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Abstract: Part-of-speech (POS) tagging is the process of selecting an appropriate POS tag for each word in a natural language 

sentence. POS tagging is a vital part of most natural language processing (NLP) applications. In comparison to other languages, there 

is a dearth of studies on NLP applications for the Arabic language. Recently, neural networks (NNs) and deep learning technologies 

have shown excellent results for some English and Latin NLP applications. However, for Arabic, the practice is still in its infancy, 

and more work is needed to determine whether neural technologies will lead to convincing results for NLP applications. In this 

paper, a long short-term memory (LSTM) model has been used to investigate the effectiveness of NNs in Arabic NLP. The model 

has been specifically applied to identify the POS tags for Arabic words and morphemes taken from the Quranic Arabic Corpus 

(QAC) data set. QAC is a well-known gold standard dataset prepared by researchers from Leeds University. It is interesting to note 

that LSTM tagger achieved 99.72% accuracy for tagging morphemes and 99.18% for tagging words, while the Word2Vec tagger 

achieved 99.55% for tagging morphemes and 97.33% for tagging words. 

 

Keywords: Arabic parts of speech, Deep learning, Long short-term memory (LSTM), Neural network (NN), Recurrent neural 

network (RNN), Tag, Word embedding, Word2Vec.

1. INTRODUCTION  

The main focus of NLP is to make a computer capable 

of interacting with people using natural human languages. 

One of the fundamental tasks in NLP is part-of-speech 

(POS) tagging, which is the process of identifying the 

type (tag) of a given word, such as a noun, verb, pronoun, 

or adverb, in an input sentence [1]. POS tagging is a 

prerequisite for many high-level NLP applications, such 

as information extraction, the process of deriving 

structured factual information from unstructured text [2]; 

machine translation, the process of translating a text from 

a natural language by a computer; parsing, the task of 

assigning a syntactic structure to a sentence [3]; and 

many others. 

Natural languages are naturally ambiguous, subjective, 

and complex. Ambiguity appears at different levels of the 

NLP process [4]. This implies that the development of 

NLP applications is very challenging compared to that of 

programming languages, which are highly structured and 

deterministic [5]. Several studies have been conducted to 

automate the POS tagging process. Most of the early 

studies are rule-based and require the development of 

collections of rules that are relatively complex and not 

flexible. Lately, probabilistic corpus-based approaches 

have become popular. In these approaches, tagged 

corpora are used to train models that identify tags based 

on the context, which is captured using n-gram 

probabilities. These models have proven to be more 

accurate than the rule-based approaches but require the 

preparation of a large, manually tagged corpus, which is 

an obvious overhead [6]. 

Recently, there have been several successful 

attempts in using neural networks (NNs) and deep 

learning to develop NLP and POS tagging systems for 

many languages. Although Arabic is the standard 

language for more than 20 countries in North Africa and 

the Middle East, NLP research in the Arabic language is 

lagging, and very few attempts for using deep learning 

technologies have been reported in this area. 

The aim of this paper is to show how NNs and deep 

learning can be used to build a highly accurate automated 

Arabic POS tagger [7]. A long short-term memory 

(LSTM) recurrent neural networks (RNNs) [8] has been 

successfully used to build a highly accurate tagger that 

compares favourably with all reported taggers. The main 

advantage of LSTM RNNs is their ability to learn long-

term dependencies without the need to compute explicit 

probabilities [8]. In addition, one of the major advantages 

of the LSTM neural model is that no feature engineering 

is required. Accordingly, morphological segmentation is 

not explicitly needed. However, morphological 

http://dx.doi.org/10.12785/ijcds/080310 
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segmentation for our data is performed using our 

underling Sliding Window Asymmetric Matching 

(SWAM) Algorithm [9], and the accuracy of the SWAM 

algorithm is well above 98% when using the latest 

version. 

2. LITERATURE REVIEW 

Arabic POS tagging has been gaining traction recently 
due to the increasing importance of tagging in building 
modern NLP and artificial intelligence applications. Some 
efforts have been made for Classical Arabic (CA) and 
Modern Standard Arabic (MSA) during the past few 
years. These can be classified into four categories: rule-
based approaches [10], [11], probabilistic corpus-based 
approaches [9], [12], [13], hybrid methodologies [14], 
[15], and machine learning approaches [16], [17], [18], 
[19].  

