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Abstract: The techniques of asymptotic mean integrated squared error’s reduction in kernel density estimation is the 

focus of this paper. The asymptotic mean integrated squared error (AMISE) is an optimality criterion function that 

measures the performance of a kernel density estimator. This criterion function is made up of two components, and the 

contributions of both components to the AMISE are mainly regulated by the smoothing parameter. Kernel density 

estimation are of vitally importance in statistical data analysis especially for exploratory and visualization purposes. In 

performance evaluation, a method is better when it produces a smaller value of the AMISE; hence effort is being made 

to develop techniques that reduce the AMISE while ensuring that in practical implementation using real data, the 

statistical properties of the given observations are retained. We consider the kernel density derivative and kernel 

boosting as the AMISE reduction techniques. In kernel boosting, we introduce the optimal smoothing parameter 

selector for each boosting steps as the number of iteration increases. The presented results show that the AMISE 

decreases with higher kernel derivatives and also as the number of boosting steps increases.   

Key words: Kernel, Derivatives, Boosting, Bandwidths, AMISE. 

1. INTRODUCTION 

Density estimation is the construction of a probability density estimates from a given sample using the sample 

values and few assumptions about the density estimator. Kernel density estimators are widely used nonparametric 

estimation techniques in statistics due to their simple forms and smoothness. Kernel estimation is an important 

statistical data analytic tool whose ideas can be extended to other fields of studies that requires data analysis. 

Kernel density derivatives are of wider applications in statistics and other related fields of studies. The first and 

second derivatives of any density function are fundamental in estimation because some statistical properties of the 

distribution like local extrema and point of inflexion can be identified [1]. The derivatives of a probability density 

function are also applicable in clustering analysis [2], time series analysis [3], estimation of the optimal smoothing 

parameter in kernel density estimation and the location of modes and bumps of a density estimate [4].  

Boosting in density estimation was introduced by Freund and Shapire [5] and applied basically in regression and 

classification problems. The idea was extended to kernel density estimation by Marzio and Taylor [6] as bias reduction 

techniques. The practical successful applications of boosting in many fields of statistics has accounted for its popularity 

while effort is been made to develop the statistical theory which explains the principles of its mode of operations. The 

boosting method involves the systematic reweighting of data base on a kernel function that depends on the smoothing 
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parameter. In kernel density estimation, boosting is the process of updating the weights of the estimator so that the 

product of the aggregate integrates to unity. 

Kernel density estimation is mainly confronted with the problem of smoothing parameter choices. In univariate 

kernel estimation, the problem of smoothing parameter selection is with less complexity unlike the multidimensional 

case where there are different forms of smoothing parameterizations [7]. The choice of smoothing parameter is also 

very important in kernel density derivatives particularly as the order of the derivative to be estimated increases. The 

determination of the smoothing parameter is mainly data related for a better objective use of kernel estimator. In kernel 

boosting, smoothing parameter plays a vital role in its implementation; hence the smoothing parameter is regarded and 

interpreted as a resolution factor when viewing observations and giving better interpretation of the structures of the 

observations. 

2. KERNEL DENSITY ESTIMATOR AND ITS DERIVATIVES 

The univariate kernel estimator is a nonparametric technique in density estimation. In density estimation, the 

univariate kernel estimator provides an excellent platform for displaying features in given observations due to easy 

implementation unlike other complex estimators. The univariate kernel estimator has its compact form as 

𝑓(x) =
1

𝑛ℎ
∑𝐾

𝑛

𝑖=1

(
x − X𝑖
ℎ

),                                                                                                                                                             (1) 

where 𝐾 is the kernel function, ℎ > 0 is the smoothing parameter, X𝑖  are the set of observations and 𝑛 is the sample 

size. The kernel function is a non-negative function that satisfies the following conditions 

{
 
 

 
 ∫𝐾(x)𝑑x = 1,                       

∫ x𝐾(x)𝑑x = 0    and            

∫ x2𝐾(x)𝑑x = 𝑘2(𝐾) > 0 .    

                                                                                                                                                     (2) 

The first condition in (2) implies that any weighting function must integrate to unity, hence most kernel functions 

are probability density functions; the second condition simply states that the average of the kernel is zero, while the 

third condition means that the variance of the kernel is not zero [4].  

