

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 8, No.3 (May-2019)

E-mail: khrajhi@psu.edu.sa, affendi@psu.edu.sa

 http://journals.uob.edu.bh

Automatic Arabic Part-of-Speech Tagging: Deep Learning

Neural LSTM Versus Word2Vec

Khwlah Alrajhi
1
 and Mohammed A ELAffendi

2

1,2 EIAS Data Science & Blockchain Lab, Department of Computer Science, Prince Sultan University, Riyadh, Saudi Arabia

Received 30 Oct. 2018, Revised 31 Dec. 2018, Accepted 28 Apr. 2018, Published 1 May 2019

Abstract: Part-of-speech (POS) tagging is the process of selecting an appropriate POS tag for each word in a natural language

sentence. POS tagging is a vital part of most natural language processing (NLP) applications. In comparison to other languages, there

is a dearth of studies on NLP applications for the Arabic language. Recently, neural networks (NNs) and deep learning technologies

have shown excellent results for some English and Latin NLP applications. However, for Arabic, the practice is still in its infancy,

and more work is needed to determine whether neural technologies will lead to convincing results for NLP applications. In this

paper, a long short-term memory (LSTM) model has been used to investigate the effectiveness of NNs in Arabic NLP. The model

has been specifically applied to identify the POS tags for Arabic words and morphemes taken from the Quranic Arabic Corpus

(QAC) data set. QAC is a well-known gold standard dataset prepared by researchers from Leeds University. It is interesting to note

that LSTM tagger achieved 99.72% accuracy for tagging morphemes and 99.18% for tagging words, while the Word2Vec tagger

achieved 99.55% for tagging morphemes and 97.33% for tagging words.

Keywords: Arabic parts of speech, Deep learning, Long short-term memory (LSTM), Neural network (NN), Recurrent neural

network (RNN), Tag, Word embedding, Word2Vec.

1. INTRODUCTION

The main focus of NLP is to make a computer capable

of interacting with people using natural human languages.

One of the fundamental tasks in NLP is part-of-speech

(POS) tagging, which is the process of identifying the

type (tag) of a given word, such as a noun, verb, pronoun,

or adverb, in an input sentence [1]. POS tagging is a

prerequisite for many high-level NLP applications, such

as information extraction, the process of deriving

structured factual information from unstructured text [2];

machine translation, the process of translating a text from

a natural language by a computer; parsing, the task of

assigning a syntactic structure to a sentence [3]; and

many others.

Natural languages are naturally ambiguous, subjective,

and complex. Ambiguity appears at different levels of the

NLP process [4]. This implies that the development of

NLP applications is very challenging compared to that of

programming languages, which are highly structured and

deterministic [5]. Several studies have been conducted to

automate the POS tagging process. Most of the early

studies are rule-based and require the development of

collections of rules that are relatively complex and not

flexible. Lately, probabilistic corpus-based approaches

have become popular. In these approaches, tagged

corpora are used to train models that identify tags based

on the context, which is captured using n-gram

probabilities. These models have proven to be more

accurate than the rule-based approaches but require the

preparation of a large, manually tagged corpus, which is

an obvious overhead [6].

Recently, there have been several successful

attempts in using neural networks (NNs) and deep

learning to develop NLP and POS tagging systems for

many languages. Although Arabic is the standard

language for more than 20 countries in North Africa and

the Middle East, NLP research in the Arabic language is

lagging, and very few attempts for using deep learning

technologies have been reported in this area.

The aim of this paper is to show how NNs and deep

learning can be used to build a highly accurate automated

Arabic POS tagger [7]. A long short-term memory

(LSTM) recurrent neural networks (RNNs) [8] has been

successfully used to build a highly accurate tagger that

compares favourably with all reported taggers. The main

advantage of LSTM RNNs is their ability to learn long-

term dependencies without the need to compute explicit

probabilities [8]. In addition, one of the major advantages

of the LSTM neural model is that no feature engineering

is required. Accordingly, morphological segmentation is

not explicitly needed. However, morphological

http://dx.doi.org/10.12785/ijcds/080310

308 Khwlah Alrajhi and Mohammed A ELAffendi: Automatic Arabic Part-of-Speech Tagging…

http://journals.uob.edu.bh

segmentation for our data is performed using our

underling Sliding Window Asymmetric Matching

(SWAM) Algorithm [9], and the accuracy of the SWAM

algorithm is well above 98% when using the latest

version.

2. LITERATURE REVIEW

Arabic POS tagging has been gaining traction recently
due to the increasing importance of tagging in building
modern NLP and artificial intelligence applications. Some
efforts have been made for Classical Arabic (CA) and
Modern Standard Arabic (MSA) during the past few
years. These can be classified into four categories: rule-
based approaches [10], [11], probabilistic corpus-based
approaches [9], [12], [13], hybrid methodologies [14],
[15], and machine learning approaches [16], [17], [18],
[19].