 Machine Learning for POS Tagging Arabic language A.

Habash and Rambow [16] applied support vector 
machines (SVMs) to identify Arabic tagsets. In their view, 
POS tagging is a classification problem that depends on 
many features. For Arabic, the features are more complex 
than those of other languages, which means the tagsets for 
Arabic are much larger than those for Germanic 
languages, such as English. While tagsets for English 
consist of 50 elements at most, for Arabic, 2,200 
morphological tags have been used for tagging the first 
280,000 words in the Penn Arabic Treebank out of 
333,000 words completely specified in the morphological 
analysis. Therefore, Habash and Rambow developed a 
morphological analyser which is supported by a 
morphological disambiguation approach for Arabic POS 
tagging and a machine learning classification component. 
They reported that morphological tagging and 
tokenisation were similar operations that involved three 
steps: 

 Collection of all appropriate tags from the 
morphological analyser for an assigned word. 

 Application of machine learning classifiers on the 
words of a sentence. Through this approach, the 
value, feature and class of a word can be 
identified. Habash and Rambow used Yamcha, an 
SVM that includes Viterbi decoding. 

 Application of classifiers to choose the expected 
morphological tag. 

As a result, Habash and Rambow obtained accuracy 
rates on all tasks in the 90% range. They found enough 
information on affixes and clitics for good tokenisation 
performance, and they performed POS tagging, 
disambiguation, and morphological tokenisation in a 
single round using this approach. It was observed in this 
experiment that the classifiers used may be partially 
disambiguated, which creates some errors in choice 
matching. So, increasing the efficiency of classifiers 

opens new directions in the research field. For future 
researches, in order to address the Arabs community 
needs, a fully automated POS tagging system is required 
for the Arabic language. 

A similar improved SVM approach was used by Diab, 
Hacioglu, and Jurafsky [17] that performs tokenisation, 
POS tagging, and base phrase chunking of Arabic text 
automatically. Actually, they selected the most efficient 
tools used for POS tagging in English and applied them to 
Arabic texts. In POS tagging, they modelled this as a 1-of-
24 classification task in which the class labels are POS 
tags. However, if a token did not occur in the training 
data, it was assigned a Noun tag by default; However, 
50% of the errors resulted from confusing nouns, with 
adjectives or vice versa. To prepare the data, they 
converted the Arabic Treebank into Latin-based 
abbreviated from American Standard Code for 
Information Interchange (ASCII) characters using the 
Buckwalter transliteration scheme. Not only did they 
report that the SVM-POS tagger achieved 95.49% 
accuracy, but they also promised to further improve the 
performance of the system using additional features, a 
wider context, and more data. 

Ben Ali and Jariri [18] developed a different Arabic 
POS tagger using genetic algorithms that assigned POS 
tags to the input text. The findings of their research study 
suggest that the genetic algorithm approach is more robust 
than other statistical systems for tagging natural language 
texts, achieving approximately 94% accuracy. 
Unfortunately, they did not perform segmentation, which 
is an important operation for Arabic morphology. 

Much work has been achieved in Arabic POS tagging 
using the sequence of clitics in a word simultaneously. 
Different approaches have been used for this purpose. 
Darwish, Mubarak, Abdelali, and Eldesouki [19] 
evaluated the comparative performance of two different 
methods for POS tagging. They compared applications of 
SVM-based ranking and bidirectional long-short-term 
memory (bi-LSTM) NN-based sequence labelling in 
building Arabic POS tagging system. They also found that 
adding explicit features to the bi-LSTM NN and 
employing word embeddings separately improved POS 
tagging results. The accuracy result was 95.50%, which, 
though promising, was not as much so as rule-based 
taggers. However, this work is useful for applying NN to 
Arabic POS tagging. 

 Deep learning for POS Tagging other languages B.

Wang, Qian, Soong, He, and Zhao [20] introduced a 
novel approach called the bidirectional long short-term 
memory recurrent neural network (Bi-LSTM-RNN), 
which the authors used in word embedding for POS 
tagging without the employment of morphological 
features. With the Bi-LSTM-RNN, they implemented six 
types of word embedding for comparison and found that 
all instances exhibited high accuracy. In demonstrating 
that competitive tagging accuracy (around 97%) can be 
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achieved without the benefit of morphological features, 
the authors illustrated the advantage of the Bi-LSTM-
RNN as a method of tagging a language that lacks 
necessary morphological knowledge. 

