

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 6, No3 (May-2017)

E-mail: thanghv@dut.udn.vn

 http://journals.uob.edu.bh

Evaluation of Artificial Neural Network Architectures

for Pattern Recognition on FPGA

Thang Viet Huynh

Electronic and Telecommunication Department, Danang University of Science and Technology – The University of Danang,

Danang City, Vietnam

Received 28 Feb. 2017, Revised 19 Mar. 2017, Accepted 20 Apr. 2017, Published 1 May 2017

Abstract: In this paper, we present the design and implementation of two hardware architectures, namely MHL-ANN and SHL-

ANN, for the realization of artificial neural networks on reconfigurable computing platforms like FPGA. We use 16-bit half-

precision floating-point number format to represent the weights of the designed networks. The networks are synthesized and verified

on Xilinx Virtex-5 XC5VLX-110T FPGA. We study the scalability and hardware resource utilization of the two proposed neural

network architectures. For performance evaluation, the handwritten digit recognition application with MNIST database is performed,

which reported a recognition rate of 90.88% when using an MHL-ANN architecture of size 20-12-10 and a recognition rate of

96.83% when using an SHL-ANN architecture of size 784-40-10. Experimental results showed that the SHL-ANN architecture is

very potential for high performance embedded recognition applications.

Keywords: Artificial Neural Network; MNIST; FPGA; Floating-point; Pattern recognition.

1. INTRODUCTION

Artificial Neural Networks (ANNs) have attracted
many applications and practical implementations in
pattern recognition, machine learning, as well as in deep
learning research areas in recent years [1-3]. ANN
architectures demand a huge amount of parallel
computing resources and memory, thereby requiring
parallel computing devices like field programmable gate
arrays (FPGAs). One of the main challenges for efficient
implementations of ANNs on FPGA is the data
representation of weights and activation functions. All
integer, fixed-point and floating-point number formats can
be used in hardware realization of ANNs, as shown in [4-
7]. While fixed-point and integer representations can
potentially bring improved execution performance in the
forward computation, it is of great difficulty to train
ANNs using those number formats in software to obtain
the desired accuracy. It is shown that reduced-precision
floating-point numbers is a suitable choice for the
hardware implementation of neural networks on FPGA
[6] and experiments showed that an optimal number
format for single-FPGA implementation of ANNs is the
16-bit half-precision floating-point. Recent results of
FPGA implementation of ANN for handwritten digit
recognition have been reported in [7].

In this paper, we will further investigate various
architectures for hardware implementations of ANNs and
study the scalability of those architectures when they are
synthesized and mapped on an FPGA device. The
contributions of this paper are as follows:

 We present the hardware design of two 2-layer
fully connected feed-forward ANN architectures,
namely Multiple Hardware-Layer ANN and
Single Hardware-Layer ANN, and shows the
corresponding implementation results of these
architectures for the handwritten digit
recognition with MNIST database on the Xilinx
Virtex-5 XC5VLX-110T FPGA.

 We investigate the scalability of the two
proposed ANN architectures and make
comparison between them in terms of hardware
resource, peak performance and recognition
accuracy.

The paper is organized as follows. Section 2 briefly
presents the background. Section 3 details the design of
two ANN architectures. Section 4 presents experimental
results on practical FPGA device and makes performance
comparison. Finally, we conclude the paper and introduce
future research directions in Section 5

http://dx.doi.org/10.12785/ijcds/060305

134 Thang Viet Huynh: Evaluation of Artificial Neural Network Architectures…

http://journals.uob.edu.bh

Figure 1. Recognition system based on ANN

2. BACKGROUND AND EXPERIMENT SETUP

Figure 1 presents block diagram of a typical
recognition system, which consists of two functional
units: 1) a feature extraction unit using principal
component analysis (PCA) technique and 2) an ANN for
recognition. For performance efficiency, these two units
are expected to be located on the FPGA hardware.
However, due to limited computing and storage resources
of FPGAs, the PCA unit is normally implemented on
microprocessor unit (as in [7]), leaving only the ANN
implemented on FPGAs. For deep learning applications,
the feature extraction unit is often removed and the inputs
are used as features to the recognition unit using ANN.