 Machine Learning for POS Tagging Arabic language A.

Habash and Rambow [16] applied support vector
machines (SVMs) to identify Arabic tagsets. In their view,
POS tagging is a classification problem that depends on
many features. For Arabic, the features are more complex
than those of other languages, which means the tagsets for
Arabic are much larger than those for Germanic
languages, such as English. While tagsets for English
consist of 50 elements at most, for Arabic, 2,200
morphological tags have been used for tagging the first
280,000 words in the Penn Arabic Treebank out of
333,000 words completely specified in the morphological
analysis. Therefore, Habash and Rambow developed a
morphological analyser which is supported by a
morphological disambiguation approach for Arabic POS
tagging and a machine learning classification component.
They reported that morphological tagging and
tokenisation were similar operations that involved three
steps:

 Collection of all appropriate tags from the
morphological analyser for an assigned word.

 Application of machine learning classifiers on the
words of a sentence. Through this approach, the
value, feature and class of a word can be
identified. Habash and Rambow used Yamcha, an
SVM that includes Viterbi decoding.

 Application of classifiers to choose the expected
morphological tag.

As a result, Habash and Rambow obtained accuracy
rates on all tasks in the 90% range. They found enough
information on affixes and clitics for good tokenisation
performance, and they performed POS tagging,
disambiguation, and morphological tokenisation in a
single round using this approach. It was observed in this
experiment that the classifiers used may be partially
disambiguated, which creates some errors in choice
matching. So, increasing the efficiency of classifiers

opens new directions in the research field. For future
researches, in order to address the Arabs community
needs, a fully automated POS tagging system is required
for the Arabic language.

A similar improved SVM approach was used by Diab,
Hacioglu, and Jurafsky [17] that performs tokenisation,
POS tagging, and base phrase chunking of Arabic text
automatically. Actually, they selected the most efficient
tools used for POS tagging in English and applied them to
Arabic texts. In POS tagging, they modelled this as a 1-of-
24 classification task in which the class labels are POS
tags. However, if a token did not occur in the training
data, it was assigned a Noun tag by default; However,
50% of the errors resulted from confusing nouns, with
adjectives or vice versa. To prepare the data, they
converted the Arabic Treebank into Latin-based
abbreviated from American Standard Code for
Information Interchange (ASCII) characters using the
Buckwalter transliteration scheme. Not only did they
report that the SVM-POS tagger achieved 95.49%
accuracy, but they also promised to further improve the
performance of the system using additional features, a
wider context, and more data.

Ben Ali and Jariri [18] developed a different Arabic
POS tagger using genetic algorithms that assigned POS
tags to the input text. The findings of their research study
suggest that the genetic algorithm approach is more robust
than other statistical systems for tagging natural language
texts, achieving approximately 94% accuracy.
Unfortunately, they did not perform segmentation, which
is an important operation for Arabic morphology.

Much work has been achieved in Arabic POS tagging
using the sequence of clitics in a word simultaneously.
Different approaches have been used for this purpose.
Darwish, Mubarak, Abdelali, and Eldesouki [19]
evaluated the comparative performance of two different
methods for POS tagging. They compared applications of
SVM-based ranking and bidirectional long-short-term
memory (bi-LSTM) NN-based sequence labelling in
building Arabic POS tagging system. They also found that
adding explicit features to the bi-LSTM NN and
employing word embeddings separately improved POS
tagging results. The accuracy result was 95.50%, which,
though promising, was not as much so as rule-based
taggers. However, this work is useful for applying NN to
Arabic POS tagging.

 Deep learning for POS Tagging other languages B.

Wang, Qian, Soong, He, and Zhao [20] introduced a
novel approach called the bidirectional long short-term
memory recurrent neural network (Bi-LSTM-RNN),
which the authors used in word embedding for POS
tagging without the employment of morphological
features. With the Bi-LSTM-RNN, they implemented six
types of word embedding for comparison and found that
all instances exhibited high accuracy. In demonstrating
that competitive tagging accuracy (around 97%) can be

 Int. J. Com. Dig. Sys. 8, No.3, 307-315 (May-2019) 309

http://journals.uob.edu.bh

achieved without the benefit of morphological features,
the authors illustrated the advantage of the Bi-LSTM-
RNN as a method of tagging a language that lacks
necessary morphological knowledge.