Plank, Søgaard, and Goldberg [21] explored 
automating POS tagging based on an LSTM network and 
proposed a novel multi-task bi-LSTM model with an 
auxiliary loss function that improves the accuracy with 
which specific words are tagged. Under varying 
conditions and multiple parameters, including data size 
and label noise, the authors assessed token and sub-token-
level representations of NN-based POS tagging across 22 
languages. They indicated that sub-token representations 
are necessary to obtain a state-of-the-art POS tagger and 
that character embedding is particularly helpful for non-
Indo-European and Slavic languages. Finally, the authors 
confirmed that their bi-LSTM tagger exhibits competitive 
performance on data from the Wall Street Journal, for 
which POS accuracy reached 97.3%. 

3. PROPOSED METHODOLOGY 

As stated earlier, the main purpose of this paper is to 
investigate the possibility of building a highly accurate 
automated Arabic POS tagger using NNs and deep 
learning technologies. To achieve this goal, a two-level 
research methodology was used. At the upper (macro) 
level, the methodology is a combination of exploration, 
experimentation, recommendations, and design. At the 
lower level, a typical machine learning process has been 
applied to train and test the models recommended by the 
upper (macro) process. Typical phases of a machine 
learning process include data collection, preprocessing, 
transformation to the fit input/output requirements of an 
underlying model, model configuration, training, testing, 
and analysis. 

 The Upper (Macro) Level Process A.

 Exploration Phase: The main purpose of the 

exploration phase is to conduct a detailed survey 

of potential NN models and identify the most 

appropriate Arabic tagset to be used in the 

experiment. In addition to selecting the most 

relevant neural models, the exploration phase 

surveys the types of algorithms and approaches 

used in training and testing NN models. The 

exploration phase also covers the types of 

machine learning development platforms and 

utilities used in training and testing NNs. This 

phase ends with recommendations regarding the 

above three issues: type of model to be used, 

appropriate tagset, and recommended platform. 

 Initial Experimentation Phase: The aim of this 

phase is to perform initial experimentation and 

comparison of the most relevant NN models 

selected in the previous step. At the same time, 

an evaluation of the appropriate word 

embeddings and text encoding techniques is 

conducted. 

 Design: The results obtained from the 

experimentation performed in Step 2 are 

thoroughly analysed, and concrete architectures 

for the models to be used are developed. 

 Implementation: The designed models are 

implemented, trained, tested, and evaluated. 

 Lower (Micro) Level B.

At the lower (micro) level, Step 4 of the macro level 

(implementation) is conducted again using typical 

machine learning cycles, which involve 

 data preparation and preprocessing; 

 data wrangling or munging; 

 word embedding and encoding; 

 training the model using appropriate algorithms; 

 evaluating the model; and 

 repeating the above steps until the performance 

of the model is satisfactory. 

The same steps, with slight modifications, are used in 
the testing and deployment phases. 

4. PROPOSED MODEL 

This section covers the type of NN model, the Arabic 
tagset, and the platform that were used. It also describes 
the method of preparing data, the encoding approach and 
how the approach works. 

 LSTM A.

Based on the adopted methodology and 
experimentation with a selection of neural models, the 
LSTM recurrent neural model [19] has been identified as 
the strongest candidate for the purpose of our work. It has 
been shown that this model is suitable for modelling 
long-range dependencies in several POS tagging studies 
[20], [21]. Based on the results proposed by [19], we 
concluded that LSTM is an appropriate NN to use for the 
Arabic POS tagging task. LSTM architectures designed 
to deal with the vanishing gradient problem have been 
proven to learn long-term dependencies more efficiently 
through internal units [22]. In a repeated LSTM module, 
there are four interacting layers, unlike a single RNN 
layer that contains a simple sigmoid or tanh layer. LSTM 
uses the hidden state from the previous time step and the 
current input with these four layers, which interact in a 
particular way to implement recurrence. Fig. 1 represents 
the LSTM cell at time step t. The internal memory of the 
LTSM unit is represented by cell state c, which is 
indicated by the horizontal line at the top of the figure. 
The horizontal line on the bottom represents the hidden 
state. The LSTM cell is able to remember important 
things from the present, and forget unimportant things 
from the past, by using LSTM gates. The i, f, o and g 
gates let LSTM solve the vanishing gradient problem. 
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Figure 1. LSTM Cell [22]. 

