
 

 

 

International Journal of Computing and Digital Systems 
ISSN (2210-142X)  

Int. J. Com. Dig. Sys. 6, No3 (May-2017) 

 

 

E-mail: thanghv@dut.udn.vn 

  http://journals.uob.edu.bh 

 

Evaluation of Artificial Neural Network Architectures 

for Pattern Recognition on FPGA 

 
Thang Viet Huynh 

 
Electronic and Telecommunication Department, Danang University of Science and Technology – The University of Danang,  

Danang City, Vietnam 

 

Received 28 Feb. 2017, Revised 19 Mar. 2017, Accepted 20 Apr. 2017, Published 1  May 2017 

 
 

Abstract: In this paper, we present the design and implementation of two hardware architectures, namely MHL-ANN and SHL-

ANN, for the realization of artificial neural networks on reconfigurable computing platforms like FPGA. We use 16-bit half-

precision floating-point number format to represent the weights of the designed networks. The networks are synthesized and verified 

on Xilinx Virtex-5 XC5VLX-110T FPGA. We study the scalability and hardware resource utilization of the two proposed neural 

network architectures. For performance evaluation, the handwritten digit recognition application with MNIST database is performed, 

which reported a recognition rate of 90.88% when using an MHL-ANN architecture of size 20-12-10 and a recognition rate of 

96.83% when using an SHL-ANN architecture of size 784-40-10. Experimental results showed that the SHL-ANN architecture is 

very potential for high performance embedded recognition applications. 
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1. INTRODUCTION 

Artificial Neural Networks (ANNs) have attracted 
many applications and practical implementations in 
pattern recognition, machine learning, as well as in deep 
learning research areas in recent years [1-3]. ANN 
architectures demand a huge amount of parallel 
computing resources and memory, thereby requiring 
parallel computing devices like field programmable gate 
arrays (FPGAs). One of the main challenges for efficient 
implementations of ANNs on FPGA is the data 
representation of weights and activation functions. All 
integer, fixed-point and floating-point number formats can 
be used in hardware realization of ANNs, as shown in [4-
7]. While fixed-point and integer representations can 
potentially bring improved execution performance in the 
forward computation, it is of great difficulty to train 
ANNs using those number formats in software to obtain 
the desired accuracy. It is shown that reduced-precision 
floating-point numbers is a suitable choice for the 
hardware implementation of neural networks on FPGA 
[6] and experiments showed that an optimal number 
format for single-FPGA implementation of ANNs is the 
16-bit half-precision floating-point. Recent results of 
FPGA implementation of ANN for handwritten digit 
recognition have been reported in [7].  

In this paper, we will further investigate various 
architectures for hardware implementations of ANNs and 
study the scalability of those architectures when they are 
synthesized and mapped on an FPGA device. The 
contributions of this paper are as follows:  

 We present the hardware design of two 2-layer 
fully connected feed-forward ANN architectures, 
namely Multiple Hardware-Layer ANN and 
Single Hardware-Layer ANN, and shows the 
corresponding implementation results of these 
architectures for the handwritten digit 
recognition with MNIST database on the Xilinx 
Virtex-5 XC5VLX-110T FPGA.  

 We investigate the scalability of the two 
proposed ANN architectures and make 
comparison between them in terms of hardware 
resource, peak performance and recognition 
accuracy. 

The paper is organized as follows. Section 2 briefly 
presents the background. Section 3 details the design of 
two ANN architectures. Section 4 presents experimental 
results on practical FPGA device and makes performance 
comparison. Finally, we conclude the paper and introduce 
future research directions in Section 5 
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Figure 1. Recognition system based on ANN 

 

 

 

 

 

 

2. BACKGROUND AND EXPERIMENT SETUP 

Figure 1 presents block diagram of a typical 
recognition system, which consists of two functional 
units: 1) a feature extraction unit using principal 
component analysis (PCA) technique and 2) an ANN for 
recognition. For performance efficiency, these two units 
are expected to be located on the FPGA hardware. 
However, due to limited computing and storage resources 
of FPGAs, the PCA unit is normally implemented on 
microprocessor unit (as in [7]), leaving only the ANN 
implemented on FPGAs. For deep learning applications, 
the feature extraction unit is often removed and the inputs 
are used as features to the recognition unit using ANN.  