Plank, Søgaard, and Goldberg [21] explored
automating POS tagging based on an LSTM network and
proposed a novel multi-task bi-LSTM model with an
auxiliary loss function that improves the accuracy with
which specific words are tagged. Under varying
conditions and multiple parameters, including data size
and label noise, the authors assessed token and sub-token-
level representations of NN-based POS tagging across 22
languages. They indicated that sub-token representations
are necessary to obtain a state-of-the-art POS tagger and
that character embedding is particularly helpful for non-
Indo-European and Slavic languages. Finally, the authors
confirmed that their bi-LSTM tagger exhibits competitive
performance on data from the Wall Street Journal, for
which POS accuracy reached 97.3%.

3. PROPOSED METHODOLOGY

As stated earlier, the main purpose of this paper is to
investigate the possibility of building a highly accurate
automated Arabic POS tagger using NNs and deep
learning technologies. To achieve this goal, a two-level
research methodology was used. At the upper (macro)
level, the methodology is a combination of exploration,
experimentation, recommendations, and design. At the
lower level, a typical machine learning process has been
applied to train and test the models recommended by the
upper (macro) process. Typical phases of a machine
learning process include data collection, preprocessing,
transformation to the fit input/output requirements of an
underlying model, model configuration, training, testing,
and analysis.

 The Upper (Macro) Level Process A.

 Exploration Phase: The main purpose of the

exploration phase is to conduct a detailed survey

of potential NN models and identify the most

appropriate Arabic tagset to be used in the

experiment. In addition to selecting the most

relevant neural models, the exploration phase

surveys the types of algorithms and approaches

used in training and testing NN models. The

exploration phase also covers the types of

machine learning development platforms and

utilities used in training and testing NNs. This

phase ends with recommendations regarding the

above three issues: type of model to be used,

appropriate tagset, and recommended platform.

 Initial Experimentation Phase: The aim of this

phase is to perform initial experimentation and

comparison of the most relevant NN models

selected in the previous step. At the same time,

an evaluation of the appropriate word

embeddings and text encoding techniques is

conducted.

 Design: The results obtained from the

experimentation performed in Step 2 are

thoroughly analysed, and concrete architectures

for the models to be used are developed.

 Implementation: The designed models are

implemented, trained, tested, and evaluated.

 Lower (Micro) Level B.

At the lower (micro) level, Step 4 of the macro level

(implementation) is conducted again using typical

machine learning cycles, which involve

 data preparation and preprocessing;

 data wrangling or munging;

 word embedding and encoding;

 training the model using appropriate algorithms;

 evaluating the model; and

 repeating the above steps until the performance

of the model is satisfactory.

The same steps, with slight modifications, are used in
the testing and deployment phases.

4. PROPOSED MODEL

This section covers the type of NN model, the Arabic
tagset, and the platform that were used. It also describes
the method of preparing data, the encoding approach and
how the approach works.

 LSTM A.

Based on the adopted methodology and
experimentation with a selection of neural models, the
LSTM recurrent neural model [19] has been identified as
the strongest candidate for the purpose of our work. It has
been shown that this model is suitable for modelling
long-range dependencies in several POS tagging studies
[20], [21]. Based on the results proposed by [19], we
concluded that LSTM is an appropriate NN to use for the
Arabic POS tagging task. LSTM architectures designed
to deal with the vanishing gradient problem have been
proven to learn long-term dependencies more efficiently
through internal units [22]. In a repeated LSTM module,
there are four interacting layers, unlike a single RNN
layer that contains a simple sigmoid or tanh layer. LSTM
uses the hidden state from the previous time step and the
current input with these four layers, which interact in a
particular way to implement recurrence. Fig. 1 represents
the LSTM cell at time step t. The internal memory of the
LTSM unit is represented by cell state c, which is
indicated by the horizontal line at the top of the figure.
The horizontal line on the bottom represents the hidden
state. The LSTM cell is able to remember important
things from the present, and forget unimportant things
from the past, by using LSTM gates. The i, f, o and g
gates let LSTM solve the vanishing gradient problem.

310 Khwlah Alrajhi and Mohammed A ELAffendi: Automatic Arabic Part-of-Speech Tagging…

http://journals.uob.edu.bh

Figure 1. LSTM Cell [22].

LSTM gates can be represented by equations that
explain how to calculate the hidden state, ht, at time t
from the hidden state at the previous time step, ht -1.
Values for short or long times are stored by cell Ct. In the
first step, the LSTM tagger determines the importance of
data to be stored in a cell with the help of a forget gate
layer, also known as a sigmoid layer. The principle is
based on computation of data from ht -1 and xt by
generating a number between 0 (completely discard set)
and 1 (save entire set) for every number in cell state Ct -1.

 ft = σ (Wf.[ht−1,xt] + bf) (1)

The flow of the new value in the memory is controlled by

an input gate, which also determines the value updating.