TABLE I. MNIST RECOGNITION RATE (%) VERSUS ANN SIZE [6]

Number of hidden neurons

12 16 20 24

Recognition rate (%) 91.5 92.1 93.5 93.9

In this work, we use the MNIST database [8] as the
data set for training and testing the neural network. The
MNIST database has a training set of 60,000 samples, and
a test set of 10,000 samples of 28x28 (784 image pixels)
gray-level images. There are 10 different handwritten
digits ranging from 0 to 9 in the database. We perform
recognition in two cases: with PCA as feature extractor
and without PCA (i.e., using 784 image pixels as inputs to
ANN). For recognition task, we employ 2 layer ANNs
with optimal weights obtained from backpropagation
training off-line on a desktop PC. The designed neural
network has 10 neurons in the output layer, corresponding
to 10 types of output digits. Table I (extracted from [6])
reports the recognition accuracy of proposed ANNs with
20 principal components as input features under varying
number of hidden neurons. We choose to use a 20-12-10
ANN configuration (20 principal components as inputs,
12 hidden neurons, 10 output neurons) for the hardware
implementation on Xilinx Virtex-5 FPGA.

Neural networks operate in two phases: learning
phase that normally uses back propagation algorithm for
obtaining the optimal weights, and execution phase that
performs forward computation. In this work, we assume
that the learning phase has completely been carried out
offline on computers and only focus on the hardware
realization of the forward computation of neural

networks. The forward computation at each neural layer
is described as follows [7]. Given the weight matrix W of
size MxN of each neural layer and the input vector x =
[x1, x2, ..., xN] of length N at each neural layer, the output
ri of the i-th neuron is then computed by equations (1)
and (2):

(1)

 (2)

where: ti is the net weighted sum of the i-th neuron; f (ti)

is the log-sigmoid activation function (transfer function)

of the neuron. Expanding equation (1) for all neurons in

the layer, we can obtain the computation for the net

weighted sum for one layer in a matrix-vector form as

shown by equation (3).

�

𝑤1,1 𝑤1,2

𝑤2,1 𝑤2,2

… 𝑤1,𝑗 …
… 𝑤2,𝑗 …

𝑤1,𝑁

𝑤2,𝑁

⋮
𝑤𝑖 ,1 𝑤𝑖 ,2

⋮

⋮
… 𝑤𝑖 ,𝑗 …

⋮

⋮
𝑤𝑖 ,𝑁

⋮
𝑤𝑀 ,1 𝑤𝑀 ,2 … 𝑤𝑀 ,𝑗 … 𝑤𝑀,𝑁

.

�

𝑥1

𝑥2

⋮
𝑥𝑗

⋮
𝑥𝑁

=

�

𝑡1

𝑡2

⋮
𝑡𝑖
⋮

𝑡𝑀

 (3)

The net weighted sum ti of the i-th neuron is the dot-

product between the input vector x and the i-th row-

vector wi = [wi,1, wi,2,…,wi,N] of the weight matrix W. The

output column vector r = [r1, r2,..., rM]
T
 of the entire layer

is calculated by applying the log-sigmoid activation

function in a component-wise manner to the net weighted

sum vector t = [t1, t2,..., tM]
T

.

For representing the weights of ANNs, we use the

half-precision floating-point number format. The IEEE-

754 standard [9] features the half-precision floating-point

format with 1 sign bit, 5 exponent bits and 10 fraction

bits, or 16 bits in total, which allows for saving of 2X and

4X the registers (memory) for weight storage compared to

the single-precision (32 bits) and double-precision (64)

ones. For FPGA implementation of dot-product and

activation function of ANNs, we employ FloPoCo library

[10] for VHDL code of half-precision floating-point

operations.

3. DESIGN OF ANN ARCHITECTURES ON FPGA

In this section, we present the design and
implementation of 2-layer feedforward neural networks
for the handwritten digit recognition application with
network configuration and optimal weights mentioned in
previous section. Note, that forward computation in neural
networks is data dependent: the output at hidden layer will
be the input at output layer. Therefore, forward
computation is performed in a sequential manner, leading
to two possible hardware implementation approaches: i)
implementing all layers on hardware for improved

𝑡𝑖 = 𝑤𝑖 ,𝑗 . 𝑥𝑗

𝑁

𝑗=1

𝑟𝑖 = 𝑓 𝑡𝑖 =
1

1 + 𝑒−𝑡𝑖

 Int. J. Com. Dig. Sys. 6, No.3, 133-138 (May-2017) 135

http://journals.uob.edu.bh

performance, or ii) implementing single layer on hardware
with shared computing hardware circuitry for better area
utilization. In this paper, we propose two architectures for
FPGA hardware implementations of ANNs, as follows:

 MHL-ANN (Multiple Hardware-Layer ANN):
all neurons in all layers (hidden layer and output
layer) are implemented on hardware (Figure 2);

 SHL-ANN (Single Hardware-Layer ANN): one
single hardware layer containing largest number
of neurons is implemented on hardware (Figure
3); this hardware layer is used to perform the
forward computations for both hidden layer and
output layer.

