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Abstract:  The presented work is dedicated towards deep understanding of resulting Electroencephalography (EEG) brainwaves 

during a typical grasp and lift human grasping task. During grasping, forces are applied by fingertips dexterously, as observed 

through resulting EEG waves. For mirroring this to a dexterous robotic hand, methods have to be developed to find features for 

optimal forces, movements, and right finger joints displacements. Resulting EEG brainwaves during grasp and lift task are very 

useful, however these EEG waves are related, correlated, complicated, and raw. With the potential and analysis of Principal 

Components Analysis  (PCA) of EEG, it indicated an overlap of valuable neural behaviors from various locations over the human 

skull, indicating interrelated and coupled events for robotic grasping. PCA has been used to unlock few main features of EEG waves 

during a grasp and lift task.  The foremost grasping features are hence used in creating events for a robotic dexterous grasping. 
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1. INTRODUCTION 

A. EEG Based Robotics Control Paradigm 

Modern robotics systems are getting much 

complicated, this is due to the sudden advancement of 

robotics technologies, and developments of further much 

sophisticated computing algorithms.  

Control of articulated and much closer to human 

behavior robotics systems, are needed today for a wide 

spectrum of applications, this is due to integration of 

robotics systems for much human-type use. In this sense, 

this work is focused towards bio-inspired robotics control 

mechanisms. In particular, grasping and manipulation, 

i.e. moving an object with robot hand and fingers, is not 

an easy and straight forward task. This is due to the 

involvement of a number of relations, in addition to 

compilation of closed system chain dynamics. The 

problem even gets much complicated once forces of a 

grasp are needed to be computed.  

Use of Electroencephalogram (EEG) brainwaves for 

robotics, is also gaining a good ground recently, due to 

advancement of robotics applications.  EEG waves are 

such raw data, and the signaling behavior are very 

complicated, correlated, related, and they are of such 

multi-rate waves, hence is not an easy task to detect, 

decode, and understand. In reference to Fig.1, here we 

show  two important different paradigms of 

developments related to robotics dexterous grasping. 

The top diagram relates the main blocks of EEG 

based manipulation, whereas the bottom image shows a 

typical complicated robotics hand and fingers, where 

computing the fingers forces still remain a fundamental 

issue. 
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Figure 1. (Top): Typical EEG/Robotic hand/prosthetic main flow graph 

components.  (Bottom): Robotic hand dexterous behavior (Source: 

Servo-electric 5-Fingers Gripping Hand SVH).  Over the past, 
analytical approaches have been used to compute grasping forces to 

perform tasks. 

 

B. Decoding and Orthosis Control 

Robots/prosthetic hand control using EEG signals 

became very popular with increasing number of 

advanced robots. There have been a number of efforts to 

use EEG data for robotics grasping applications. In this 

respect, Bell et al. [1] investigated the use of EEG signals 

to control a humanoid robot with better functionality than 

an art. Xiao and Ding [2] also investigated using EEG 

signals to identify features related to individual finger 

movement. It’s harder to find features for individual 

fingers than for bigger body parts like hand or arm. Three 

EEG features in same channels were decoded using 

support vector machine (SVM) technique that analyses 

data and finds patterns associated with different fingers. 

For Agashe and Contreras [3], this is a vital part for 

having a prosthetic hand that replaces a human hand. 

They tried to implement similar techniques but using 

EEG. Since earlier studies found that low-pass filtered 

ECoG (local motor potential LMP) shows precise 

features, Liao et al. [4] tried to decode individual finger 

movement, hence they used findings from previous 

ECoG and implemented them using EEG, hence 

compared the results with ECoG findings. More complex 

techniques try to estimate the movement and approach of 

the hands. In this resepct, Bradberry et al. [5], tried to 

decode EEG data to reconstruct 3D hand movement 

velocity. They tried to find scalp areas responsible of 

controlling hand reaching. Another interesting work for 

decoding was performed by Ashari [6], as he tried to 

incorporate classifications techniques used on video 

sequences in P300-based BCI. The issues with 

classifications can be reduced using principal angels 

between subspaces. Another way is to use machine 

learning methods as presented in Dantanarayana [7], the 

main purpose of the study was to generate mapping for 

high dimensional data, and hence features of these data, 

hence to be represented in one or two variables. 