The vector of the new value, C
˜
t, is created by the tanh

layer of the state, which is then combined to create an

update.

it = σ (Wi.[ht−1,xt] + bi) (2)

C
˜

t = tanh (Wc.[ht−1,xt] + bc) (3)

The decisions for remaining values in the cell are
controlled by the forget gate, which update the new state
of cell C

˜
t from C

˜
t−1. The old state is multiplied by ft and

added to it ∗ C
˜
t. The decisions for this new candidate

value scale are then updated.

C˜t = ft ∗Ct−1 + it ∗C˜t (4)

The filtered version of the cell state is based on this

output. The output of the cell state is determined by

running the sigmoid layer. Through the tanh layer, values

between -1 and 1 are multiplied by the sigmoid gate

output.

Ot = σ (Wo[ht−1,bo] + bo) (5)

 ht = Ot tanh(Ct) (6)

 Dataset B.

Based on a survey of available datasets, the Quranic
Arabic Corpus (QAC) was the most suitable candidate
for training and testing our model. The QAC is a gold

standard that has been manually created and verified
[23]. The QAC dataset consists of a sequence of Quranic
verses, which consists of a sequence of words. Each word
is composed of a stem, prefix, and suffix. Fig. 2 provides
an example of word segments. Each segment of a given
word is referred to as a morpheme.

Figure 2. Word Morphemes.

In detail, our dataset consisted of a sequence of words
that are characterised by morphemes (prefixes, stems,
suffixes) and their corresponding tag sequences (prefix,
stem, suffix tags). In other words, each morpheme is
tagged with nouns, verbs, prepositions and so on. An
example of this is shown in Fig. 3. These detailed
morpheme segmentations for words can improve the
accuracy of the results derived through the proposed
tagger. We therefore expanded our experiments by using
words and their corresponding tags.

Figure 3. POS Tagging Sequence of Morphemes.

We used stem tags in a tag sequence to label words
given that these are the tags available for the meantime.
An example of word POS tagging is shown in Fig. 4.

Figure 4. POS Tagging Sequence Of Words.

 Tagset C.

 The proposed tagset for this system has been derived
from the QAC [24]. The advantages of this tagset are that
it has a good size, which can reveal information about the
text; it is intended to be used for the Arabic language by

 Int. J. Com. Dig. Sys. 8, No.3, 307-315 (May-2019) 311

http://journals.uob.edu.bh

analyzing Quran grammar; and it is effective in manual
annotation by crowdsourcing. The original POS tagset
contained 44 tags. To tag morphemes, an expanded tagset
comprising 87 tags was used because some morphemes
were labelled with the composite tags of the original
labels. To tag words, a collapsed tagset consisting of 37
tags was used.

 Data Preprocessing D.

To prepare the data for easy processing by the

proposed taggers, some pre-processing steps were taken

on the given data file, which was stored as a comma-

separated values (CSV) file. The content of the original

file consisted of 77,915 words with 14,901 unique words.

Each line in data file comprised the ID, word, prefix,

stem, suffix, pattern, root, prefix tag, stem tag, and suffix

tag. Fig. 5 presents how the data were stored in the

original file.

Figure 5. Quran Data File.

 Each line of data consisted of three segments and

corresponding tags. We separated each segment

(morpheme) with its corresponding tag into a new line.

These updates enabled the LSTM tagger to access the file

and tag morphemes easily. The final file consisted of

124,002 items with 7,508 unique morphemes. Fig. 6

presents how the data were stored in the updated file.

Figure 6. Updated Quran File

 Encoding E.

At first, input data for taggers were planned to be
without word embeddings. And because NNs cannot
understand letters, we needed to find a way to convert
words or characters into numbers. Therefore, our two
datasets, comprised of morphemes with corresponding
tags or words with corresponding tags, had to go through
an encoding process. First, we planned to use one-hot
encoding (OHE), which is an easy and popular encoding
method for a specialised learning algorithm for dealing
with numerical data. In the OHE method, every word in
the vocabulary is represented by a binary vector with a
size equal to the vocabulary size. This method maps each
word to a vector with a length equal to the number of

unique morphemes, which, in case of converting
morphemes, vector length will equal 7,508, and the nth
digit is an indicator of the presence of a particular word
[25]. While, in case of converting words, vector length
will equal 14,901. The vector length indicates the number
of neurons needed for the first neural layer. This method
performs well with a small data sample, but when
working with a large data sample, as in our case, the
neural model training time grows exponentially.
Therefore, we chose another method, the reversible
integer transformation (RIT) algorithm, which was
introduced by Affendi [26]. This method converts textual
training words or morphemes into binary numerical form.
The most important feature is maximum number of
neurons needed in the input layer is 64. Because each
character in a word is represented using only six bits.

 Word Embeddings Technique F.