The derivative of the univariate kernel density function is obtained by taking the derivative of the kernel density 

estimator in (1). Assuming the kernel 𝐾 is sufficiently differentiable 𝑟 times, the 𝑟𝑡ℎ density derivative of (1) is given 

by 

𝑓(𝑟)(x) =
1

𝑛ℎ𝑟+1
∑𝐾(𝑟)
𝑛

𝑖=1

(
x − X𝑖
ℎ

),                                                                                                                                              (3) 

where 𝐾(𝑟) is the 𝑟𝑡ℎ derivative of the kernel function and the kernel 𝐾 is usually a symmetric probability density 

function [8]. In kernel density derivative estimation, the smoothing parameters are expected to be larger than the 

estimation without derivative because the derivative of any function tends to be noisier than when the function is not 

differentiated. Hence kernel density derivatives are associated with larger smoothing parameter for their estimation. 

We use the Gaussian kernel function that has zero mean and a unit variance because it produces smooth density 

estimates and simplifies the required mathematical computations. Again, the Gaussian kernel possesses derivatives of 

all orders and that has supported its wide spread uses in kernel density estimation and kernel density derivative 

estimation. The Gaussian 𝑟𝑡ℎ  density derivative is usually estimated from the Gaussian kernel and is denoted 

by  𝐾(𝑟) (x) = (−1)𝑟𝐻𝑟(x)𝐾(x), where 𝐻𝑟(x) is the 𝑟𝑡ℎ  Hermite polynomial. The first five values of the Hermite 

polynomials are𝐻0(x) = 1 , 𝐻1(x) = x , 𝐻2(x) = x
2 − 1,   𝐻3(x) = x3 − 3xand 𝐻4(x) = x4 − 6x2 + 3. The Gaussian 

kernel density derivative estimate from (3) is of the form 
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𝑓(𝑟)(x) =
(−1)𝑟

√2𝜋𝑛ℎ𝑟+1
∑𝐻𝑟

𝑛

𝑖=1

(
x − X𝑖
ℎ

) 𝑒x𝑝
−
1
2
(
x−X𝑖
ℎ

)
2

 .                                                                                                                (4) 

Equation (4) above can be used to estimate the 𝑟𝑡ℎ  derivative of the kernel function but it should be noted that 

when 𝑟 = 0, it will result in the usual kernel density estimator. 

 3. THE ASYMPTOTIC MEAN INTEGRATED SQUARED ERROR APPROXIMATIONS 

The estimates of 𝑓(x) and 𝑓(𝑟)(x) in (1) and (3) are measured mainly by the asymptotic mean integrated squared 

error (AMISE). An asymptotic approximation of (1) using Taylor’s series expansion will yield the integrated variance 

and the integrated squared bias given by 

𝐴𝑀𝐼𝑆𝐸 (𝑓(x))  =
𝑅(𝐾)

𝑛ℎ 
+
1

4
𝜇2(K)

2
 ℎ
4𝑅(𝑓″),                                                                                                                          (5) 

where 𝑅(𝐾) is the roughness of the kernel, 𝜇2(K)
2
 
 is the second moment of the kernel and 𝑅(𝑓″) =  ∫ 𝑓″(x)2𝑑x is the 

roughness of the unknown probability density function [4]. The value with the minimum of the AMISE is the solution 

to the differential equation  

𝜕

𝜕ℎ
𝐴𝑀𝐼𝑆𝐸(ℎ) =

−𝑅(𝐾)

𝑛ℎ2
+ 𝜇2(K)

2ℎ3𝑅(𝑓″) = 0. 

Therefore, the smoothing parameter that minimizes the AMISE of the kernel density estimator in (1) is of the form 

ℎAMISE = [
𝑅(𝐾)

𝜇2(K)
2𝑅(𝑓″) 

]

1 5⁄

× 𝑛−1 5⁄ .                                                                                                                                         (6) 

In terms of dimension, (6) can be written as 

ℎAMISE = [
𝑅(𝐾)

𝜇2(K)
2𝑅(𝑓″) 

]

1 (4+𝑑)⁄

× 𝑛−1 (4+𝑑)⁄ ,                                                                                                                           (7) 

where 𝑑 is the dimension of the kernel function.  