A. Multiple Hardware-Layer ANN

The functional block diagram of the Multiple

Hardware-Layer ANN (MHL-ANN) architecture is

presented in Figure 2. The MHL-ANN consists of two

layers with the same generic architecture. There are 12

neurons and 10 neurons in the hidden layer and output

layer, respectively. The architecture of each neuron is

detailed in Figures 4, 5, and 6 (adopted from [7]).

As shown in Figure 4, forward computation in each

neuron is performed by the MAC operation followed by

the Log-sigmoid operation. Figure 5 shows the functional

block diagram of the MAC (Multiple-Accumulate) unit,

which consists of a multiplier, an addition and a DFF (D

flip-flop). The MAC unit performs the dot-product

between two vector - the input vector x and the weight

vector wi – in a sequential manner, as presented by

equation (1). The weight vector wi of the neuron is stored

in ROM. For saving FPGA resource, we reserve only 32

18-bit positions in the ROM in the current design of the

MHL-ANN architecture, allowing for the execution of

half precision floating point dot product of weight vectors

with maximum length of 32 elements.

For the implementation of the activation function, we

combine three operations – an exponential, an addition

and an inverse - to perform the Log-sigmoid function as

shown by equation (2). The hardware structure for the

Log-sigmoid operation is specified in Figure 6. The

implementation of half-precision operators is based on the

FloPoCo library [10], which requires 2 more bits for the

exception field; and the data-path will be 18-bit wires in

VHDL implementation of the neural networks.

B. Single Hardware-Layer ANN

Figure 3 presents the functional block diagram of the
Single Hardware-Layer ANN (SHL-ANN) architecture
used to perform forward computation of a two-layer 20-
12-10 ANN configuration. In contrast to MHL-ANN
architecture, there is only one single physical hardware
layer in the SHL-ANN architecture that consists of 12
computing neurons to perform the forward computation
for both hidden and output neurons in the desired ANN.

Figure 2. Functional block diagram of MHL-ANN architecture

Figure 3. Functional block diagram of SHL-ANN architecture

Figure 4. Architecture of one neuron

Figure 5. The Multiply-Accumulate (MAC) operation

Figure 6. The Log-sigmoid operation

136 Thang Viet Huynh: Evaluation of Artificial Neural Network Architectures…

http://journals.uob.edu.bh

The functional operation of each computing neuron in
the SHL-ANN architecture is as follows. Computing
neuron 1 is responsible for the computation of neuron 1 in
the logical hidden layer and neuron 1 in the logical output
layer, which will be executed sequentially. Other
computing neurons act the same as computing neuron 1.
The output of hidden layer is fed back as an input to the
hardware layer to perform the forward computation for
output layer, as shown in Figure 3. Since there are only 10
neurons in the logical output layer, two computing
neurons 11 and 12 only perform the forward computation
for neurons 11 and 12 in the logical hidden layer.

The hardware architecture of each computing neuron
in SHL-ANN architecture is the same as the hardware
architecture of the one implemented in MHL-ANN
architecture, except that each computing neuron in SHL-
ANN architecture will have to store two weight vectors
for two appropriate neurons in hidden layer and output
layer, respectively. The control unit is used to control the
forward computation of logic neural layers, i.e., selecting
the right weight vector and appropriate input vector to the
physical hardware layer.

Since we intend to perform handwritten digit
recognition with MNIST database consisting of 784-pixel
images, we may increase the number of inputs to neural
network up to more than 784. This allows for using those
input directly, thereby removing the feature extraction
with PCA module (see Figure 1). For doing so, we reserve
up to 1024 (2

10
) 18-bit positions in weight ROMs in SHL-

ANN architecture, allowing for input vector length to
neural network up to 1024 elements.

4. EVALUATION

We perform handwritten digit recognition with the
MNIST database for performance evaluation. The neural
network training is performed off-line using MATLAB on
a desktop PC having 8 GB RAM and running at a system
clock of 3.2 GHz under Windows 7. The optimal weight
matrices obtained from the training phase are then used
for code generation of VHDL specifications for hardware
implementation on FPGA. For hardware synthesis and
implementation, we use the Xilinx ISE tool 14.1 and
Virtex-5 XC5VLX-110T FPGA board.

A. MHL-ANN versus SHL-ANN in MNIST

We compare the MHL-ANN architecture with the
SHL-ANN architecture at the same neural network
configuration 20-12-10 with respect to FPGA resources,
execution time and recognition rate, as shown in Table II.
The SHL-ANN implementation uses about 1.8x less
registers, LUTs, BRAMs and DSP units than the MHL-
ANN counterpart while guaranteeing the same recognition
accuracy (90.88%) as well as (almost) the same execution
time per image (509 cycles and 507 cycles).

