
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Sys 6, No.5 (Sep-2017)

http://dx.doi.org/10.12785/ijcds/060501

Networks-on-Chip Interfacing:
NoC-based Systems Networking and Inter-NoC Communication

Ahmed S. Hassan1, Ahmed A. Morgan2 and M. Watheq El-Kharashi1,3

1Department of Computer and Systems Engineering, Ain Shams University, Cairo, Egypt
2Department of Computer Engineering, Cairo University, Giza, Egypt

3Electrical and Computer Engineering Department, University of Victoria, Victoria, Canada

Received 17th Jun. 2017, Revised 12 Jul. 2017, Accepted 20th Aug. 2017, Published 1st Sep. 2017

Abstract: Many- and multi-core Networks-on-Chip (NoC) systems have a large spectrum of applications, and one of these applications
is High Performance Computing (HPC). In HPC application, system scalability is one of the important features of a given HPC
platform. Two of the factors governing scalability are the interfacing link speed and the ease of deploying additional processing nodes.
For NoC-based systems, scalability has two meanings; intra-NoC scalability, which includes partitioning and clustering Processing
Elements (PEs) to achieve better performance, and inter-NoC scalability, which includes interfacing with other NoC-based systems
via inter-NoC links and creating a newtrok of multiple NoC-based systems. In this paper, we investigate the case of inter-NoC
communication between a network of NoC-based systems. By using our simulator, we found out that treating a network of NoC-based
systems as a generic case of interfacing yields non-optimal performance. To target the inter-NoC communication performance, we
introduce NoC2, an NoC-based system with an Ethernet communication manager that provides better management for inter-NoC
traffic. Current implementations of inter-NoC traffic management handle inter-NoC traffic using software running on top of a dedicated
PE, whereas NoC2 is designed so that the software running on cores within the NoC is completely abstracted from inter-NoC traffic
management. Experiments show that this kind of abstraction has better inter-NoC communication performance over generic NoC
interfaced via Ethernet. Results suggest that NoC2 would perform better when it comes to scaling NoC-based systems by interfacing
more NoC-based hardware.

Keywords: Inter-NoC communication; NoC2; NoC Ethernet; NoC interfacing; NoC network; NoC scalability.

1. Introduction
In high performance clustered computing applications,

system designers need to take advantage of system scal-
ability. Ideal systems would be able to scale up in a
homogeneous way, ideally by just plugging-in additional
computation units. One way of scaling Networks-on-Chip
(NoC)-based systems is clustering; by grouping Processing
Elements (PEs), either statically at topology generation,
or dynamically at runtime. Cluster groups allow adding
resources without having to re-design the whole system.
Software running on PEs should be isolated from manag-
ing traffic between clusters and clusters should be self-
organized as much as possible. NoC-based systems are
scalable in nature, but when it comes to interconnecting
NoC-based systems, NoC scalability becomes challenging.
For instance, to achieve optimal performance, NoC-based
systems should be aware of being interconnected to a new
NoC-based system. In this case, running software should
be aware of the new NoC and be able to configure the

NoC-based system for optimum traffic handling. Having
the software aware of the underlying NoC is not optimal.
It would cost additional overhead for NoC management
and make the software prone to portability issues, if it is
intended to run on different NoC-based systems or even
non-NoC systems.

In this paper, we introduce building a network of NoC-
based systems (NoC2). NoC2 is an inter-NoC communi-
cation methodology that realizes the inter-NoC commu-
nication as normal NoC traffic of flits within a network
of NoC-based systems. NoC2 addresses the challenge of
traffic communication between PEs in different NoC-based
systems without requiring changes in the software running
on those PEs to control this kind of traffic. Additionally,
NoC2 considers the communication peripheral as a part of
the NoC topology, not just a secondary peripheral attached
to a generic PE. From this sense, Network Interfaces (NIs)
are aware of this secondary peripheral and therefore can
communicate directly with its controller instead of routing

E-mail address: ahmedsayed.elaraby@gmail.com, ahmorgan@eng.cu.edu.eg, watheq.elkharashi@eng.asu.edu.eg

http:// journals.uob.edu.bh

http://dx.doi.org/10.12785/ijcds/060501
http://journals.uob.edu.bh

222 Ahmed S. Hassan, et al.: Networks-on-Chip Interfacing: NoC-based Systems Networking...

flits around to the PE with the controller attached. We adopt
a distributed buffering mechanism in the First-In-First-Out
(FIFO) queues between the NIs and the communication
peripheral.

We claim, and the results support our claim, that dis-
tributed FIFOs and direct communication between the
NIs and the communication peripheral are a better option
for the case of interconnecting nodes in a network of
NoC-based systems, compared to the generic NoC, using
centralized FIFOs and routed communication.

Standard NoC-based systems, as shown in Figure 1,
consist of PEs attached to NIs. NIs are interconnected using
the NoC routers. Traffic generated by a PE is sent to its
corresponding NI, which prepares the flits and send them
to the router. Routers inspect the flits and take a decision
where they should route them; to a nearby router or to the
local NI port.

Figure 1. Standard NoC components.