Word embeddings represent a new rising form of
distributed semantics representations, where each word in
a given corpus or text is represented by a unique numeric
vector based on the contexts within which it occurs [27].
Currently, the most popular approach is the Word to
Vector (Word2Vec) approach [27], in which the vector
representations for words are computed using a shallow
MLP model using backpropagation. In the Continuous-
Bag-of-Words (CBOW) version of the model a sliding
window approach is used to pass the context of the word
(for example two words before, and two words after) to
the neural network and use any target as the output (for
example the word itself). The hidden layer resulting from
the training is the semantic vector representation of the
word. In this paper, a variation of the CBOW model has
been used to create word vectors for Quranic Text
Corpus. Word vectors were created by using Gensim
[28], a Python library. The motivation is to compare the
results obtained of Word2Vec approach to those obtained
using LSTM. Fig. 7 explains how to create Word2Vec
vectors for morphemes.

Figure 7. Word2Vec Process.

312 Khwlah Alrajhi and Mohammed A ELAffendi: Automatic Arabic Part-of-Speech Tagging…

http://journals.uob.edu.bh

The first line shows the sequence verses of the Quran,
and second line shows the separated morphemes, which
are our input for first case. In first case, the input layer
size was equal to the number of different morphemes in
the vocabulary for training (7,510 words). The hidden
layer size was set to the dimensionality of the resulting
word vectors (i.e. 300).

 Platform G.

Several open-source libraries and frameworks are
available for advanced deep learning. To develop our
NNs, we chose Keras, an NN library written in Python.
Keras is a high-level application programming interface
(API) that can be run on top of TensorFlow and Theano.
We chose it because it has a user-friendly interface and
allows for easy and fast prototyping and testing of NNs
with short lines of code.

5. RESULTS

The data were divided into a training component
(70%) and a testing component (30%). The former was
used to train the model, and the latter was used to
compute the model’s accuracy. When tagging
morphemes, the data sample was comprised of 124,002
pairs of morphemes and tags. The training component
was comprised of 86,801 pairs, and the testing
component included 37,201 pairs. When tagging words,
the data sample included 77,190 pairs of words and tags.
The training component was comprised of 54,540 pairs,
and the testing component consisted of 23,375 pairs.

The training set was fed into the input layer to train
the LSTM model. After the model training was
completed, the retained data were used to test the model
accuracy on datasets that have not been previously
examined.

 We conducted four experiments. First, we fed the
morphemes into LSTM model with using RIT encoding
algorithm. The performance of the proposed LSTM POS
tagger during testing and training is depicted in Fig. 8,
which shows that the model achieved 99.72% accuracy.

Figure 8. Accuracy of Tagging Morphemes Using the LSTM Model.

As Fig. 8 illustrates, accuracy increased for the
training and testing data after the second epoch. Beyond
the 10th epoch, no notable variation was observed in
either the train or test lines.

Second, we fed words into the LSTM model using
only RIT encoding algorithm. The performance of the
proposed LSTM POS tagger during testing and training
words is shown in Fig. 9. The model achieved 99.18%
accuracy.

Figure 9. Accuracy of Tagging Words Using the LSTM Model.

Third, we created word vectors for morphemes using
Word2vec model, after which we passed the result
vectors onto the backpropagation POS tagger to evaluate
the impact of using word vectors for predicting POS tags.
The performance of the proposed Word2Vec POS tagger
during testing and training with the use of word vectors is
represented in Fig. 10. The model achieved 99.55%
accuracy.

Figure 10. Accuracy of Tagging Morphemes Using the Word2Vec

Model

Fourth, we also used Word2Vec for creating words
vectors and then incorporated vectors as inputs into
Word2Vec POS tagger. The performance of the
Word2Vec POS tagger during the testing and training is
shown in Fig. 11. As can be seen, the model performed
at an accuracy of 97.33%.

 Int. J. Com. Dig. Sys. 8, No.3, 307-315 (May-2019) 313

http://journals.uob.edu.bh

Figure 11. Accuracy of Tagging Words Using the Word2Vec Model.

In the above-mentioned experiments, POS tagging
was carried out using the LSTM model for morphemes
and words. Also, POS tagging was carried out using the
Word2Vec model for morphemes and words with using
word vectors to compare word2Vec accuracy with the
results obtained using LSTM. Table I compares obtained
accuracy results for POS tagging Quran text.