The AMISE of the 𝑟𝑡ℎ derivative of the kernel function provided the kernel 𝐾 can be sufficiently differentiated is 

of the form 

𝐴𝑀𝐼𝑆𝐸 (𝑓(𝑟)(x)) =
𝑅(𝐾(𝑟))

𝑛ℎ2𝑟+1  
+
1

4
ℎ4𝜇2(K)

2
 
𝑅(𝑓(𝑟+2)),                                                                                                          (8) 

where 𝑅(𝐾(𝑟))  is the roughness of the 𝑟𝑡ℎ  derivative of the kernel, 𝜇2(K)
2
 
 is the second moment of the kernel 

and  𝑅(𝑓(𝑟+2)) is the roughness of the 𝑟𝑡ℎ unknown probability density function [9]. The order of the bias term of the 

𝑟𝑡ℎ derivative of the AMISE is the same as 𝑂(ℎ4) but any new derivative order will introduce two additional powers to 

the smoothing parameter ℎ of the variance term. The 𝑟𝑡ℎ roughness of the Gaussian kernel function denoted by 𝑅(𝐾∅
(𝑟)
) 

can be calculated from the relation 

𝑅(𝐾∅
(𝑟)
) =

(2𝑟 − 1)!!

2𝑟+1√𝜋
.                                                                                                                                                                   (9) 
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The smoothing parameter that minimized the 𝑟𝑡ℎ AMISE in (8) is given by 

ℎ𝐴𝑀𝐼𝑆𝐸
𝑟 ≈ [

(2𝑟 + 1)𝑅(𝐾(𝑟))

𝜇2(𝐾)
2
 
𝑅(𝑓(𝑟+2))

]

(
1

2𝑟+5
)

× 𝑛−(
1

2𝑟+5
).                                                                                                                    (10) 

The smoothing parameter that minimizes the AMISE for the first and second derivatives are of orders 𝑂(𝑛−1 7⁄ ) and 

𝑂(𝑛−1 9⁄ ) respectively [4].   

4. BOOSTING IN KERNEL DENSITY ESTIMATION 

Boosting in kernel density estimation is a multiplicative aggregation model that was introduced into kernel 

estimation by Marzio and Taylor [10] and is considered as a bias reduction method. If 𝐾 is the kernel function and 

ℎ > 0 is the smoothing parameter, then [11] 

𝑓𝑚(x) = ∫
1

ℎ
𝑊𝑚(𝑡)𝐾 (

x − 𝑡

ℎ
) 𝑓(𝑡)𝑑𝑡,                                                                                                                                       (11) 

where 𝑊1(𝑡) is taken to be 1. The standard normal kernel will be used with the transformation  𝑢 =  (x − 𝑡) ℎ,⁄  𝑡 = x −

ℎ𝑢  and |
𝑑𝑢

𝑑𝑡
| =

1

ℎ 
 with 𝑑𝑡 = ℎ𝑑𝑢 . Using Taylor’s series expansion on (11) with the transformation, 𝑡 = x −

ℎ𝑢  and |
𝑑𝑢

𝑑𝑡
| =

1

ℎ 
 with 𝑑𝑡 = ℎ𝑑𝑢 we have 

𝑓1(x) = 𝑓(x) +
ℎ2𝑓″(x)

2
+   𝑂(ℎ2).                                                                                                                                           (12) 

The bias of 𝑓1(x)  is of order   𝑂(ℎ2) . Again using the change-of-variables 𝑢 = (𝑡 − x) ℎ,⁄  𝑡 = x + ℎ𝑢  and 
𝑑𝑢

𝑑𝑡
=

1

ℎ 
  

with  𝑊2 = (𝑓1(x))
−1

, we have the boosted estimate of  𝑓(x) at the second step which is of the form 

𝑓2(x) = ∫𝐾(𝑢) {𝑓(x + ℎ𝑢) + ℎ
2
𝑓″(x + ℎ𝑢)

2
+ 𝑂(ℎ2)}

−1

𝑓(x + ℎ𝑢)𝑑𝑢  

= 1 +
ℎ2𝑓″(x)

2𝑓(x)
+   𝑂(ℎ2).                                                                                                                               (13) 