Most of the NoC literature refers to NoC traffic to only be
the intra-NoC traffic; that is the traffic between PEs on the
same NoC-based system. Any traffic that goes outside the
NoC-based system is considered a non-NoC traffic, even if
it would go to another NoC-based system. Such mindset
would limit the scalability of NoC traffic communication
in industrial domains. In high-performance computing ap-
plications, a system consists of several computation nodes
interconnected with each other. Those nodes themselves
could be multi- or many-core systems, on which the
PEs form a NoC-based system. Connection links between
nodes should provide high-speed communication, so that

delays due to communication do not degrade performance.
High-speed interconnection technologies, like PCI [1] and
RapidIO [2], are often used for on-board communication,
like interconnecting processors [3], [4]. Ethernet [5] and
Infiniband [6], on the other hand, are often used for
off-board communication, like interconnecting computer
servers [7], [8].

The rest of the paper is organized as follows. Section
2 reviews the related work, Section 3 discusses NoC
Interfacing, Section 4 presents our NoC2 model. Sections
5 and 6 shows our experiment and results. The paper is
concluded in section 7.

2. RelatedWork
The majority of NoC scalability research focuses on

clustering and partitioning of nodes on the same chip, either
statically, at the topology generation, or dynamically at
runtime [9].

An example of static clustering techniques, Clustered
NoC (C-NoC) was introduced by Seifi et al. [10]. C-NoC
groups nodes, based on their communication density, and
connect these nodes to the same router. To do this, they
proposed a modified router architecture, based on Hermes
NoC [11]. The modified router partitions the system to
local and remote ports. Local ports connect nodes with high
communication volume, while remote ports is connected to
other routers. Figure 2 shows how C-NoC clusters PEs and
group local PEs into the same router via local links.

Figure 2. Clustering in C-NoC [10].

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Sys 6, No.5, 221-231 (Sep-2017) 223

Yuan et al. [12] proposed a NoC clustering architecture
for Graphics Processing Unit (GPU)-based data parallel
architecture. Their proposal groups compute cores and
GPU memory controller into clusters, where each cluster
consists of a group of cores and one memory controller.
Their study shows significant improvement over the nun-
clustered case.

Hamid et al. [13] proposed a static clustering for Multi-
Core Multi-Cluster Architecture (MCMCA). In this pro-
posal, multi-core chips are grouped into cluster, where mul-
tiple clusters are interconnected via Multi-Cluster Network
(MCN). They proposed two different networks for cluster
communication, Intra-Cluster Network (ACN) and Inter-
Cluster Network (ECN).

Castilhos et al. introduced a dynamic approach for NoC
clustering [14]. The study proposes distributed resource
management in NoC-Based Multi-Processor System-on-
Chip (MPSoC) using a clustering method that supports
modification of the cluster size at runtime. The work is fo-
cused on homogeneous MPSoC architecture interconnected
through 2D NoC. The MPSoC is divided into equally-
sized clusters, where each cluster has one local cluster
manager (LMP) and one cluster has a global master (GMP).
The LMP is responsible for control the cluster, executing
functions such as monitoring, task mapping, deadlines
verifications and communication with other LMPs and
the GMP. The GMP has all functions of the LMP, and
functions related to the overall system management such
as controlling the available resources in each cluster. The
dynamic management allows a cluster to send a loan
request to borrow resources from neighbor clusters, if its
resources do not meet the processing requirements.

Other partitioning techniques aim at performance op-
timization, like the work of Morgan et al. [15]–[19],
or overall system performance modeling, like the model
proposed by Elmiligi et al. [20]–[24].

There is little research about NoC-based systems inter-
facing to off-chip systems. Wasicek [25] proposed NoC-
based Ethernet gateway to interface MPSoC systems.
In Wasicek’s proposal, inter-MPSoC communication is
achieved by implementing the gateway logic on a dedicated
NoC PE, which had an Ethernet controller attached to it.
The gateway treats NoC traffic and inter-MPSoC traffic
differently and it had to convert message formats between
NoC network and inter-MPSoC network. In our proposal,
we only deal with NoC flit traffic so there is no need
to implement a gateway. We also adopt a distributed
FIFO mechanism to avoid creating hotspots around the
interfacing peripheral.

We found no research in the literature that treats inter-
NoC traffic as genuine NoC traffic. We could not even
find a NoC simulator that supports clustering or inter-NoC
traffic. In order to simulate our system, we added support

for clustering simulation to one of the NoC simulators.
In our previous work, we extended a NoC simulator,
NoCTweak [26], so that it would support cluster simulation
[27], [28].

3. NoC Interfacing
By the term NoC Interfacing, we mean the case where

one or more communication peripherals are attached to
one or more nodes on a given NoC-based system. Those
communication peripherals are connected to other external
systems. External systems can be computational modules,
sensors, or any other unit. One of the possibilities for NoC
interfacing is to interface with another NoC-based system.
For this case, we can roughly divide communication type
into two categories:

1) Generic communication: This is the normal case,
where traffic has no special meaning to the under-
lying NoC. In this case, the PE with the commu-
nication peripheral, talks to another PE in a remote
NoC-based system.