C. Problem Statement 

While investigating fingers related motion, for this 

particular work, it is vital to deal with massive nature of 

grasping EEG, this is due to the complexity, and 

interrelations of the EEG resulting patterns while 

performing grasps.  In this research, it is needed to detect 

the foremost events features that are resulting from set of 

Grasp and Lift tasks human grasping. This is 

investigated further here, while employing PCA for 

reduced dataset dimensionally. As a technique, PCA was 

used to unlock main events features from the EEG 

patterns. PCA has been firstly employed for all the (11 

personals, with 9 trails) participating data, hence to 

correlate the few main features of events related to the 

basic defined tasks Grasp and Lift trails. 

 

2. EEG GRAPSING DATA DIMENSTIONALTY 

REDUCTION:  PAC THEORY 

     At this stage, it is needed to deal with reduced EEG 

dataset sizes, instead of dealing with the entire datasets.  

A. EEG PAC Analysis 

   Principal Components Analysis (PCA) is a statistical 
method that is used on data such as EEG signals to find 
patterns which will correspond to features in EEG data 
by identifying the similarities and differences. It is able 
to reduce large data without any loss of important 
information. This is very helpful when dealing with huge 
data such as EEG.  Theory behind applying PCA to EEG 
signals was inspired by Wang et. al. [8] with some 
modifications. For a matrix (X) made of EEG signals 
(xk), where k=1, 2, 3, …, n, assuming (n) rows where 
each of the signals contains (m) samples as given by Eq 
(1). 

                        𝑋 = [

𝑥1,1 ⋯ 𝑥1,𝑁

⋮ ⋱ ⋮
𝑥𝑀,1 ⋯ 𝑥𝑀,𝑁

]                         (1)  

Computing mean of all (n) columns separately: 

                     �̅�𝑛 =
1

𝑀
∑ 𝑥𝑚𝑛

𝑚
𝑛=1 , 𝑛 = 1, 2, … , 𝑁                 

 

�̅�𝑛 is the mean of each (n) column (n = 1, 2, …, n). 

 

              𝑋𝑐 = [

(𝑥1,1−�̅�1) ⋯ (𝑥1,𝑁−�̅�𝑁)

⋮ ⋱ ⋮
(𝑥𝑀,1−�̅�1) ⋯ (𝑥𝑀,𝑁−�̅�𝑁)

]               (2)   

    In its context, PCA requires the matrix to be centered 

by subtracting the mean from each column. This will 

cause the mean of each column to be zero. ∆𝑛  is the 

column of the (X)  matrix after subtracting the mean 

from the original column. This will cause the data to be 
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moved close to the center (origin) of the principal 

components. 

                                   ∆𝑛 = 𝑥𝑛 − �̅�𝑛                             (3)  

B. Covariance Matrix, Measure of  Similarity  

   The variance is how much the data varies from its 
mean and the covariance is used to find some kind of a 
relationship between only two dimensions. For example, 
relationship between velocity, and car crashes. So, the 
covariance matrix is just all the combinations of the 
covariance be-tween each dimension and another. The 
value of the covariance determines the relationship 
between the two dimensions. If it is positive, then if one 
dimension increases the other will increase as well. If it 
is negative, then the relationship is inversely proportional 
and when one increase the other decreases. Finally, if it 
is zero, then the two dimensions are independent of each 
other or have a nonlinear relationship. The magnitude of 
the covariance will determine the amount of increase that 
will occur in the other dimension with maximum 
relationship of unity to unity.  As defined by Wang et. al. 
[8],  the covariance matrix C is:  

                                𝐶 =
1

𝑁
∑ ∆𝑛 ∗𝑁

𝑛=1 ∆𝑛
𝑇                       (4)  

 

    ∆𝑛
𝑇  is the transpose column of ∆𝑛 .  A covariance 

matrix is given in Eq. (5), Smith [9]: 
 

C =[

𝑥1,1−�̅�1 ⋯ 𝑥1,𝑁−�̅�𝑁

⋮ ⋱ ⋮
𝑥𝑀,1−�̅�1 ⋯ 𝑥𝑀,𝑁−�̅�𝑁

] [

𝑥1,1−�̅�1 ⋯ 𝑥𝑀,1−�̅�1

⋮ ⋱ ⋮
𝑥1,𝑁−�̅�𝑁 ⋯ 𝑥𝑀,𝑁−�̅�𝑁

] 

                 C =[
𝑐𝑜𝑣(𝑥1, 𝑥1) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑁)

⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑥𝑁 , 𝑥1) ⋯ 𝑐𝑜𝑣(𝑥𝑁 , 𝑥𝑁)

]         (5) 

 

                                         𝐴𝑋 = λX                              (6)  

𝑐𝑜𝑣(𝑥1, 𝑥1) = σ𝑖𝑗 .  In addition, there is a relation 

between covariance coefficient and correlation 

coefficients, as computed by: 

 

                                      𝑟𝑖𝑗 =
σ𝑖𝑗

√σ𝑖𝑖×σ𝑗𝑗
                                 

 

where 𝑟𝑖𝑗 is the correlation coefficient is a normalised 

covariance coefficient.  There are (n) eigenvalues for an 

(nn) transformation matrix, since every eigenvector is 

scaled by an eigenvalue, we will have n eigenvectors as 

well. Eigenvalues can be found by solving Eq. (7): 

 

                                    (𝐴 − 𝐼λ)X = 0                          (7) 

 

(I) is an identity/unity matrix, It doesn’t alter value of 

the matrix it is multiplied with. Getting determinant of 

(AI𝜆), hence solving it will give eigenvalues. 

 

                                     𝑑𝑒𝑡(𝐴 − 𝐼λ) = 0                     (8) 

   Substituting each of (λ) in Eq. (8) and solving for X, 

gives eigenvector X for that  λ . The eigenvectors 

calculated are orthogonal (perpendicular) to each other. 

The eigenvectors are adjusted to have length of unity.  

The eigenvectors calculated are the principal 

components. To find the principal components in terms 

of the most to the least important based on the 

explaining the data in terms of variance, we must look at 

the eigenvalues corresponding to the eigenvectors. 

Higher the eigenvalue, the more important eigenvector. 

       Finally, getting the principal components PC1, PC2, 

…PCn with PC1 being the most important. The first PC, 

i.e. (PC1) explains the most variance in the data, the 

second PC (PC2) is orthogonal to PC1 and explains most 

of the remaining variance in the data (residuals). This is 

the same for the remaining PCs, Smith [9]. This square 

matrix is said symmetric around the main diagonal 

because it was the result of multiplication of a matrix 

and its transpose. The main diagonal is just the 

covariance between the dimension and it self. Once 

looking to find the relationship between the dimensions, 

we will look at the non-diagonal elements and judge 

based on their value, Smith [9]. To be able to understand 

the patterns of the normalized data, we need to compute 

the covariance of the EEG data. In finding eigenvectors 

for the covariance matrix C, because of its square 

nature, is a requirement for eigenvector calculations, 

Smith [9].  For an (nn) matrix A if we find a row vector 

(X) (n1) that could be multiplied by A and get the same 

vector (X) multiplied by a value λ called an eigenvalue 

and the vector is the eigenvector. Since matrix A 

transforms vector (X) to a scaled positions by an amount 

equal to (λ), it is called a transformation matrix. To 

project data on the PCs, we will take all eigenvectors in 

order of importance, and place them in column vector 

which will result in an (nn) matrix. This vector is 

called a feature vector as demonstrated in Smith [9]: 

                   𝐶 𝐸𝑣 = 𝜆 𝐸𝑣     (𝐶 − 𝐼𝜆) 𝐸𝑣 = 0              (9) 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟 =  [𝐸𝑣1 𝐸𝑣2 𝐸𝑣3 …  𝐸𝑣𝑁] 
      

    To find the eigenvalue 𝜆,  we need to find the 

determinant (X) are the eigenvector. Transferring EEG 

(nn) data signals onto the eigenvectors by multiplying 

the transpose of the original centered data with the 

transpose of the feature vector. These are called 

principal component scores since they are found for 

each principal component, as in Smith [9]. PC scores =
FeatureVectorTCenteredDataMatrixT. 

                 𝑆𝑐𝑜𝑟𝑒𝑠 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑇 ∗ 𝑋𝑐𝑇       (10) 
 

Finally, computing the loadings from the Ev and λ,  

Loa𝑑𝑖𝑛𝑔𝑠 = 𝐸𝑣𝑁 ∗ √λN 

    Data reduction can be done by leaving out the least 

important eigenvectors in the feature vector. This way 
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we are saying that there is no need for some of the data 

because they do not add significant information. The 

least significant eigenvector are correlated to noise and 

leaving them out removes some of the noise in the EEG 

signals. Thus projecting the original data onto a new 

axis that best describes the patterns. The same data will 

be there if we used all the principal components 

(eigenvectors). Otherwise, just most important data, 

Smith [9]. Number of principal components varies a lot 

depending on the data used and the type of analysis 

needed. First two or three PCs are used. To choose, we 

need to define a threshold on how much variance is 

sufficient to understand the data. This is completed by 

first getting the PCs percentages, hence adding them and 

comparing them to a threshold that was pre-assigned. 