Table I. POS TAGGING ACCURACY RESULTS FOR QURAN TEXT

Tagger Dataset Accuracy

LSTM Words 99.18%

LSTM Morphemes 99.72%

Word2Vec Words 97.33%

Word2Vec Morphemes 99.55%

6. ANALYSIS

This section details the comparison of our models
results and the comparison of these findings with those of
six related Arabic POS taggers. The proposed Word2Vec
POS tagger tagged morphemes at an accuracy of 99.55%
and words at an accuracy of 97.33% with using word
vectors. The proposed LSTM POS tagger tagged
morphemes at an accuracy of 99.76% and tagged words
at an accuracy of 99.18% without using word vectors.
These high results of LSTM POS model confirmed that
feature engineering is not required as the power of
LSTM-RNNs lies in their ability to learn long-term
dependencies [8] and determine context even without
embedding. However, the comparison of morpheme and
word tagging showed that accuracy for the former is
higher by both taggers. This result is ascribed to the fact
that decomposing words into parts can provide precise
information.

 To compare our results with other research, we
found two NN experiments on Arabic POS tagging. The
first is Abu-Malloh’s POS tagger, which was based on a
classical NN. This tagger was trained by a standard

backpropagation algorithm and designed with a three-
layer network with eight hidden neurons [29]. To
implement the tagger, Abu-Malloh used a tagset with a
size of 18 tags and a total of 16,672 distinct words written
in MSA. These words were divided into two distinct sets:
a training set and a testing set consisting of 13,337 and
3,335 Arabic words, respectively. The overall accuracy of
the developed tagger reached 87.02%.

In the second experiment, Muaidi used the Levenberg
Marquardt (LM) algorithm and a tagset with a size of 189
tags [30]. Muaidi’s tagger was trained and tested on an
Arabic corpus consisting of 24,810 Arabic words with
their associated tags, and it was divided into a distinct
training set (19,848 Arabic words) and testing set (4,962
Arabic words). The developed Artificial neural networks
(ANN) for Muaidi’s tagger was successful, reaching an
accuracy of 90.21% for the testing dataset.

We also found a study by Abdelkareem, which
compared the performance of some POS tagging
techniques for Arabic text using the QAC [31], which is
the same corpus used in our experiments. These
techniques included n-gram, Brill, Hidden Markov Model
(HMM), and Trigrams’n’Tags (TnT) taggers. The
comparison experiments were conducted on diacritised
and undiacritised CA which means CA with and without
diacritical marks. The framework was the Natural
Language Toolkit (NLTK), which consists of open-
source Python modules and enables documentation for
research and development in NLP and text analytics. A
total of 77,430 words was divided into a training set of
74,859 words and a testing set of 2,571 words.
Abdelkareem’s experiments were applied on CA for both
diacritised and undiacritised data. For the two forms, they
studied a 33-tag tagset, and they simplified a new form of
a 9-tag tagset. This produced four experimental cases.

The Brill tagger performed the best among all other
taggers for undiacritised Arabic for both the 33 tagset
(80.9%) and the 9 tagset (83.2%). For diacritised Arabic,
the Bigram tagger performed well for both the 33 tagset
(80.1%) and the 9 tagset (82.0%). It is noteworthy that
each tagger gave better accuracy in tagging undiacritised
Arabic than in tagging diacritised Arabic because
diacritics are considered additional characters. The
comparison of the proposed model with other Arabic
POS taggers is a complicated task in which accuracy
depends on different factors, such as tagset size and
dataset size [30]. A relative comparison of the accuracy
results from our proposed tagger with other experiments
is shown in Table II.

The results show that our proposed NN models for
tagging the QAC produced better results than other
statistical techniques used for this purpose. We also
noticed that our proposed taggers are better and more
effective than the traditional feedforward multilayer
perceptron models for tagging MSA words.

314 Khwlah Alrajhi and Mohammed A ELAffendi: Automatic Arabic Part-of-Speech Tagging…

http://journals.uob.edu.bh

7. CONCLUSION

 Findings A.

In this study, we aimed to apply NN technologies for
Arabic POS tagging. Lately, NNs have become a well-
known and valuable tool for building many NLP
applications, such as text classification. Tagging Arabic
words is a complex task, and more Arabic POS tagging
studies are needed. In this paper, we examined the
application of backpropagation and LTSM to identify
POS tags of Arabic words. An LSTM-RNN model was
used to predict the POS tags of Arabic words and
morphemes after being trained using a gold-standard pre-
tagged set. Word tagging was carried out at accuracy
levels of 99.18% while morphemes tagging achieved
99.72%.

Also, a CBOW model has been applied to predict
POS tags for Quranic Text Corpus. The reason for
applying word embedding was to compare word
embedding accuracy with the results obtained using
LSTM.

Tagging by using word embedding was accomplished
at accuracy levels of 97.33% and 99.55% for words and
morphemes. Decomposing words into parts (morphemes)
can provide precise information for POS tagging task.
This fact was proved, when POS tagging morphemes was
higher than tagging words in both taggers.

We also proved that LSTM POS tagging takes into
consideration the context of a word (i.e. neighboring
words) in a manner similar to word embeddings. This
method showed higher accuracy than POS tagging of
words. In general, the high accuracy levels indicated that
LSTM is a powerful classifier that may be used to build
highly accurate Arabic POS taggers.