LSTM gates can be represented by equations that 
explain how to calculate the hidden state, ht, at time t 
from the hidden state at the previous time step, ht -1. 
Values for short or long times are stored by cell Ct. In the 
first step, the LSTM tagger determines the importance of 
data to be stored in a cell with the help of a forget gate 
layer, also known as a sigmoid layer. The principle is 
based on computation of data from ht -1 and xt by 
generating a number between 0 (completely discard set) 
and 1 (save entire set) for every number in cell state Ct -1. 

 ft  =  σ (Wf.[ht−1,xt] + bf)                   (1) 

The flow of the new value in the memory is controlled by 

an input gate, which also determines the value updating. 

The vector of the new value, C
˜
t, is created by the tanh 

layer of the state, which is then combined to create an 

update. 

it = σ (Wi.[ht−1,xt] + bi)                     (2) 

C
˜

t = tanh (Wc.[ht−1,xt] + bc)                 (3) 

The decisions for remaining values in the cell are 
controlled by the forget gate, which update the new state 
of cell C

˜
t from C

˜
t−1. The old state is multiplied by ft and 

added to it ∗ C
˜
t. The decisions for this new candidate 

value scale are then updated. 

C˜t = ft ∗Ct−1 + it ∗C˜t                    (4) 

The filtered version of the cell state is based on this 

output. The output of the cell state is determined by 

running the sigmoid layer. Through the tanh layer, values 

between -1 and 1 are multiplied by the sigmoid gate 

output. 

Ot = σ (Wo[ht−1,bo] + bo) (5) 

          ht = Ot  tanh(Ct) (6) 

 

 Dataset B.

Based on a survey of available datasets, the Quranic 
Arabic Corpus (QAC) was the most suitable candidate 
for training and testing our model. The QAC is a gold 

standard that has been manually created and verified 
[23]. The QAC dataset consists of a sequence of Quranic 
verses, which consists of a sequence of words. Each word 
is composed of a stem, prefix, and suffix. Fig. 2 provides 
an example of word segments. Each segment of a given 
word is referred to as a morpheme. 

 

 

Figure 2. Word Morphemes. 

In detail, our dataset consisted of a sequence of words 
that are characterised by morphemes (prefixes, stems, 
suffixes) and their corresponding tag sequences (prefix, 
stem, suffix tags). In other words, each morpheme is 
tagged with nouns, verbs, prepositions and so on. An 
example of this is shown in Fig. 3. These detailed 
morpheme segmentations for words can improve the 
accuracy of the results derived through the proposed 
tagger. We therefore expanded our experiments by using 
words and their corresponding tags. 

 

 
Figure 3. POS Tagging Sequence of Morphemes. 

We used stem tags in a tag sequence to label words 
given that these are the tags available for the meantime. 
An example of word POS tagging is shown in Fig. 4. 

 
Figure 4. POS Tagging Sequence Of Words. 

 Tagset C.

  The proposed tagset for this system has been derived 
from the QAC [24]. The advantages of this tagset are that 
it has a good size, which can reveal information about the 
text; it is intended to be used for the Arabic language by 
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analyzing Quran grammar; and it is effective in manual 
annotation by crowdsourcing. The original POS tagset 
contained 44 tags. To tag morphemes, an expanded tagset 
comprising 87 tags was used because some morphemes 
were labelled with the composite tags of the original 
labels. To tag words, a collapsed tagset consisting of 37 
tags was used. 

 Data Preprocessing D.

To prepare the data for easy processing by the 

proposed taggers, some pre-processing steps were taken 

on the given data file, which was stored as a comma-

separated values (CSV) file. The content of the original 

file consisted of 77,915 words with 14,901 unique words. 

