Ghouti. "Efficient prediction
of software fault proneness modules using support vector
machines and probabilistic neural networks." Software
Engineering (MySEC), 2011 5th Malaysian Conference in. IEEE,
2011.

[3] D'Ambros, Marco, Michele Lanza, and Romain Robbes. "An
extensive comparison of defect prediction approaches." In Mining
Software Repositories (MSR), 2010 7th IEEE Working
Conference on, pp. 31-41. IEEE, 2010.

[4] Gray, David, David Bowes, Neil Davey, Yi Sun, and Bruce
Christianson. "Software defect prediction using static code metrics
underestimates defect-proneness." In Neural Networks (IJCNN),
The 2010 International Joint Conference on, pp. 1-7. IEEE, 2010.

[5] Chen, Guoshun, and Gefang Wang. "Software Fault Diagnosing
System Based on Multi-agent." In Intelligent Systems (GCIS),
2012 Third Global Congress on, pp. 327-329. IEEE, 2012.

[6] Lessmann, Stefan, Bart Baesens, Christophe Mues, and Swantje
Pietsch. "Benchmarking classification models for software defect
prediction: A proposed framework and novel findings." Software
Engineering, IEEE Transactions on34, no. 4 (2008): 485-496.

[7] Kaur, Amardeep, and Kaur, Kanwalpreet. "Performance analysis
of ensemble learning for predicting defects in open source
software." In Advances in Computing, Communications and
Informatics (ICACCI, 2014 International Conference on, pp. 219-
225. IEEE, 2014.

[8] Zimmermann T, Premraj R, Zeller A. Predicting defects for
eclipse. In Predictor Models in Software Engineering, 2007.
PROMISE'07: ICSE Workshops 2007. International Workshop on
2007 May 20 (pp. 9-9). IEEE.

[9] N. Nagappan, T. Ball, and A. Zeller, "Mining metrics to predict
component failures." in Proceedings of the International
Conference on Software Engineering (ICSE 2006), Shanghai,
China, 2006.

[10] N. Ohlsson and H. Alberg, "Predicting fault-prone software
modules in telephone switches." IEEE Trans. Software Eng., vol.
22, pp. 886-894, 1996.

[11] Selvaraj, P, Thangaraj, P, “Support Vector Machine for Software
Defect Prediction” International Journal of Engineering &
Technology Research, Vol. 1, Issue 2, pp. 68-76, 2013.

[12] Y.Singh, A.Kaur, R.Malhotra, “Software Fault Proneness
Prediction Using Support Vector Machines,” In Proceedings of
the World Congress on Engineering, Vol. 1, 2009

[13] J. Han and M. Kamber, “Data mining: concepts and techniques”,
2nd ed. The Morgan Kaufmann Series, (2006).

[14] T. Divya and A. Sonali, “A survey on Data Mining approaches for
Healthcare”, International Journal of BioScience and Bio-
Technology, vol. 5, no. 5, (2013), pp. 241-266

[15] Dickau, R. M. "Shortest-Path Diagrams. "
http://mathforum.org/advanced/robertd/manhattan.html.

[16] Krause, E. F. Taxicab Geometry: An Adventure in Non-Euclidean
Geometry. New York: Dover, 1986.

[17] Skiena, S. Implementing Discrete Mathematics: Combinatorics
and Graph Theory with Mathematica. Reading, MA: Addison-
Wesley, pp. 172 and 227, 1990.

[18] Willard, S. General Topology. Reading, MA: Addison-Wesley, p.
16, 1970.

[19] http://cgm.cs.mcgill.ca/~godfried/teaching/cg-
projects/98/normand/main.html

[20] McCabe (December 1976). "A Complexity Measure". IEEE
Transactions on Software Engineering: 308–320.
doi:10.1109/tse.1976.233837.

[21] Halstead, Maurice H. (1977). Elements of Software Science.
Amsterdam: Elsevier North-Holland, Inc. ISBN 0-444-00205-7.

0

0.2

0.4

0.6

0.8

1

cm1 Jm1 kc1 kc2 pc1

Accurecy Rate

with ED measure

with Weighted ED measure

with Manhaten measure

with Hausdorff measure

 Int. J. Com. Dig. Sys. 8, No.5, 461-467 (Sep-2019) 467

https://journal.uob.edu.bh

Mustafa Hammad is an

Associate Professor in the

Department of Computer

Science at the University of

Bahrain. He received his Ph.D.

in Computer Science from New

Mexico State University, USA

in 2010. He received his Masters degree in Computer

Science from Al-Balqa Applied University, Jordan in

2005 and his B.Sc. in Computer Science from The

Hashemite University, Jordan in 2002. His research

interests include machine learning, software

engineering with focus on software analysis and

evolution.

Abdulla Alqaddoumi received

his B.Sc. in Computer Science

from University of Bahrain,

Kingdom of Bahrain in 2002. He

completed his M.Sc. in Advanced

Computing Science at University

of Manchester, UK in 2005. He

completed his Ph.D. from New

Mexico State University in 2016.

Dr. Abdulla Alqaddoumi is currently Assistant

Professor in the Department of Computer Science at

the University of Bahrain. His research interest

includes Knowledge Representation, Optimization,

Parallel Processing, Programming Languages and

Graph Theory.

Hadeel Alobaidy is an Assistant

Professor at University of

Bahrain, College of Information

Technology, Department of

Computer Science, specializing in

Software Engineering and web

engineering. Her current research

interests Human Computer

interaction, software Engineering,

Web engineering, Ontology, Semantic Web and Data

Mining.

Khalil Al-Mseidein received his

B.Sc. in Computer Science from

the Al-Hussein Bin Talal

University – Jordan in 2007. He

completed his M.Sc. in Computer

Science at Mutah University in

2017. He is currently the head of

the Technical Support Center at

the Ministry of Justice – Jordan. His research

interests include artificial intelligence, digital image

processing, and software engineering.