 

TABLE I. MNIST RECOGNITION RATE (%) VERSUS ANN SIZE [6] 
 

 
Number of hidden neurons  

12 16 20 24 

Recognition rate (%) 91.5 92.1 93.5 93.9 

 

In this work, we use the MNIST database [8] as the 
data set for training and testing the neural network. The 
MNIST database has a training set of 60,000 samples, and 
a test set of 10,000 samples of 28x28 (784 image pixels) 
gray-level images. There are 10 different handwritten 
digits ranging from 0 to 9 in the database. We perform 
recognition in two cases: with PCA as feature extractor 
and without PCA (i.e., using 784 image pixels as inputs to 
ANN). For recognition task, we employ 2 layer ANNs 
with optimal weights obtained from backpropagation 
training off-line on a desktop PC. The designed neural 
network has 10 neurons in the output layer, corresponding 
to 10 types of output digits. Table I (extracted from [6]) 
reports the recognition accuracy of proposed ANNs with 
20 principal components as input features under varying 
number of hidden neurons. We choose to use a 20-12-10 
ANN configuration (20 principal components as inputs, 
12 hidden neurons, 10 output neurons) for the hardware 
implementation on Xilinx Virtex-5 FPGA. 

Neural networks operate in two phases: learning 
phase that normally uses back propagation algorithm for 
obtaining the optimal weights, and execution phase that 
performs forward computation. In this work, we assume 
that the learning phase has completely been carried out 
offline on computers and only focus on the hardware 
realization of the forward computation of neural 

networks. The forward computation at each neural layer 
is described as follows [7]. Given the weight matrix W of 
size MxN of each neural layer and the input vector x = 
[x1, x2, ..., xN] of length N at each neural layer, the output 
ri of the i-th neuron is then computed by equations (1) 
and (2): 

(1) 

 
 
                             (2) 

 

where: ti is the net weighted sum of the i-th neuron; f (ti) 

is the log-sigmoid activation function (transfer function) 

of the neuron. Expanding equation (1) for all neurons in 

the layer, we can obtain the computation for the net 

weighted sum for one layer in a matrix-vector form as 

shown by equation (3). 
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The net weighted sum ti of the i-th neuron is the dot-

product between the input vector x and the i-th row-

vector wi = [wi,1, wi,2,…,wi,N] of the weight matrix W. The 

output column vector r = [r1, r2,..., rM]
T
 of the entire layer 

is calculated by applying the log-sigmoid activation 

function in a component-wise manner to the net weighted 

sum vector t = [t1, t2,..., tM]
T

. 

For representing the weights of ANNs, we use the 

half-precision floating-point number format. The IEEE-

754 standard [9] features the half-precision floating-point 

format with 1 sign bit, 5 exponent bits and 10 fraction 

bits, or 16 bits in total, which allows for saving of 2X and 

4X the registers (memory) for weight storage compared to 

the single-precision (32 bits) and double-precision (64) 

ones. For FPGA implementation of dot-product and 

activation function of ANNs, we employ FloPoCo library 

[10] for VHDL code of half-precision floating-point 

operations.  