Both implementations shown in Table II use only 20
principal features extracted from 784 original image
pixels, meaning that a feature extraction unit with PCA
technique is required. Note, that with respect to peak
execution performance, the MHL-ANN implementation
would potentially outperform the SHL-ANN
implementation as the forward computations of hidden
layer and output layer in the MHL-ANN architecture can
be pipelined.

TABLE II. COMPARISON BETWEEN IMPLEMENTATIONS OF MHL-ANN

AND SHL-ANN FOR MNIST DATABASE AT NETWORK CONFIGURATION

20-12-10 ON XILINX XC5VLX110-T FPGA (SPEED GRADE -3)

 MHL-ANN

20-12-10

SHL-ANN

20-12-10

Availa

ble

FFs 24025 13111 69120

LUTs 28340 15938 69120

BRAMs 22 12 148

DSPs 22 12 64

fmax (MHz) 205 188 -

Exec. time (cycles) 507 509 -

Recog. rate (%) 90.88 90.88 -

B. Scalability of MHL-ANN architecture

Since hardware implementation of ANN is expensive

in terms of resources, determining the biggest neural

network implementable on a given FPGA device is of

importance. We investigate how well the two proposed

ANN architectures scale with increased network size on

the chosen Virtex-5 XC5VLX-110T FPGA. To do so, we

vary the network size, generate VHDL models and

implement the designs on FPGA using Xilinx ISE tool.

We run both synthesis and implementation processes in

Xilinx ISE software to verify if the designed network can

really be implemented on the chosen FPGA.

TABLE III. IMPLEMENTATION RESULTS OF VARIOUS MHL-ANN

CONFIGURATIONS ON XILINX VIRTEX-5 XC5VLX-110T; SPEED GRADE -
3; TOTAL SLICE: 69,120.

MHL-ANN

configuratio

n

Total

numbe

r of

neuron

s

Resource

utilizatio

n (%)

Max.

frequenc

y fmax

(MHz)

Implementabl

e

20-12-10 22 41 205 Yes

20-16-10 26 48 192 Yes

20-20-10 30 56 192 Yes

20-24-10 34 62 188 Yes
30-30-10 40 74 188 Yes
30-30-15 45 82 180 Yes

30-30-20 50 92 180 Failed

 Int. J. Com. Dig. Sys. 6, No.3, 133-138 (May-2017) 137

http://journals.uob.edu.bh

Figure 7. Comparison among various neural network implementations

in terms of FPGA resource utilization (%) and recognition rate (%)

(MHL: MHL-ANN, SHL: SHL-ANN)

Table III reports the implementation results for MHL-

ANN architecture with seven network configurations

considered. Among them, the first four implementations

follow the configurations for the handwritten digit

recognition application reported in Table I. The last three

network configurations aim to investigate whether the

designed neural network is implementable on the chosen

FPGA with respect to routing resources required for the

connections in the whole network. Note, that the routing

resource of a design on FPGA is normally not reported

explicitly like the computing resource, therefore, it may

happen that a design can be synthesized but cannot be

implemented (Place-and-Route) on an FPGA due to

limited routing resource.

Generally, Table III shows that the area cost for the

MHL-ANN implementations scales proportionally with

the network size (or total number of neurons). The

average area cost for one neuron is about 1.85% of the

total slices (69,120), or about 1300 slices per neuron. The

maximum operating frequency of neural network

decreases with increased network size, as expected.

While the first six networks are successfully synthesized

and implemented, the last one (configuration 30-30-20

with 50 neurons) can be synthesized but is failed to

implement on the chosen FPGA device.

From our experiments, it is shown that an MHL-ANN

with 45 neurons (30 inputs, 30 hidden neurons, and 15

output neurons) is currently the biggest neural network

implementable on Virtex-5 XC5VLX-110T FPGA.

Obviously, larger FPGAs like the Virtex-6 and Virtex-7

devices are needed for implementation of more

complicated MHL-ANNs.

C. Scalability of SHL-ANN architecture

We investigate the scalability of the SHL-ANN

architecture on the chosen Virtex-5 FPGA. The

experimental results are shown in Table IV, for which all

investigated neural network configurations are both

synthesizable and implementable. Since the proposed

SHL-ANN architecture can accept large input vector to

the network, this allows for: a) removing the feature

extraction unit in the recognition system shown in Figure

1, and b) using 784 image pixels as direct inputs. As

shown in Table IV, increasing number of inputs to 784

pixels while still employing 12 hidden neurons can

improve the recognition rate by 2.45% (from 90.88% to

93.33%) while it costs about 5% more hardware resource

(from 23% to 28%) compared to the case when using 20

principal components as inputs.