2) Inter-NoC communication: In this case, commu-
nication peripherals are not necessarily attached to
the communicating PEs. When two PEs, in two
different NoC-based systems, want to communicate
they must first send the data to the edge PE in their
system, which has the communication peripheral.
The edge PE sends the data to the other edge PE
in the remote system and this PE sends the data
through the NoC to the original destination PE.

In this section, we focus on the Inter-NoC communication.

A. Inter-NoC Communication

Inter-NoC communication primarily addresses NoC scal-
ability. Scalability is defined as the ability to expand the
NoC-based system processing power. The simplest form
of NoC scalability is to ditch the old system and design a
brand new system with larger size and more resources. This
scalability form is not practical nor industry friendly, as it
requires replacing the hardware, coming with a cost on both
the replacement process and the hardware itself. Another
form of scalability is to get another NoC-based system and
interface it to the original NoC-based system. By taking
advantage of high-speed communication peripherals, we
can construct a network of NoC-based systems. This latter
form promotes for a more practical NoC scalability option
for industrial applications.

Inter-NoC traffic is considered a normal NoC traffic,
consisting of NoC flits. Inter-NoC traffic can be handled by
the edge PE. This is the simplest solution that is entirely
based on software. We will refer to this case as Generic
NoC Interfacing. Generic NoC interfacing handles two
situations:

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

224 Ahmed S. Hassan, et al.: Networks-on-Chip Interfacing: NoC-based Systems Networking...

• Sending traffic to a remote NoC-based system: A
software running on top of PEs controls whether a
transmitted flit should go to another PE within the
same NoC-based system or should go to a remote
one. Based on this, the “send data to local PE”
routine is issued, or “send data to edge PE” routine
is issued for the other case.

• Receiving data from a remote NoC-based system:
The edge PE then inspects the received flit and
transmits it to the appropriate edge PE in the other re-
mote NoC-based system. Upon receiving a flit, edge
routers investigate the intended destination within its
local NoC-based system and then issue a normal
“send data to local PE” routine.

To distinguish between the final destination PE in the
remote system and the intermediate destination edge PE
in the local system, the flit has to be modified to include
the additional destination options.

B. Case Study

By using the tool proposed in our previous study [27],
[28], we managed to simulate the case of inter-NoC traffic.
The aim of this simulation was to evaluate the performance
of the intuitive inter-NoC communication technique; rout-
ing the outbound traffic to the edge PEs.

1) Inter-NoC Simulation Setup

Originally, our tool was designed to simulate NoC clus-
tering. The tool provides some additional features added
to NoCTweak, mainly to serve the clustering simulation.
Clustering simulation is achieved by creating multiple
instances of the NoC and creating links between these
instances. The tool provides means to configure the latency
factor of the inter-cluster links.

By using this feature, inter-NoC traffic simulation can
be performed by configuring the inter-cluster links to have
the delay ratio between intra-NoC links and the inter-NoC
links. For example, if two NoC-based systems are con-
nected by an Ethernet link and an Ethernet packet takes 256
cycles to get from source to destination, whereas intra-NoC
links take 16 cycles, then the inter-cluster configuration
parameter should be configured to 256/16 = 16.

Figure 3 shows the NoC network simulated. Simula-
tion environment is configured for 4 NoC-based systems
grouped in 2x2 cluster. Each NoC-based systems contains
4 PEs connected as a 2x2 mesh topology. There is one
inter-cluster link between each adjacent NoC-based system.
Each NoC-based system is configured with 4 Virtual Chan-
nels (VCs) and packet length of 1 flit. Inter-cluster weight
is configured to 16. We ran the simulation multiple times
with different Flit Injection Rate (FIR) values, ranging from
0.1 to 1.0 with step of 0.1.

Figure 3. 2x2 cluster of 4 2x2 NoC-based systems.

2) Simulation Results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

La
te

nc
y

(c
yc

le
s)

Injection rate (flits/cycle/node)

Figure 4. Latency measurements for simulation of 2x2 cluster of 4
2x2 NoC-based systems.

Figure 4 shows the latency results collected after running
the simulation. Results show exponential increase in flit
latency as the FIR increases. This suggests that connect-
ing NoC-based systems via a single link connected to a
single node in the NoC-based system is not optimal. This
results encouraged us to propose a different approach for
interconnecting NoC-based systems.

4. NoC2 Model
The concept behind NoC2, as shown in Figure 5, is to

let NIs take decisions whether to send a flit to the routers,

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Sys 6, No.5, 221-231 (Sep-2017) 225

or to Inter-NoC FIFO (ICFIFO). ICFIFO is a controller
with two FIFOs, Tx for transmitting and Rx for receiving.
ICFIFO is connected to a network device, e.g., Ethernet.
Whenever ICFIFO Tx FIFO is not empty, a transmission
is issued to the network device. Whenever a message is
received by the network device, it gets passed to ICFIFO’s
Rx FIFO, which in turn gets consumed by the appropriate
NI.