 

 
 

 

Figure 2.  (Top): Typical EEG channel reading location,  Luciw et al. 
[10]. (Bottom): Typical EEG dataset recoding. First participant’s, and 

(9) trials of channel (28) reading. 

3. GRASPING ELECTROENCEPHALOGRAPHY: 

MASSIVE  WAVES ANALYSIS 

     After defining the mechanism for reducing the size of 
the large EEG dataset, we shall look into the mechanism 
for EEG dataset relation and collection, as in respect to 
the defined task.  This an essential observation.  

A. Grasping Data Acquisition 

   We acquired the Grasp and Lift EEG data from Luciw 

et al. [10].  To make sure that the EEG data is usable as 

the basis for studies on robotics and prosthesis grasping, 

it was recorded while adhering to the precision grasp-

and-lift (GAL) paradigm. This meant that there was 

multiple sensors recording the motions of the hands and 

the object that was being lifted while the EEG data was 

recorded. The sensors used included a head cap with 

(32) channels for EEG recordings, EMG sensors to 

record hand, forearm, and shoulder muscles (5 

channels), some sensors to identify the 3D position of 

the moving parts of the experiment including the object, 

both the index and the thumb fingers, and the arm. The 

amount of force from both fingers on object when 

gripping it was recorded using sensors with (3 force) 

channels and (3 torque) channels. 

    Dataset was collected from 12 subjects with each 

having 328 trials which resulted in a total of 3,936 grasp 

and lift trials. These subjects included 4 males and 8 

females all aged between 19 and 35.  Each electrode is 

named based on its position on parts of the brain. They 

were named from front to back F (frontal), C (central), 

T (temporal), P (posterior), and O (occipital). Odd 

numbers were for left side and even numbers for right 

side (ex. T3 for left and T2 for right). Middle were giving 

small letter z (zero) instead of a number (ex. Tz). Cz is 

mainly used as reference electrode because of its 

position in middle or on one or both ears is used as 

reference. Ground electrodes are mainly either Fpz (front 

to polar) or the ears. This is presented in Fig. 2. First 

data were loaded for first person (P1), and then plotted 

all the channels in the time domain, as seen in Fig. 2. 

The signals here are time stamped with labels of what 

they correspond to in action that happed in the 

experiment and was recorded by all of the sensors. 

These are just the main events and they include the LED 

turning on and off, when the hand starts moving, when 

each figure touches the plates, the object lift off the table 

and replacing it back to original position, if the new trial 

includes expected or unexpected high or low weights, 

and finally the release of the fingers from the plates.  It 

is visible in Fig. 2 that after the LED was turned on 

there was a minor increase in the voltage due to the 

intent to move in response to the event (ERP). 

    In addition, once the hand started moving, there was a 

minor increase in some channels and decrease in the 

reference channels due to hand movement. After, the 

finger touched the object and force was applied only 

minor change happened until the lift off, which caused a 

high-low voltage for lift and then relax in destination 

after (0.5 sec) from lift off.  Finally, after releasing the 

object there was a drop in when relaxing the fingers and 

returning into original position. 

B. Time Domain, and Data Analysis  

   EEGLab Toolbox, Delorme and Makeig [11], was also 
used, as it enables plotting raw EEG signals in time and 
frequency domain, and shows power spectrum.  It shows 
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the channels where activities happen if loaded with the 
correct channels of EEG data.  This is shown in Fig. 3. 

 

Figure 3.  Analysis of the resulting EEG waves via EEGLab. EEGLab 

time plot for (P4) for all (32 channels), (Voltage (μV) vs. Time (Sec.)). 

It shows the interlated patterns generated during (11 seconds) time 

elape of grapsing. 

C. Frequency Analysis: Power Spectrum 

    We will now examine the spectral power changes and 

the corresponding area of the brain, that all the 

electrodes cover.  This is further analyzed in Fig. 4.  In 

addition, this will indicate any part of hand movement 

and its origin. 