 Contributions B.

 The first attempt to apply LSTM for CA POS

tagging using the QAC.

 The use of RIT algorithm that converts textual

training words into a binary representation,

which reduces the time it takes to train the

network.

 Comparing word embedding accuracies with

LSTM accuracies for POS tagging QAC words

and morphemes.

 Elimination of the need for probabilistic

approaches and complex rules to capture the

context and dependency, since LSTM models

naturally take dependency into consideration

and capture the context.

 A highly accurate POS tagger for the Arabic

language that compares favourably with all

known types of taggers.

 Future Work C.

Many aspects of this research can be improved

further, such as the following:

 Training and testing of different Arabic data

samples are needed for NN models.

 Other NN models for NLP, such as

convolutional NNs, can be explored.

 Additional experiments for designing NNs can

be conducted by tuning NN hyperparameters

and trying different numbers of layers and

neurons.

References

[1] D. Jurafsky and J. H. Martin, Speech and language processing.

Pearson, London, 2014, vol. 3.

[2] A.M. Popescu and O. Etzioni, “Information extraction from

unstructured web text,” 2007, vol. 68, no. 02.

[3] R. P. Van Gompel and M. J. Pickering, “Syntactic parsing,” The

Oxford Handbook of Psycholinguistics, 2007, pp. 289–307.

TABLE II. COMPARISON OF ACCURACY RESULTS FOR MOST RELATED ARABIC POS TAGGERS. IN THE NOTATIONS, THE SUBSCRIPT

 D REPRESENTS DIACRITISED ARABIC, U REPRESENTS UNDIACRITISED ARABIC, CA REPRESENTS CLASSICAL ARABIC, MDA
 REPRESENTS MODERN ARABIC, W REPRESENTS WORD, M REPRESENTS MORPHEME AND WE REPRESENTS WORD EMBEDDING.

Author Data Type Corpus size Tag size Approach Accuracy

Our study CA - U - M 124,002 87 LSTM 99.72%

Our study CA - U - W 77,190 34 LSTM 99.18%

Our study CA - U - M - WE 124,002 87 Word2Vec 99.55%

Our study CA - U - W - WE 77,190 34 Word2Vec 97.33%

Abu Malloh MDA - U 16,672 18 BPNN 87.02%

Muaidi MDA - U 24,810 189 LM 90.21%

Abdelkareem CA - U 77,430 33 Brill 80.90%

Abdelkareem CA - U 77,430 9 Brill 83.20%

Abdelkareem CA - D 77,430 33 Bigram 80.10%

Abdelkareem CA - D 77,430 9 Bigram 82.00%

 Int. J. Com. Dig. Sys. 8, No.3, 307-315 (May-2019) 315

http://journals.uob.edu.bh

[4] D. Khurana, A. Koli, K. Khatter, S. Singh, “Natural language

processing: State of the art, current trends and challenges,” arXiv
preprint arXiv:1708.05148. 2017.

[5] M. M. Lopez and J. Kalita, “Deep learning applied to NLP,” arXiv

preprint arXiv:1703.03091, 2017.

[6] E. Brill, “A simple rule-based part of speech tagger,” Proceedings
of the Third Conference on Applied Natural Language Processing.

Association for Computational Linguistics, 1992.

[7] X. Li, T. Qin, J. Yang, X. Hu, and T. Liu, “LightRNN: memory

and computation-efficient recurrent neural networks,” in
Advances in Neural Information Processing Systems, 2016, pp.

4385–4393.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”

Neural Computation, 1997, vol. 9, no. 8, pp. 1735–1780.

[9] M. A. ELAffendi and M. ALTayeb, “The SWAM Arabic

morphological tagger: multi-level tagging and diacritization

using lexicon driven morphotactics and viterbi,” inProceedings
on the International Conference on Artificial Intelligence (ICAI),

p. 1, The Steering Committee of The World Congress in

Computer Science, Computer Engineering and Applied
Computing (WorldComp), 2014.

[10] M. H. Btoush, A. Alarabeyyat, and I. Olab, “Rule based approach

for Arabic part of speech tagging and name entity recognition,”

International Journal of Advanced Computer Science and
Applications, 2016, vol. 7, no. 6.

[11] S. Alqrainy, H. M. AlSerhan, and A. Ayesh, “Pattern-based

algorithm for part-of-speech tagging Arabic text,” in Proceedings

of the 2008 International Conference on Computer Engineering &

Systems (ICCES). IEEE, 2008, pp. 119–124.

[12] M. Albared, N. Omar, and M. J. Ab Aziz, “Improving Arabic part-

of-speech tagging through morphological analysis,” in Asian
Conference on Intelligent Information and Database Systems.