A. Processing Element and Network Interface
Compared to a generic NoC implementation, the PE will

not change, nor the software running on top of it. The NI is
modified to decide where to forward the flit, as mentioned
previously. Each NI has a newly-added special function
register, PE Total Number (PET N), which holds the total
number of PEs in the whole system. The total number of
PEs would be the total number of PEs in all NoC-based
systems in the network. The PET N register gets updated
whenever the interconnected system changes, by a special
control message sent from the ICFIFO controller to each
NI.

B. Inter-NoC FIFO
ICFIFO is responsible for queuing flits and triggering

Ethernet transmission for egress traffic, receiving flits via
Ethernet, and then passing them to the corresponding NI
for ingress traffic. Figure 6 shows the components of the
ICFIFO:

• Controller, which executes the core logic of ICFIFO
and controls the communication peripheral.

• Group of FIFOs, which are used to communicate
with the NIs in the system.

• Communication Peripheral Controller (CPC), which
is used to connect the system to other remote sys-
tems.

• Register File (RF), a group of registers to keep the
status of the ICFIFO, like the PET N register.

In ICFIFO, we did not just increase the number of FIFOs.
We actually relocated them in a distributed way. A normal
NI in an NoC-based system has multiple buffers configured
as VCs. What we did in ICFIFO is to relocate some of
those buffers, outside each NI/router interface, to multiple
NI/ICFIFO FIFOs. In this way, each inter-NoC flit has
a deterministic path of a single direct hop from NI to
its associated FIFO in the ICFIFO, instead of routing it
around the NoC, thus separating the inter-NoC traffic from
the intra-NoC traffic management. The overall number of
FIFOs in the system can remain unchanged, i.e., if we had
a 2x2 NoC and each NI/router interface has FIFOs, and
we make ICFIFO with 8 FIFOs and shorten the NI/router
to 2 FIFOs. We will still have an overall of 16 FIFOs, but
FIFOs are distributed in a more friendly way for inter-NoC
traffic in a network of NoC-based systems.

1) Initialization Sequence

When an Ethernet MAC is connected to another NoC-
based system, the ICFIFO detects that and triggers a
transmission with data containing the current number of
PEs in the interconnected system. For a single NoC-based
system, this number is initialized with the number of PEs in
this system. The ICFIFO expects a received message from
any other system, containing also the number of PEs in
that system. ICFIFO in each of the interconnected systems
updates its internal value, then broadcasts a special control
message to NIs in its local system. Each NI updates its
PET N register upon receiving the control message from
the ICFIFO. Herein, we should re-emphasize that this
message does not get to the core attached to the NI. Each
system sends control message to its neighboring systems
and waits for acknowledgment from them, thus completing
the handshake procedure and the interconnected systems
are ready for communication.

2) Egress Traffic

In case of a PE transmitting traffic, the NI inspects the
flit header. If the destination ID does not match any of
the local NoC nodes ID, which is held in a register inside
each NI, the NI writes the flit into the Tx FIFO associated
with this particular NI. Whenever a Tx FIFO is not empty,
the ICFIFO dequeues it into an Ethernet frame. After each
dequeue, Ethernet frame transmission is triggered.

Figure 7 shows how the NI behaves upon triggering flit
transmission. PE #3 sends two flits, one for PE #8 and
the other for PE #10. For both flits, the NI inspects the
destination field. For the first flit, the destination matches
one of the local PEs, so the NI enqueues this flit into the
NoC router. The second flit is intended to a PE that is not
a part of the local NoC, so the NI enqueue this flit into
its associated ICFIFO Tx FIFO. The ICFIFO’s controller
then triggers the CPC for packet transmission to the other
NoC-based system.

3) Ingress Traffic

In case of receiving a traffic via Ethernet, the ICFIFO
inspects the received message, then enqueues it into the
corresponding Rx FIFO. Whenever an Rx FIFO is not
empty, the NI interrupts the core within the node and the
core would dequeue the FIFO and get the received flit.

Figure 8 shows the case of ingress traffic. Flits received
by the CPC are inspected by the ICFIFO’s controller,
and then enqueued to the Rx FIFO corresponding to the
destination PE.

5. Evaluation
We performed an experiment to test NoC2 performance

in handling inter-NoC traffic. We compared NoC2 perfor-
mance against another generic NoC-based system.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

226 Ahmed S. Hassan, et al.: Networks-on-Chip Interfacing: NoC-based Systems Networking...

Figure 5. NoC2 interconnection model.

Figure 6. ICFIFO internal structure in NoC2.

A. Experiment

Our experiment involved two NoC-based systems, NoC0
and NoC1, which were interconnected via Ethernet. One
end is a NoC-based system running on Artix-7 [29] FPGA
and the other end is a simulation software running on PC.
Each PE CPU is running at 16 MHz.

B. Experiment Environment

In our experiment, both NoC-based systems have 2x3 2D
mesh topologies, XY routing, and a 4-byte payload. The
software running on each PE on both NoC-based systems
sends a message to other three PEs. The PE destinations
are randomly selected from the PE pool across the two
NoC-based systems. PE ID to grid mapping follows this

Figure 7. An example of egress traffic path.

equation:

(1)ID = (NoC id ∗ Xdim ∗ Ydim) + (x + y ∗ Ydim)

In Equation (1), NoC id is the ID of the NoC-based
system in the network, Xdim and Xdim are the size of the
NoC-based system with ID = NoC id, and x and y are
location of the PE in this particular NoC-based system.