The overall estimate of 𝑓(x) at the second step is of the form 

𝑓1(x) × 𝑓2(x) = 𝑓(x) {1 +
ℎ2𝑓″(x)

2𝑓(x)
+   𝑂(ℎ2)} {1 +

ℎ2𝑓″(x)

2𝑓(x)
+   𝑂(ℎ2)}                

= 𝑓(x) + 𝑂(ℎ4).                                                                                                                                            (14) 

Equation (14) is of order four, 𝑂(ℎ4) and there is a bias reduction from order two, 𝑂(ℎ2) to order four showing the bias 

reduction in kernel estimation via boosting. The multiplicative aggregation also known as boosting algorithm is a 

systematized algorithm where each step of 𝑚 is computed by 

𝑓𝑚(x) =
1

ℎ
∑W𝑚(𝑖)𝐾 (

x − X𝑖
ℎ

) ,

𝑛

𝑖=1

                                                                                                                                              (15) 

where 𝐾 is the kernel function, ℎ  is the smoothing parameter and W𝑚(𝑖) is the weight of observation 𝑖 at step  𝑚 . The 

weight of each observation is then updated using a log-odds ratio as [10] 
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W𝑚+1(𝑖) = W𝑚(𝑖) + log (
𝑓𝑚(x)

𝑓𝑚
(−𝑖)(x)

),                                                                                                                                       (16) 

where 𝑓𝑚
(−𝑖)(x𝑖)  is the leave-one-out estimator. The leave-one-out estimator is given by  

𝑓𝑚
(−𝑖)(x) =

1

(𝑛 − 1)ℎ
∑𝐾(

x − X𝑖
ℎ

) .

𝑛

𝑖=1

                                                                                                                                        (17) 

Boosting in kernel density estimation involves the weights of the observations being updated at each step and with 

the final estimator being a product of all the density estimates that will integrate to unity. The kernel boosting algorithm 

is given below. 

STEP1.  Given that   𝑖 = 1, 2 , … , 𝑛 , initialise the weights of the observations 

                𝑊1(𝑖) = 1 𝑛⁄  

STEP2.  Select ℎ which is the smoothing parameter. 

STEP3.  For 𝑚 = 1,… ,𝑀.  

(i) Obtain a weighted kernel estimate 

𝑓𝑚(x) =
1

ℎ
∑𝑊𝑚(𝑖)𝐾

𝑛

𝑖=1

(
x − X𝑖
ℎ

) 

(ii)  Update the weights according to 

W𝑚+1(𝑖) = W𝑚(𝑖) + log (
𝑓𝑚(x)

𝑓𝑚
(−𝑖)(x)

)   

STEP4.  Provide as output 

𝐶∏𝑓𝑚(x),

𝑀

𝑚=1

 

where 𝐶 is normalization constant such that  𝑓𝑚(x) integrates to unity. 

5. THE PROPOSED KERNEL BOOSTING BANDWIDTH SELECTOR 

Kernel density estimation as a nonparametric estimation technique is mainly confronted with bandwidth selection 

problem. However, smoothing parameter selectors for kernel density estimation and kernel density derivatives have 

been proposed by many authors even though there is no universally acceptable rule in bandwidth selection but there is 

no bandwidth selector for kernel boosting. Smoothing parameter selection in kernel boosting since its introduction in 

kernel density estimation has been subjective; that is the selection is at the user’s discretion. The subjective idea may 

not be objective; that is, may not be efficient because it does not consider the statistical properties of the distribution 

and the kernel function; hence cannot be applied in all circumstances. In kernel boosting, the smoothing parameter for 

its implementation must be larger than the classical second order kernel smoothing parameter because of the 

multiplication of the estimates and the principle of over smoothing.  
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Generally, kernel boosting in density estimation is a bias reducing approach that requires larger smoothing 

parameter in its implementation [12]. Boosting in kernel density estimation will result in reduction in the bias 

component of the AMISE and that translates to a reduction in the AMISE but with its major problem being the 

smoothing parameter require for each of the boosting steps. Kernel boosting in density estimation is comparable with 

the gradient methods in optimization theory where each of the iteration known as the boosting steps requires a 

smoothing parameter for its computation.  