Springer, 2011, pp. 317–326.

[13] A. H. Aliwy, “Combining POS taggers in master-slaves technique

for highly inflected languages as Arabic,” in 2015 Cognitive
Computing and Information Processing (CCIP), 2015

International Conference on. IEEE, 2015, pp. 1-5.

[14] Y. Tlili-Guiassa, “Hybrid method for tagging Arabic text,”
Journal of Computer Science, 2006, vol. 2, no. 3, pp. 245–248.

[15] S. Khoja, “APT: Arabic part-of-speech tagger,” in Proceedings of

the Student Workshop at NAACL, 2001, pp. 20–25.

[16] N. Habash and O. Rambow, “Arabic tokenization, part-of-speech

tagging and morphological disambiguation in one fell swoop,” in
Proceedings of the 43rd Annual Meeting of the Association for

Computational Linguistics. Association for Computational

Linguistics, 2005, pp. 573– 580.

[17] M. Diab, K. Hacioglu, and D. Jurafsky, “Automatic tagging of

Arabic text: from raw text to base phrase chunks,” in Proceedings

of HLTNAACL 2004: Short Papers. Association for
Computational Linguistics, 2004, pp. 149–152.

[18] B. B. Ali and F. Jarray, “Genetic approach for Arabic part of

speech tagging,” arXiv preprint arXiv:1307.3489, 2013.

[19] K. Darwish, H. Mubarak, A. Abdelali, and M. Eldesouki, “Arabic

POS tagging: Don’t abandon feature engineering just yet,” in
Proceedings of the Third Arabic Natural Language Processing

Workshop, 2017, pp. 130–137.

[20] P. Wang, Y. Qian, F. K. Soong, L. He, and H. Zhao, “Part-of-

speech tagging with bidirectional long short-term memory
recurrent neural network,” arXiv preprint arXiv:1510.06168,

2015.

[21] B. Plank, A. Søgaard, and Y. Goldberg, “Multilingual part-of-

speech tagging with bidirectional long short-term memory models
and auxiliary loss,” arXiv preprint arXiv:1604.05529, 2016.

[22] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing

Ltd; 2017.

[23] K. Dukes, “Statistical parsing by machine learning from a

classical Arabic treebank,” arXiv preprint arXiv:1510.07193,

2015.

[24] K. Dukes and N. Habash, “Morphological annotation of Quranic

Arabic,” in LREC, 2010.

[25] D. Harris, and S. Harris. “Digital design and computer

architecture,” Morgan Kaufmann, 2010.

[26] M. A. ELAffendi and K. S. Alrajhi, “Text encoding for deep

learning neural networks: a reversible base 64 (Tetrasexagesimal)
integer transformation (RIT64) alternative to one hot encoding

with applications to Arabic morphology,” in Proceedings of the

6th International Conference on Digital Information, Networking
and Wireless Communication (DINWC2018,) Lebanon, 2018.

[27] Y. Goldberg and O. Levy, “Word2Vec explained: deriving

Mikolov et al.’s negative-sampling word-embedding method,”
arXiv preprint arXiv:1402.3722, 2014.

[28] R. Řehůřek and P. Sojka, “Software framework for topic

modelling with large corpora,” in Proceedings of the LREC 2010

Workshop on New Challenges for NLP Frameworks, 2010, pp.
45–50.

[29] R. Abu-Malloh, “Arabic part-of-speech tagger: an approach based

on neural network modeling,” Master’s thesis, AlBalqa Applied

University, 2010.

[30] H. Muaidi, “Levenberg-Marquardt learning neural network for

part-of-speech tagging of Arabic sentences,’ WSEAS

Transactions on Computers, 2014, vol. 13, pp. 300–09.

[31] A. M. Alashqar, “A comparative study on Arabic POS tagging

using Quran corpus,” in Proceedings of the 8th International

Conference on Informatics and Systems (INFOS), IEEE, 2012, pp.

NLP-29.

Khwlah Alrajhi is a research assistant in the Computer Science

department of the College of Computer & Information

Sciences, Prince Sultan University, Riyadh. She is also a

member of the EIAS Data Science and Blockchain Lab. She

received her M.Sc. in Software Engineering from Prince Sultan

University, Riyadh, in 2018 and her B.Sc. in Information

Technology from King Saud University, Riyadh, in 2013.

Mohammed A ELAffendi is a professor of computer science,

in the Department of Computer Science, Prince Sultan

University, AIDE to the Rector, Director of CCIS Research,

Director of CCIS Graduate Programs, Founder and Director of

EIAS Data Science and Blockchain Lab. Current research

interests includes Data Science, Intelligent and Cognitive

Systems and Machine Learning.