Each line in data file comprised the ID, word, prefix, 

stem, suffix, pattern, root, prefix tag, stem tag, and suffix 

tag. Fig. 5 presents how the data were stored in the 

original file. 

 
Figure 5. Quran Data File. 

 Each line of data consisted of three segments and 

corresponding tags. We separated each segment 

(morpheme) with its corresponding tag into a new line. 

These updates enabled the LSTM tagger to access the file 

and tag morphemes easily. The final file consisted of 

124,002 items with 7,508 unique morphemes. Fig. 6 

presents how the data were stored in the updated file. 

 
Figure 6. Updated Quran File  

 Encoding E.

At first, input data for taggers were planned to be 
without word embeddings. And because NNs cannot 
understand letters, we needed to find a way to convert 
words or characters into numbers. Therefore, our two 
datasets, comprised of morphemes with corresponding 
tags or words with corresponding tags, had to go through 
an encoding process. First, we planned to use one-hot 
encoding (OHE), which is an easy and popular encoding 
method for a specialised learning algorithm for dealing 
with numerical data. In the OHE method, every word in 
the vocabulary is represented by a binary vector with a 
size equal to the vocabulary size. This method maps each 
word to a vector with a length equal to the number of 

unique morphemes, which, in case of converting 
morphemes, vector length will equal 7,508, and the nth 
digit is an indicator of the presence of a particular word 
[25]. While, in case of converting words, vector length 
will equal 14,901. The vector length indicates the number 
of neurons needed for the first neural layer. This method 
performs well with a small data sample, but when 
working with a large data sample, as in our case, the 
neural model training time grows exponentially. 
Therefore, we chose another method, the reversible 
integer transformation (RIT) algorithm, which was 
introduced by Affendi [26]. This method converts textual 
training words or morphemes into binary numerical form. 
The most important feature is maximum number of 
neurons needed in the input layer is 64. Because each 
character in a word is represented using only six bits. 

 Word Embeddings Technique F.

Word embeddings represent a new rising form of 
distributed semantics representations, where each word in 
a given corpus or text is represented by a unique numeric 
vector based on the contexts within which it occurs [27]. 
Currently, the most popular approach is the Word to 
Vector (Word2Vec) approach [27], in which the vector 
representations for words are computed using a shallow 
MLP model using backpropagation. In the Continuous-
Bag-of-Words (CBOW) version of the model a sliding 
window approach is used to pass the context of the word 
(for example two words before, and two words after) to 
the neural network and use any target as the output (for 
example the word itself). The hidden layer resulting from 
the training is the semantic vector representation of the 
word. In this paper, a variation of the CBOW model has 
been used to create word vectors for Quranic Text 
Corpus. Word vectors were created by using Gensim 
[28], a Python library. The motivation is to compare the 
results obtained of Word2Vec approach to those obtained 
using LSTM. Fig. 7 explains how to create Word2Vec 
vectors for morphemes.  

 

Figure 7. Word2Vec Process. 
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The first line shows the sequence verses of the Quran, 
and second line shows the separated morphemes, which 
are our input for first case. In first case, the input layer 
size was equal to the number of different morphemes in 
the vocabulary for training (7,510 words). The hidden 
layer size was set to the dimensionality of the resulting 
word vectors (i.e. 300). 

 Platform G.

Several open-source libraries and frameworks are 
available for advanced deep learning. To develop our 
NNs, we chose Keras, an NN library written in Python. 
Keras is a high-level application programming interface 
(API) that can be run on top of TensorFlow and Theano. 
We chose it because it has a user-friendly interface and 
allows for easy and fast prototyping and testing of NNs 
with short lines of code. 

5. RESULTS 

The data were divided into a training component 
(70%) and a testing component (30%). The former was 
used to train the model, and the latter was used to 
compute the model’s accuracy. When tagging 
morphemes, the data sample was comprised of 124,002 
pairs of morphemes and tags. The training component 
was comprised of 86,801 pairs, and the testing 
component included 37,201 pairs. When tagging words, 
the data sample included 77,190 pairs of words and tags. 
The training component was comprised of 54,540 pairs, 
and the testing component consisted of 23,375 pairs.  

The training set was fed into the input layer to train 
the LSTM model. After the model training was 
completed, the retained data were used to test the model 
accuracy on datasets that have not been previously 
examined.  