In solving the problem of smoothing parameter selection in kernel boosting with respect to the number of boosting 

steps, we introduce a multiplier known as the bandwidth multiplier which is denoted by 𝛽. The bandwidth multiplier 

regulates the selection of the smoothing parameter require for each boosting step since the boosting idea involves the 

multiplication of the different estimates to produce the overall estimate. Recall the general smoothing parameter that 

minimizes the AMISE in (5) given as 

ℎAMISE = [
𝑅(𝐾)

𝜇2(K)
2𝑅(𝑓″) 

]

1 5⁄

× 𝑛−1 5⁄ .                

Since kernel boosting is a higher order bias reduction method, the propose smoothing parameter selector require for 

boosting in density estimation is of the form 

ℎ𝑚 = 𝛽1 2⁄ × ℎAMISE ,                                                                                                                                                                   (18) 

where 

{

𝑚 = 2, 3, … ,𝑀                                 
 

                     
𝛽 = 2𝑚 .                                                

                                                                                         

In (18) above, ℎAMISE  is the smoothing parameter obtains from (6), 𝑚  represents the number of boosting steps and 2𝑚 

denotes the order of the kernel. The bandwidth multiplier is for selection of smoothing parameter for boosting in kernel 

density estimation. Boosting in kernel estimation is a higher order bias reduction method, hence when 𝑚 = 1  is 

excluded from (18) because it produces the classical second order kernel.  

6. RESULTS AND DISCUSSION 

This section is about the implementation of kernel density derivative and kernel boosting using real data example. 

Kernel density derivatives and kernel boosting are both AMISE reduction methods that require larger smoothing 

parameter. While kernel density derivatives select its smoothing parameter for each derivative order using (10), kernel 

boosting will make use of (18) for the smoothing parameter require for each boosting step. We compute the first and 

second derivative orders and also obtain the first and second boosting steps only using the Gaussian kernel function. We 

obtain the results for the kernel derivatives and kernel boosting using Mathematica version 9 platforms. The procedure 

for obtaining the estimates of the kernel derivatives and kernel boosting for the Gaussian kernel is in the appendix. The 

result in Table 6.1 and Table 6.2 respectively shows the smoothing parameter and the value of the asymptotic mean 

integrated squared error for each derivative order and each boosting step. The kernel estimates with the various 

derivatives order are in Figure 6.1 while Figure 6.2 is the kernel estimates of the various boosting steps. 

The data set examine is the eruption lengths of 107 eruptions of Old Faithful Geyser [13]. The usual kernel 

estimates (i.e. when 𝑟 = 0) of this data show that the data set is bimodal and this provides an evidence in favour of 

eruption times exhibiting a bimodal distribution. However, the kernel estimate of the first derivative presents the data to 

be trimodal but at the second derivative order, the kernel estimate is oversmoothed and this is due to larger bandwidth 

as the order of the derivative increases. Generally, the first and second derivatives of a kernel function are for the 

estimation of modes and bumps of a distribution in density estimation.  
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In Table 6.1, as the derivative order increases, the smoothing parameters also increase while the AMISE decreases 

as well and this is a characteristic of kernel density derivative. Higher derivative order of kernel density estimation is an 

AMISE reduction technique but often times it may smooth out some significant features of the distribution if the 

distribution is not unimodality.  

In kernel boosting, the density estimates are often times oversmoothed especially for multimodal distribution. 

Generally, kernel boosting is always associated with oversmoothing due to larger smoothing parameter requirement for 

its implementation and the multiplication of the estimates involve. A method is better than the other when it produces a 

smaller value of the asymptotic mean integrated squared error [14, 15]. The bandwidths and the AMISE value of the 

boosted kernel are presented in Table 6.2 and the results show that as the number of boosting steps increases, the 

asymptotic mean integrated squared error (AMISE) reduces.  