 

1
st
  PARTICIPANT:  

     In reference to Delorme and Makeig [11], we can 

deduce that power changes accrued at (5.9Hz) in theta 

band and corresponded to the frontal part of the brain 

which indicates relaxation. There were only minor 

changes at (9.8Hz) in alpha band. Finally, there were big 

power changes in F8, FC6, and T8 and minor to the 

counterpart at (22Hz) in beta band side this could 

indicate the blinking artifact we saw earlier. 

 

 
 
Figure 4. Frequency power spectrum analysis during the grasping task 

for (P1) for all (32 channels).  Power spectrums indicates the fashion in 
which the ways are propagating through the various brain neurons. 

2
nd

  PARTICIPANT:  

    We can see similar patterns for the second person 
especially for blinking artifact in (22Hz) in beta band.  
There is significant difference in at (9.8Hz) which could 
be due to the finger or hand movement. This will be 
further investigated next using PCA. 

D. PCA Analysis of Individual Channels, Different 

Trials 

     Now we shall look at PCA analysis of individual 

channels for different trials, from applying force until 

release only.  Since there were a lot of artifacts before 

and after the period we are concerned about, we will 

look at only the signals from the beginning of applying 

the force on the object until the release (grasping 

period). Here, we would like to identify the channels 

that show consistency and clear features.  
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    We have examined all the channels for first 9 trials 

from the time of applying force until release and found 

out that there was some consistency in the 15
th

, 17
th

, 

25
th

, and 28
th

 channels corresponding to (C4, TP9, Pz, 

and PO9) and shown below, respectively. Since 

different trials change in weight, we are not expecting 

the same response for all of the trials in the same 

channel.  FIRST, of all the first trial has some unnatural 

spike at 5.3 seconds (800μV) which affected all the 

channels in the same way, this only affects the middle of 

the signal so it can be ignored only here and it will not 

be used in the PCA analysis.  SECOND, almost all of 

the channels have a low-to-high activity when starting to 

lift the object and then starts going down after reaching 

the object’s max height. Most noticeable activity is just 

after the LED turning off which indicated that this 

increase corresponds  

 

Figure 5.  Typical participant’s EEG plot, in terms of 
channels/personals.  Event was from force grasp, till release for 9 trials, 

Plot of channel 11 for 9 trials.  (Left):  Participate X, trial 3.  (Right):  
Participate Y, trial 7. 

directly to lowering the object, and then decease once 
object was released.  This is valid for all channels.  This 
is further illustrated in Fig. 5. Almost all resulting EEG 
experiments look similar, however they follow an 
identical time domain patterns.   

TABLE 1. Grasping Experimentation and Patterns Events Mapping 
using PCA. 

 

Exper. 

 

 

Participate X 

 

Participate Y 

EEG Classified 

Patterns & 

Association 

EXPE-1 Motion Grasping Clusters 1,3 

EXPE-2 Touch and Force  Touch and Force Clusters 2,3 

EXPE-3 Finger Move  Apply Force Clusters 3,2 
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E. PCA Analysis of Individual Channels for Different 

Trials 

    Have performed a number of trails by different and 
same identical participates,  now we shall create a 
relation between the PCA results, and the corresponding 
events. Thus, we shall detect the main features, they 
defined events during the grasp and lift trails. Such 
events features are important as they will help to define 
how grasping was performed by fingers.   

    Now we shall do PCA analysis for same channel 
different trial, i.e. for all the signals patterns shown in 
Fig. 5.  For example, look at PCA for P1. In reference to 
Fig. 6, it is also vital to indicate the requirement to 
establish the right mapping between capture waves 
features, and related actions.  

     This is indicated in terms of correlating the force and 
position sensors. Forces components corresponding to 
force/torque sensing, with axis directions corresponding 
to lift force and to griping force. The neural waves 
recordings were also synchronized at the moment when 
fingertips had made contact with the object. This is 
further indicated and classified in Table 1.  

   For each real grasping experiment, it was found the 
identical and similar EEG patterns that was detected by 
the locations of the clustered and gathered data of the 
recoding.  In this context, the gathered PCA behavior do 
indicate the inherent knowledge about how the grasping 
was conducted.  This knowledge is further decoded for 
generating the most suitable patterns of motorizing finger 
motion to be used for the robotic hand, or human type 
prosthesis. Fig. 6 shows the different PCA analysis for 
different trails/different participates.  Definitely, it shows 
how the principle competent are related to other, even if 
the trails are different, or the individuals are diverse.  