 We conducted four experiments. First, we fed the 
morphemes into LSTM model with using RIT encoding 
algorithm. The performance of the proposed LSTM POS 
tagger during testing and training is depicted in Fig. 8, 
which shows that the model achieved 99.72% accuracy.  

 
Figure 8. Accuracy of Tagging Morphemes Using the LSTM Model. 

As Fig.  8 illustrates, accuracy increased for the 
training and testing data after the second epoch. Beyond 
the 10th epoch, no notable variation was observed in 
either the train or test lines. 

Second, we fed words into the LSTM model using 
only RIT encoding algorithm. The performance of the 
proposed LSTM POS tagger during testing and training 
words is shown in Fig. 9. The model achieved 99.18% 
accuracy. 

 

Figure 9. Accuracy of Tagging Words Using the LSTM Model. 

Third, we created word vectors for morphemes using 
Word2vec model, after which we passed the result 
vectors onto the backpropagation POS tagger to evaluate 
the impact of using word vectors for predicting POS tags. 
The performance of the proposed Word2Vec POS tagger 
during testing and training with the use of word vectors is 
represented in Fig. 10. The model achieved 99.55% 
accuracy. 

 
Figure 10. Accuracy of Tagging Morphemes Using the Word2Vec 

Model  

Fourth, we also used Word2Vec for creating words 
vectors and then incorporated vectors as inputs into 
Word2Vec POS tagger. The performance of the 
Word2Vec POS tagger during the testing and training is 
shown in Fig. 11.  As can be seen, the model performed 
at an accuracy of 97.33%. 
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Figure 11. Accuracy of Tagging Words Using the Word2Vec Model. 

In the above-mentioned experiments, POS tagging 
was carried out using the LSTM model for morphemes 
and words. Also, POS tagging was carried out using the 
Word2Vec model for morphemes and words with using 
word vectors to compare word2Vec accuracy with the 
results obtained using LSTM. Table I compares obtained 
accuracy results for POS tagging Quran text. 

Table I. POS TAGGING ACCURACY RESULTS FOR QURAN TEXT 

Tagger Dataset Accuracy 

LSTM Words 99.18% 

LSTM Morphemes 99.72% 

Word2Vec Words 97.33% 

Word2Vec Morphemes 99.55% 
 

6. ANALYSIS 

This section details the comparison of our models 
results and the comparison of these findings with those of 
six related Arabic POS taggers. The proposed Word2Vec 
POS tagger tagged morphemes at an accuracy of 99.55% 
and words at an accuracy of 97.33% with using word 
vectors. The proposed LSTM POS tagger tagged 
morphemes at an accuracy of 99.76% and tagged words 
at an accuracy of 99.18% without using word vectors. 
These high results of LSTM POS model confirmed that 
feature engineering is not required as the power of 
LSTM-RNNs lies in their ability to learn long-term 
dependencies [8] and determine context even without 
embedding. However, the comparison of morpheme and 
word tagging showed that accuracy for the former is 
higher by both taggers. This result is ascribed to the fact 
that decomposing words into parts can provide precise 
information.  

   To compare our results with other research, we 
found two NN experiments on Arabic POS tagging. The 
first is Abu-Malloh’s POS tagger, which was based on a 
classical NN. This tagger was trained by a standard 

backpropagation algorithm and designed with a three-
layer network with eight hidden neurons [29]. To 
implement the tagger, Abu-Malloh used a tagset with a 
size of 18 tags and a total of 16,672 distinct words written 
in MSA. These words were divided into two distinct sets: 
a training set and a testing set consisting of 13,337 and 
3,335 Arabic words, respectively. The overall accuracy of 
the developed tagger reached 87.02%. 

In the second experiment, Muaidi used the Levenberg 
Marquardt (LM) algorithm and a tagset with a size of 189 
tags [30]. Muaidi’s tagger was trained and tested on an 
Arabic corpus consisting of 24,810 Arabic words with 
their associated tags, and it was divided into a distinct 
training set (19,848 Arabic words) and testing set (4,962 
Arabic words). The developed Artificial neural networks 
(ANN) for Muaidi’s tagger was successful, reaching an 
accuracy of 90.21% for the testing dataset. 