 

 

 

 

 

 
Eruption length (minutes) 

  

  
D

en
si

ty
 E

st
im

at
e r=0 

 

r=1 

Eruption length (minutes) 

  

  
D

en
si

ty
 E

st
im

at
e 

  

  
D

en
si

ty
 E

st
im

at
e 

  
D

en
si

ty
 E

st
im

at
e 

Eruption length (minutes) 

  

Eruption length (minutes) 

  

r=2 

Figure 6.1. Kernel Estimates of the Old Faithful Data and Derivatives 

 

r=0 

r=1 

 r=2 

Derivative Order Bandwidths AMISE 

0 0.437301 0.00755559 

1 0.759298 0.00526965 

2 1.091920 0.00286615 

 

Table 6.1. Bandwidths and AMISE of Kernel Derivative 
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Boosting in kernel density estimation is an AMISE reduction technique but the inherent features in the data set at 

times might disappear due to the multiplication of the estimates and the use of large smoothing parameter. 

7. CONCLUSION 

The study is on the techniques of reducing the asymptotic mean integrated squared error using the kernel density 

derivative and kernel boosting approaches. Both methods depend on the smoothing parameter which must be larger 

than the classical second order smoothing parameter. Kernel density derivatives and kernel boosting may smooth away 

some desirable features of a data set such as multimodality but retained the characteristics of reducing the AMISE. 

While kernel boosting and kernel density derivative tends to produce smaller value of the AMISE, the proposed kernel 

boosting bandwidth selector produce AMISE values that are smaller than the AMISE values of the kernel density 

derivative method in kernel density estimation.  
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Figure 6.2. Kernel Estimates of the Old Faithful Data and Boosted Estimates 

 

m=1 

m=2 

 m=3 

Boosting Step Bandwidths AMISE 

1 0.437301 0.00755559 

2 0.874602 0.00366535 

3 1.071164 0.00255186 

 

Table 6.2. Bandwidths and AMISE of Kernel Boosting 
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APPENDIX 

Kernel Derivatives 

𝑛 = 107 

ℎ = 0.437301 

𝑋𝑖 = {𝐷𝑎𝑡𝑎} 

𝐹 = ((1 ((2 ∗ 𝜋)1 2⁄ ∗ 𝑛 ∗ ℎ)⁄ ) ∗ 𝐸𝑥𝑝−((((x−𝑋𝑖) ℎ⁄ )2) 2⁄ )) 

𝑓0 = Total[𝐹] 

Plot [𝑓0, {x,        0,        6}, Frame → True, FrameStyle → GrayLevel[0.125]] 

First Derivative 

ℎ1 = 0.759298 

F1 = −(((−1) ((2 ∗ 𝜋)1 2⁄ ∗ 𝑛 ∗ ℎ1
2)⁄ ) ∗ 𝐸𝑥𝑝−(((

((x−𝑋𝑖) ℎ1⁄ )2) 2⁄ ))((x−𝑋𝑖) ℎ1⁄ )2
) 

𝑓1 = Total[F1] 

Plot [𝑓1, {x, 0 , 6 }, Frame → True, FrameStyle → GrayLevel[0.125]] 
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Second Derivative 

ℎ2 = 1.09192 

F2 = ((1 ((2 ∗ 𝜋)1 2⁄ ∗ 𝑛 ∗ ℎ2
3)⁄ ) ∗ 𝐸𝑥𝑝−(((

((x−𝑋𝑖) ℎ2⁄ )2) 2⁄ )) ∗ ((((x − 𝑋𝑖) ℎ2⁄ ) − 1)
2
)) 

𝑓2 = Total[F2] 

Plot [𝑓2, {x, 0 , 6 }, Frame → True, FrameStyle → GrayLevel[0.125]] 

Kernel Boosting 

𝑛 = 107 

w1 = 1 𝑛⁄  

ℎ = 0.437301 

𝑋𝑖 = {𝐷𝑎𝑡𝑎} 

𝐹 = ((1 ((2 ∗ 𝜋)1 2⁄ ∗ 𝑛 ∗ ℎ)⁄ ) ∗ 𝐸𝑥𝑝−((((x−𝑋𝑖) ℎ⁄ )2) 2⁄ )) 

𝑓 = Total[𝐹] 

Plot [𝑓, {x,   0,   6}, Frame → True, FrameStyle → GrayLevel[0.125]] 

To obtain the next boosting step, update the weights according to 

w2(𝑖) = w1(𝑖) + log (
𝑓𝑚(x)

𝑓𝑚
(−𝑖)(x)

)  

by using the next smoothing parameter value for 𝑚2 which is the next boosting step. 

 