TABLE IV. IMPLEMENTATION RESULTS OF SHL-ANN CONFIGURATIONS

ON XILINX VIRTEX-5 XC5VLX-110T; SPEED GRADE -3; TOTAL SLICE:
69,120.

SHL-ANN

configuration

Total

number

of

neurons

Resource

utilizatio

n (%)

Max.

frequen

cy

fmax

(MHz)

Recog

nition

rate

(%)

20-12-10 22 23 188 90.88

784-12-10 22 28 193 93.33

784-40-10 50 91 180 96.83

More importantly, it is shown in our experiments that

an SHL-ANN implementation (configuration 784-40-10)

having maximal of 50 neurons can be fitted on the

Virtex-5 XC5VLX-110T FPGA chip and it offers the

best recognition rate of 96.83%, i.e., only 317

misclassified images out of 10.000 test images in the

MNIST database.

Figure 7 compares various neural network

implementations with respect to FPGA hardware

resource utilization (%) and corresponding MNIST

recognition rate (%), which obviously shows that the

SHL-ANN architecture is much more efficient than the

MHL-ANN one.

5. CONCLUSION

We have presented the design, implementation and

verification on FPGA of 2-layer feed-forward artificial

neural network architectures for handwritten digit

recognition system. We study the scalability and hardware

resource utilization of our two proposed neural network

architectures (MHL-ANN and SHL-ANN) on the Xilinx

Virtex-5 XC5VLX-110T FPGA. Experimental results

138 Thang Viet Huynh: Evaluation of Artificial Neural Network Architectures…

http://journals.uob.edu.bh

showed that the SHL-ANN architecture is very potential

for high performance embedded recognition applications.

Future work will focus on improving performance of the

proposed neural network architectures as well as

extending the networks to other recognition applications

like face recognition and/or image recognition.

ACKNOWLEDGMENT

The author would like to thank colleagues from ETE
Department in DUT-UDN for their valuable supports.
This work is carried out within the framework of the
Ministry-level Scientific Research Project No. B2016-
DNA-39-TT.

REFERENCES

[1] Janardan Misra, Indranil Saha, Artificial neural networks in
hardware: A survey of two decades of progress, Neurocomputing,

Volume 74, Issues 1–3, December 2010, pp 239-255.

[2] IBM Research: Neurosynaptic Chips:
http://research.ibm.com/cognitive-computing/neurosynaptic-

chips.shtml#fbid=U7U04FvCvJW (accessed 28.02.2017)

[3] C. Shi et al., "A 1000 fps Vision Chip Based on a Dynamically

Reconfigurable Hybrid Architecture Comprising a PE Array

Processor and Self-Organizing Map Neural Network," IEEE
Journal of Solid-State Circuits, vol. 49, no. 9, pp. 2067-2082,

2014

[4] K. R. Nichols, M. A. Moussa, and S. M. Areibi, "Feasibility of
Floating-Point arithmetic in FPGA based artificial neural

networks," in In CAINE, 2002, pp. 8-13

[5] M. Hoffman, P. Bauer, B. Hemrnelman, and A. Hasan, "Hardware
synthesis of artificial neural networks using field programmable

gate arrays and fixed-point numbers," in Region 5 Conference,

2006 IEEE.

[6] T. V. Huynh, "Design space exploration for a single-FPGA

handwritten digit recognition system," in IEEE ICCE, 2014

[7] T. V. Huynh, “Design of Artificial Neural Network Architecture
for Handwritten Digit Recognition on FPGA”, Journal of Science

and Techonlogy, UDN, Vol. 11(108).2016. pp. 206-210, 2016

[8] MNIST database: http://yann.lecun.com/exdb/mnist/ (accessed
28.02.2016)

[9] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008

[10] FloPoCo code generator: http://flopoco.gforge.inria.fr/ (accessed

28.02.2016)

Thang Viet Huynh received his PhD

degree in Electrical and Electronic

Engineering from Graz University

of Technology (TU Graz), Austria in

2012. He is currently working as a

lecturer at Danang University of

Science and Technology (DUT),

The University of Danang (UDN),

Vietnam. His research interests

include reconfigurable computing

(FPGA), machine learning, NoC,

and respective applications.

http://research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml#fbid=U7U04FvCvJW
http://research.ibm.com/cognitive-computing/neurosynaptic-chips.shtml#fbid=U7U04FvCvJW
http://yann.lecun.com/exdb/mnist/