The software running on PEs controls the Packet In-
jection Rate (PIR). The PIR rate represents how many
packets a PE generates per second. In our test, each
packet consists of three flits. So, each PE triggers three
NI transmissions per packet. PIR followed the normal
distribution. Therefore, half of the PEs in any system are
communicating to PEs in the other NoC-based system via
inter-NoC traffic at any given time. We tested with PIR
rates at 1, 50, 100, 200, 400, 500, and 1000 packet/second
per PE node.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Sys 6, No.5, 221-231 (Sep-2017) 227

Figure 8. An example of ingress traffic path.

Ethernet packets are captured and analyzed using Wire-
shark [30]. Wireshark is a network sniffing and analysis
tool which we used to asses the Ethernet link throughput
and packet latency. Wireshark statistics provide various in-
formation about the captured packets, like average packets
captured per second (Pbs), total number of bytes captured
and average throughput in Megabit per second (Mbps).
Figure 9 shows an example of statistics generated by
Wireshark. In this example, it is shown that the average
Pbs is 1313. We use the Pbs information to asses ICFIFO
performance, by plotting it against PIR.

C. NoC2-based System Implementation

This section explains how we implemented NoC2 com-
ponents on FPGA: the PE node and the ICFIFO node.

1) PE Node Implementation

The PE node implementation is based on the open source
Wishbone bus [31]. The Wishbone bus interconnects an
AEMB processor [32], a single-port RAM block, a general-
purpose input/output (GPIO) block, an interrupt controller
(Int.), and an NI block. Figure 10 shows a diagram of the
PE node implementation.

2) NI Implementation

Besides the basic NI functionality, we added the PET N
register so that each NI in the system can decide if a flit
is intended for intra-NoC or inter-NoC.

3) ICFIFO Node Implementation

The ICFIFO node implementation is based on Wishbone
bus as well. It contains 64-byte Dual-Port RAM (DP
RAM), Ethernet MAC (Eth), interrupt controller, and an

AEMB controller. The DP RAM is used as a storage for
the FIFO, while the controller does both controlling the
Ethernet MAC and implementing the ICFIFO logic. We did
not implement the ICFIFO controller as ASIC, rather we
executed the controller logic on top of AEMB processor.
We did this because we just wanted to evaluate the effect of
ICFIFO on inter-NoC traffic, rather than provide optimized
implementation for it. In the current design, each NI
in the system has a dedicated DP RAM, implementing
bidirectional FIFO. Figure 11 shows a diagram of the
ICFIFO node implementation.

D. The Generic NoC

The generic NoC-based system has the same NoC ar-
chitecture as NoC2, but with normal NI. The payload is
doubled to 8 bytes. Payload size had to increase so that
an additional field, remote destination, can be added to the
original flit, and in our NoC design the NI handles flit size
as multiple of 4 bytes only. One of the PE nodes in this
generic NoC has Ethernet MAC, and the software running
on this PE is responsible for interfacing with other NoC-
based systems. Other PEs wishing to communicate with
remote NoC-based system should direct their traffic to this
particular PE as well, i.e., software running on different
PEs is aware of the NoC beneath it. The remote destination
information is checked by the software running on the node
with Ethernet and forwards this information to the other
NoC-based system. That is why we had to increase the
payload size. This case is different from the case of NoC2,
where handling of inter- and intra-NoC traffic is handled
by NIs and the ICFIFO without any required intervention
from the PEs.

Pseudocode for the software running on the PE with
Ethernet is shown in Algorithm 1. The algorithm shows
how the generic NoC would behave in three cases:

• Sending inter- or intra-NoC message, lines 4–8. The
PE examines the destination ID dst. If dst does not
belong to this NoC, then it gets transmitted over
Ethernet. If, on the other hand, dst belongs to this
NoC, then the PE will transmit the message over NI
to the destination PE.

• Receiving intra-NoC message via NI, lines 9–14.
The PE examines the destination ID dst. If the
received dst is the same as this PE ID, peId, then
the PE extracts the message and continue its normal
processing with the message contents, e.g., sends
data to application. If, on the other hand, the message
is not intended to this PE, it will get transmitted via
Ethernet to its intended destination.

• Receiving inter-NoC message via Ethernet, line 15–
19. The PE examines the destination ID dst. If the
received dst is the same as this PE ID, peId, then
the PE extracts the message and continues its normal

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

228 Ahmed S. Hassan, et al.: Networks-on-Chip Interfacing: NoC-based Systems Networking...

Figure 9. An example of Wireshark packet capture statistics.

Figure 10. PE tile implementation for NoC2

processing with the message contents, e.g., sends
data to application. If, on the other hand, the message
is not intended to this PE, it will get transmitted via
NI to its intended destination within the same NoC.