We also found a study by Abdelkareem, which 
compared the performance of some POS tagging 
techniques for Arabic text using the QAC [31], which is 
the same corpus used in our experiments. These 
techniques included n-gram, Brill, Hidden Markov Model 
(HMM), and Trigrams’n’Tags (TnT) taggers. The 
comparison experiments were conducted on diacritised 
and undiacritised CA which means CA with and without 
diacritical marks. The framework was the Natural 
Language Toolkit (NLTK), which consists of open-
source Python modules and enables documentation for 
research and development in NLP and text analytics. A 
total of 77,430 words was divided into a training set of 
74,859 words and a testing set of 2,571 words. 
Abdelkareem’s experiments were applied on CA for both 
diacritised and undiacritised data. For the two forms, they 
studied a 33-tag tagset, and they simplified a new form of 
a 9-tag tagset. This produced four experimental cases. 

The Brill tagger performed the best among all other 
taggers for undiacritised Arabic for both the 33 tagset 
(80.9%) and the 9 tagset (83.2%). For diacritised Arabic, 
the Bigram tagger performed well for both the 33 tagset 
(80.1%) and the 9 tagset (82.0%). It is noteworthy that 
each tagger gave better accuracy in tagging undiacritised 
Arabic than in tagging diacritised Arabic because 
diacritics are considered additional characters. The 
comparison of the proposed model with other Arabic 
POS taggers is a complicated task in which accuracy 
depends on different factors, such as tagset size and 
dataset size [30]. A relative comparison of the accuracy 
results from our proposed tagger with other experiments 
is shown in Table II.  

The results show that our proposed NN models for 
tagging the QAC produced better results than other 
statistical techniques used for this purpose. We also 
noticed that our proposed taggers are better and more 
effective than the traditional feedforward multilayer 
perceptron models for tagging MSA words. 
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7. CONCLUSION 

 Findings A.

In this study, we aimed to apply NN technologies for 
Arabic POS tagging. Lately, NNs have become a well-
known and valuable tool for building many NLP 
applications, such as text classification. Tagging Arabic 
words is a complex task, and more Arabic POS tagging 
studies are needed. In this paper, we examined the 
application of backpropagation and LTSM to identify 
POS tags of Arabic words. An LSTM-RNN model was 
used to predict the POS tags of Arabic words and 
morphemes after being trained using a gold-standard pre-
tagged set. Word tagging was carried out at accuracy 
levels of 99.18% while morphemes tagging achieved 
99.72%.  

Also, a CBOW model has been applied to predict 
POS tags for Quranic Text Corpus. The reason for 
applying word embedding was to compare word 
embedding accuracy with the results obtained using 
LSTM. 

Tagging by using word embedding was accomplished 
at accuracy levels of 97.33% and 99.55% for words and 
morphemes. Decomposing words into parts (morphemes) 
can provide precise information for POS tagging task. 
This fact was proved, when POS tagging morphemes was 
higher than tagging words in both taggers. 

We also proved that LSTM POS tagging takes into 
consideration the context of a word (i.e. neighboring 
words) in a manner similar to word embeddings. This 
method showed higher accuracy than POS tagging of 
words. In general, the high accuracy levels indicated that 
LSTM is a powerful classifier that may be used to build 
highly accurate Arabic POS taggers. 

 Contributions B.

 The first attempt to apply LSTM for CA POS 

tagging using the QAC. 

 The use of RIT algorithm that converts textual 

training words into a binary representation, 

which reduces the time it takes to train the 

network. 

 Comparing word embedding accuracies with 

LSTM accuracies for POS tagging QAC words 

and morphemes. 

 Elimination of the need for probabilistic 

approaches and complex rules to capture the 

context and dependency, since LSTM models 

naturally take dependency into consideration 

and capture the context. 

 A highly accurate POS tagger for the Arabic 

language that compares favourably with all 

known types of taggers. 

 Future Work C.

Many aspects of this research can be improved 

further, such as the following: 

 Training and testing of different Arabic data 

samples are needed for NN models. 

 Other NN models for NLP, such as 

convolutional NNs, can be explored. 

 Additional experiments for designing NNs can 

be conducted by tuning NN hyperparameters 

and trying different numbers of layers and 

neurons. 
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