 

(i) 

 

(ii) 

 

 

(iii) 

 

 

(iv) 
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(v) 

 

(vi) 

Figure 6.  A number PCA analysis for a different trails, different 
channels, different participates.  Results indicate how the PCA 

components are related to each other, even for different trails, for 
different participates. 

(i,ii): PCA for the two repeated tasks by participants 1,2, and the PCA 
detected clusters during the grasp and lift task. For this particular cases, 
eigenvalues have plotted amount the directions of the eigenvectors. 
Although two districts cases of trails, but in terms of eigenvalues they 
are almost similar. 

(iii, iv, v, vi), PCA detected clusters during the grasp and lift task for 
same trail, no. (9), for (different channels), trials 8 & 9 (same 
participant). Computing for the major eigenvalues, helps in finding the 
similar events, thought for different trails.  The study has relieved  that, 
despite the large number of experiments and nature of grasping by both 
gender, the features almost remain similar. This will help in designing a 
realistic grasping tasks for robotic hands.   

 

Figure 7.  Projection of all the eigenvalues, and direction of 
eigenvector, as related to the time of events. Finding grasping features: 

Grasping events features extraction, looking at only first 5 channels. 

     In reference to Fig. 6, the two figures (i,ii) they show 
how the  PCA for the two repeated tasks by participants 
1,2, and the PCA detected clusters during the grasp and 
lift task. For this particular cases, eigenvalues have 
plotted amount the directions of the eigenvectors. 
Although two districts cases of trails, but in terms of 
eigenvalues they are almost similar. For the cases of  
figures (iii, iv, v), the PCA detected clusters during the 
grasp and lift task for same trail, no. (9), for (different 
channels), trials 8 & 9 (same participant). Computing for 
the major eigenvalues, helps in finding the similar 
events, thought for different trails. 

Finally, while observing the main PCA components 
of all the related grasping experiments, we came to a 
conclusion that there are clear events related features for 
the grasping experiment. There were six main event 
feature, as seen from the PCA and eigenvalues related 
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values. These are presented in Fig. 7. In reference to Fig. 
7, it is similarly vital to indicate the requirement to 
establish the right mapping between capturing waves 
features, and related actions. This is indicated in terms of 
correlating the force and position sensors. 

    Forces components corresponding to force/torque 
sensing, with axis directions corresponding to lift force 
and to griping force. The neural waves recordings were 
also synchronized at the moment when fingertips had 
made contact with the object.  This is further indicated 
and classified in Table 1.  For each real grasping 
experiment, it was found the identical and similar EEG 
patterns that was detected by the locations of the 
clustered and gathered data of the recoding. In this 
context, the gathered PCA behavior do indicate the 
inherent knowledge about how the grasping was 
conducted. This knowledge is further decoded for 
generating most suitable patterns of motorizing finger 
motion robotic hand or prosthesis. Knowing such main 
features for grasp and lift are to be transmitted from the 
human brain to the hand mechanics. 

4. CONCLUSION 

        This study has introduced a computational approach 
for understanding the inherent and deep behavior of a set 
of raw brain waves during a task of human grasping, 
which is a grasp and lift experiment.  The approach was 
based on using such resulting features that can be also 
used for robotic grasping applications. The study has 
used Principle Components Analysis (PCA) as a 
powerful tool to analyze and detect similar behaviors of 
the massive patterns of EEG brain-waves while grasping 
and lifting objects. PCA has also been used as 
dimensionally reduction tool for the resulting 
multidimensional EEG waves.  Behaviors of EEG waves 
due to thinking, have been analyzed in a search for main 
event features, during grasping and lifting.  The study has 
relieved  that, despite the large number of experiments 
and nature of grasping by both gender, the features 
almost remain similar. This will help in designing a 
realistic grasping tasks for robotic hands. Eigenvalues for 
such similar data patterns, has detected six main features 
of events that have appeared, thus confirming the 
grasping and lifting event nature. Analysis of the 
resulting eigenvalues and direction of the vectors, PCA 
has been used to computationally identify a number of 
major events during and for large number of similar 
grasping tasks, achieved by similar participant, and 
different participates. In its current phase, the study has 
found that force and motion issues of such prosthesis and 
robotic hands, still remain the crucial problem that is to 
be looked into in depth.  The next phase of this work will 
be also directed for the analysis of the resulting hidden 
waves due the fingers, and thus to compute the resulting 
grasping and directions of the forces and torques exerted 
by the different participates. 
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