6. Results

Because NoC2 is designed for inter-NoC communica-
tion, we oriented our analysis towards performance related
to inter-NoC traffic, other than intra-NoC traffic. Thus,
we were more interested in inter-NoC Ethernet packets
throughput and latency.

A. Throughput and Latency

Here, we measured the Ethernet frame throughput and
latency.

Throughput results, shown in Figure 12, show that
generic NoC throughput degrades more rapidly than NoC2

as the PIR increases. In comparison, there is significant
improvement in the throughput for NoC2. NoC2 shows

Figure 11. ICFIFO in NoC2.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800 900 1000

Et
he

rn
et

 t
hr

ou
gh

pu
t

(f
ra

m
es

/s
ec

on
d)

Injection rate (packets/second/node)

NoC2
Generic

Figure 12. Inter-NoC packet throughput versus PIR.

more stable throughput, where it increases to a higher rate,
then it saturates but does not degrade. The reasons for this
improvement are:

• As the PIR increases the Ethernet node in generic
NoC becomes a hotspot, and the rate of congestions

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

Int. J. Com. Sys 6, No.5, 221-231 (Sep-2017) 229

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 100 200 300 400 500 600 700 800 900 1000

Et
he

rn
et

 fr
am

e
la

te
nc

y
(µ

se
co

nd
s)

Injection rate (packets/second/node)

NoC2
Generic

Figure 13. Inter-NoC packet latency versus PIR.

Algorithm 1 Generic NoC: Sending and receiving by PE
with Ethernet.

1: dst← Destination PE
2: maxId← Maximum PE ID in the NoC
3: peId← PE own ID
4: procedure SendMsg
5: if dst > maxId then
6: EthernetTransmit(to: dst)
7: else
8: NiTransmit(to: dst)
9: procedure RecvMsgFromNi

10: if dst == peId then
11: Deliver message to application Message

was intended to this PE
12: else
13: if dst > maxId then
14: EthernetTransmit(to: dst)
15: procedure RecvMsgFromEth
16: if dst == peId then
17: Deliver message to application Message

was intended to this PE
18: else
19: NiTransmit(to: dst)

and stalls increases. The NI attached to the Ethernet
MAC gets more traffic load than other NIs in the
system, and that is because every node, which needs
to communicate with the remote system, routes its
traffic to the Ethernet NI. So, this NI buffers get over-
loaded and stall, and hence the hotspot is generated.

• In contrast, NoC2 was able to scale up with the
transmission rate. No hotspot nodes were formed
and measurements show that each transmission job
consumed 64 cycles constantly through different PIR
rates. By having ICFIFO, the system did not exhibit
stalls when subjected to a traffic load similar to the
generic NoC case.

Figure 13 shows that generic NoC had an increasing
average latency due to stalls, while NoC2 had lower latency
of 4 to 5 µsec per frame. The reason behind this latency
improvement is that there were no hotspots occurred on
the ICFIFO buffers. On the other hand in generic NoC,
the PE node with Ethernet controller is overwhelmed with
flits, that it caused a bottle neck hotspot.

7. Conclusion and FutureWork
In this paper, we have studied interconnecting NoC-based

systems. We provided a simulation usecase for generic
interconnection of NoC-based systems, and showed that the
traditional inter-NoC communication approach which treats
PEs, with communication peripherals, as any other generic
PE, is not optimal for interconnecting NoC-based systems.
By having communication peripherals controlled by PEs,
we limit the software portability, as the inter-NoC traffic
has to be controlled by software. We also get a degraded
performance, due to hotspots created on the interfacing PE.

We have introduced NoC2 to address the case of inter-
NoC traffic, where NoC-based systems are connected
via Ethernet. Our design showed significant performance
improvement over generic NoC interconnection. Results
showed higher throughput and stable latency for the inter-
NoC traffic when it is routed within a system intercon-
nected with our NoC2 approach in comparison to another
generic NoC system.

In the future, we may use other high-speed technologies
oriented towards chip-to-chip communication, like Serial
RapidIO, by adding support for those technologies in the
CPC module. We may also implement the ICFIFO as
ASIC.

Acknowledgment
This paper is a significant extension and update of a

paper that appeared in the proceedings of the 4th Workshop
on Design and Performance of Networks on Chip (DPNoC
2017) in conjunction with the The 12th International Con-
ference on Future Networks and Communications (FNC
2017) [33]. All trademarks ™ and registered trademarks
® mentioned, cited, or referenced in this document remain
the property of their respective owners.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

230 Ahmed S. Hassan, et al.: Networks-on-Chip Interfacing: NoC-based Systems Networking...

References

[1] “PCI-SIG,” https://pcisig.com, [Last visited 2017-09-01].

[2] “RapidIO,” http://www.rapidio.org, [Last visited 2017-09-01].

[3] R. Bittner, E. Ruf, and A. Forin, “Direct GPU/FPGA communi-
cation via PCI express,” Cluster Computing, vol. 17, no. 2, pp.
339–348, 2014.

[4] X.-y. Huang, H.-b. Su, Q.-z. Wu, and W. Wu, “Multi-Processor
Parallel System Based on High-Speed Serial Transceiver,” in Ed-
ucation Technology and Computer Science (ETCS), 2010 Second
International Workshop on, vol. 1, 2010, pp. 178–181.

[5] “IEEE 802.3 ETHERNET WORKING GROUP,” http://www.
ieee802.org/3, [Last visited 2017-09-01].

[6] “InfiniBand Trade Association,” http://www.infinibandta.org, [Last
visited 2017-09-01].

[7] J. Zhang, X. Lu, and D. K. Panda, “High Performance MPI
Library for Container-Based HPC Cloud on InfiniBand Clusters,”
in Parallel Processing (ICPP), 2016 45th International Conference
on, 2016, pp. 268–277.

[8] E. Gamess and H. Ortiz-Zuazaga, “Evaluation of Point-to-Point
Network Performance of HPC Clusters at the Level of UDP, TCP,
and MPI,” in IV Simposio Cientı́fico y Tecnológico en Computación,
Caracas, Venezuela, 2016.

[9] F. Gebali, H. Elmiligi, and M. W. El-Kharashi, Networks-on-chips:
theory and practice. CRC press, 2011.

[10] M. R. Seifi and M. Eshghi, “A clustered NoC in group commu-
nication,” in TENCON 2008-2008 IEEE Region 10 Conference.
Hyderabad, India: IEEE, 2008.

[11] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “Hermes:
an infrastructure for low area overhead packet-switching networks
on chip,” INTEGRATION, the VLSI journal, vol. 38, no. 1, pp.
69–93, 2004.

[12] W. Yuan, R. Boyapati, L. Wang, H. Jang, Y. Jin, K. H. Yum, and
E. J. Kim, “Intra-clustering: Accelerating on-chip communication
for data parallel architectures,” in 2015 International Symposium
on Computer Architecture and High Performance Computing Work-
shop (SBAC-PADW). IEEE, Oct 2015, pp. 55–60.

[13] N. Hamid, R. J. Walters, and G. Wills, “Understanding the impact
of the interconnection network performance of multi-core cluster
architectures.” Journal of Computers, vol. 11, no. 2, pp. 132–139,
2016.

[14] G. Castilhos, M. Mandelli, G. Madalozzo, and F. Moraes, “Dis-
tributed resource management in NoC-based MPSoCs with dy-
namic cluster sizes,” in 2013 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). Natal, Brazil: IEEE, Aug 2013,
pp. 153–158.

[15] A. A. Morgan, H. Elmiligi, M. W. El-Kharashi, and F. Gebali,
“Multi-objective optimization for networks-on-chip architectures
using genetic algorithms,” in Proceedings of 2010 IEEE Interna-
tional Symposium on Circuits and Systems. IEEE, 2010, pp. 3725–
3728.

[16] A. A. Morgan, H. Elmiligi, M. W. El-Kharashi, and F. Gebali,
“Networks-on-chip architecture customization using network par-
titioning: A system-level performance evaluation,” International
Journal of Computing and Digital Systems, vol. 4, no. 1, pp. 19–31,
Jan 2015.

[17] A. A. Morgan, H. Elmiligi, F. Gebali, and M. W. El-Kharashi,

“Unified multi-objective mapping and architecture customisation
of networks-on-chip,” IET Computers & Digital Techniques, vol. 7,
no. 6, pp. 282–293, 2013.

[18] A. A. Morgan, H. Elmiligi, M. W. El-Kharashi, and F. Gebali,
“Area-aware topology generation for application-specific networks-
on-chip using network partitioning,” in 2009 IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing.
IEEE, 2009, pp. 979–984.

[19] A. Morgan, H. Elmiligi, M. El-Kharashi, and F. Gebali, “Bio-
inspired NoC architecture optimization,” in Autonomic Networking-
on-Chip: Bio-Inspired Specification, Development, and Verification,
P. Cong-Vinh, Ed. CRC Press, 2012, pp. 21–45.

[20] H. Elmiligi, M. W. El-Kharashi, and F. Gebali, “Modeling and im-
plementation of an output-queuing router for networks-on-chips,”
pp. 241–248, 2007.

[21] H. Elmiligi, A. A. Morgan, M. W. El-Kharashi, and F. Gebali, “A
topology-based design methodology for networks-on-chip applica-
tions,” in Proceedings of the Second IEEE International Design
and Test Workshop (IDT 2007). IEEE, 2007, pp. 61–65.

[22] H. Elmiligi, M. W. El-Kharashi, and F. Gebali, “Power consumption
of 3D networks-on-chips: Modeling and optimization,” Micropro-
cessors and Microsystems, vol. 37, no. 6, pp. 530–543, 2013.

[23] H. Elmiligi, A. A. Morgan, M. W. El-Kharashi, and F. Gebali,
“Power optimization for application-specific networks-on-chips:
A topology-based approach,” Microprocessors and Microsystems,
vol. 33, no. 5, pp. 343–355, 2009.

[24] H. Elmiligi, A. A. Morgan, M. W. El-Kharashi, and F. Gebali, “A
reliability-aware design methodology for networks-on-chip appli-
cations,” in Proceedings of the 2009 Fourth IEEE International
Conference on Design & Technology of Integrated Systems in
Nanoscale Era (DTIS’09), H. El-Tahawy, M. Abadir, A. Jerraya,
and A. Salem, Eds., Cairo, Egypt, 2009, pp. 107–112.

[25] A. Wasicek, “Embedding complex embedded systems in large
ethernet–based networks,” Network, vol. 1, no. C2, p. C3, 2011.

[26] A. Tran and B. Baas, “NoCTweak: A highly parameterizable simu-
lator for early exploration of performance and energy efficiency of
networks on-chip,” VLSI Computation Lab, ECE Department, Uni-
versity of California, Davis, Tech. Rep. ECE-VCL-2012-2, 2012.

[27] A. S. Hassan, A. A. Morgan, and M. W. El-Kharashi, “An enhanced
network-on-chip simulation for cluster-based routing,” Procedia
Computer Science, vol. 94, pp. 410–417, 2016.

[28] A. S. Hassan, A. A. Morgan, and M. W. El-Kharashi, “Clustered
networks-on-chip: Simulation and performance evaluation,” Inter-
national Journal of Computing and Digital Systems, vol. 6, no. 2,
pp. 51–61, Mar. 2017.

[29] “Artix-7,” https://www.xilinx.com/products/silicon-devices/fpga/
artix-7.html, [Last visited 2017-09-01].

[30] “Wireshark,” https://www.wireshark.org, [Last visited 2017-09-01].

[31] “Wishbone,” http://opencores.org/opencores,wishbone, [Last vis-
ited 2017-09-01].

[32] “aeMB,” https://opencores.org/project,aemb, [Last visited 2017-09-
01].

[33] A. S. Hassan, A. A. Morgan, and M. W. El-Kharashi, “Introducing
NoC2: interconnecting noc-based systems through ethernet,” Inter-
national Journal of Computing and Digital Systems, vol. 6, no. 2,
pp. 51–61, Mar. 2017.

http:// journals.uob.edu.bh

https://pcisig.com
http://www.rapidio.org
http://www.ieee802.org/3
http://www.ieee802.org/3
http://www.infinibandta.org
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html
https://www.wireshark.org
http://opencores.org/opencores,wishbone
https://opencores.org/project,aemb
http://journals.uob.edu.bh

Int. J. Com. Sys 6, No.5, 221-231 (Sep-2017) 231

Ahmed S. Hassan Ahmed S. Hassan re-
ceived B.Sc. degree in systems and biomed-
ical engineering, Cairo University, Egypt, in
2011. He is an embedded software devel-
oper, specialized in multicore architecture,
wireless connectivity, and automotive Eth-
ernet. Currently an M.Sc. candidate at Ain
Shams University, Cairo, working on many-
core Systems-on-Chip (SoC) analysis and
design.

Ahmed A. Morgan Ahmed A. Morgan re-
ceived the Ph.D.degree from the University
of Victoria, Victoria, BC, Canada, in 2011,
and the B.Sc. degree (first class honors)
and the M.Sc. degree from the Faculty of
Engineering at Shoubra, Benha University,
Egypt in 2000 and 2005, respectively. He
got a Diploma in Electronic Design Au-
tomation (EDA) and VLSI Design from
the Information Technology Institute (ITI),

Cairo, Egypt in 2002. He is an Assistant Professor in the Depart-
ment of Computer Engineering, Cairo University, Egypt. His re-
search interests include parallel architectures, multicore systems,
digital VLSI design, wireless sensor networks, and Networks-on-
Chip (NoC) modeling, optimization, and performance evaluation.

M. Watheq El-Kharashi M. Watheq El-
Kharashi received the Ph.D. degree in com-
puter engineering from the University of
Victoria, Victoria, BC, Canada, in 2002, and
the B.Sc. degree (first class honors) and
the M.Sc. degree in computer engineering
from Ain Shams University, Cairo, Egypt,
in 1992 and 1996, respectively. He is a
Professor in the Department of Computer
and Systems Engineering, Ain Shams Uni-

versity, Cairo, Egypt and an Adjunct Professor in the Department
of Electrical and Computer Engineering, University of Victoria,
Victoria, BC, Canada. His general research interests are in ad-
vanced system architectures, especially Networks-on-Chip (NoC),
Systems-on-Chip (SoC), and secure hardware. He published about
100 papers in refereed international journals and conferences and
authored two books and 6 book chapters.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh

	Introduction
	Related Work
	NoC Interfacing
	Inter-NoC Communication
	Case Study
	Inter-NoC Simulation Setup
	Simulation Results

	NoC^2 Model
	Processing Element and Network Interface
	Inter-NoC FIFO
	Initialization Sequence
	Egress Traffic
	Ingress Traffic

	Evaluation
	Experiment
	Experiment Environment
	NoC^2-based System Implementation
	PE Node Implementation
	NI Implementation
	ICFIFO Node Implementation

	The Generic NoC

	Results
	Throughput and Latency

	Conclusion and Future Work
	References
	Biographies
	Ahmed S. Hassan
	Ahmed A. Morgan
	M. Watheq El-Kharashi