3. DESIGN OF ANN ARCHITECTURES ON FPGA 

In this section, we present the design and 
implementation of 2-layer feedforward neural networks 
for the handwritten digit recognition application with 
network configuration and optimal weights mentioned in 
previous section. Note, that forward computation in neural 
networks is data dependent: the output at hidden layer will 
be the input at output layer. Therefore, forward 
computation is performed in a sequential manner, leading 
to two possible hardware implementation approaches: i) 
implementing all layers on hardware for improved  
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𝑁
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performance, or ii) implementing single layer on hardware 
with shared computing hardware circuitry for better area 
utilization. In this paper, we propose two architectures for 
FPGA hardware implementations of ANNs, as follows:  

 MHL-ANN (Multiple Hardware-Layer ANN): 
all neurons in all layers (hidden layer and output 
layer) are implemented on hardware (Figure 2); 

 SHL-ANN (Single Hardware-Layer ANN): one 
single hardware layer containing largest number 
of neurons is implemented on hardware (Figure 
3); this hardware layer is used to perform the 
forward computations for both hidden layer and 
output layer. 

A. Multiple Hardware-Layer ANN   

The functional block diagram of the Multiple 

Hardware-Layer ANN (MHL-ANN) architecture is 

presented in Figure 2. The MHL-ANN consists of two 

layers with the same generic architecture. There are 12 

neurons and 10 neurons in the hidden layer and output 

layer, respectively. The architecture of each neuron is 

detailed in Figures 4, 5, and 6 (adopted from [7]).  

As shown in Figure 4, forward computation in each 

neuron is performed by the MAC operation followed by 

the Log-sigmoid operation. Figure 5 shows the functional 

block diagram of the MAC (Multiple-Accumulate) unit, 

which consists of a multiplier, an addition and a DFF (D 

flip-flop). The MAC unit performs the dot-product 

between two vector - the input vector x and the weight 

vector wi – in a sequential manner, as presented by 

equation (1). The weight vector wi of the neuron is stored 

in ROM. For saving FPGA resource, we reserve only 32 

18-bit positions in the ROM in the current design of the 

MHL-ANN architecture, allowing for the execution of 

half precision floating point dot product of weight vectors 

with maximum length of 32 elements.  

For the implementation of the activation function, we 

combine three operations – an exponential, an addition 

and an inverse - to perform the Log-sigmoid function as 

shown by equation (2). The hardware structure for the 

Log-sigmoid operation is specified in Figure 6. The 

implementation of half-precision operators is based on the 

FloPoCo library [10], which requires 2 more bits for the 

exception field; and the data-path will be 18-bit wires in 

VHDL implementation of the neural networks. 

B. Single Hardware-Layer ANN 

Figure 3 presents the functional block diagram of the 
Single Hardware-Layer ANN (SHL-ANN) architecture 
used to perform forward computation of a two-layer 20-
12-10 ANN configuration. In contrast to MHL-ANN 
architecture, there is only one single physical hardware 
layer in the SHL-ANN architecture that consists of 12 
computing neurons to perform the forward computation 
for both hidden and output neurons in the desired ANN.  

 
 

Figure 2. Functional block diagram of MHL-ANN architecture 
 

 
 

Figure 3. Functional block diagram of SHL-ANN architecture 
 

 
 

Figure 4. Architecture of one neuron 
 

 

 
 

Figure 5. The Multiply-Accumulate (MAC) operation 
 

 

 
 

Figure 6. The Log-sigmoid operation 
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The functional operation of each computing neuron in 
the SHL-ANN architecture is as follows. Computing 
neuron 1 is responsible for the computation of neuron 1 in 
the logical hidden layer and neuron 1 in the logical output 
layer, which will be executed sequentially. Other 
computing neurons act the same as computing neuron 1. 
The output of hidden layer is fed back as an input to the 
hardware layer to perform the forward computation for 
output layer, as shown in Figure 3. Since there are only 10 
neurons in the logical output layer, two computing 
neurons 11 and 12 only perform the forward computation 
for neurons 11 and 12 in the logical hidden layer.  

The hardware architecture of each computing neuron 
in SHL-ANN architecture is the same as the hardware 
architecture of the one implemented in MHL-ANN 
architecture, except that each computing neuron in SHL-
ANN architecture will have to store two weight vectors 
for two appropriate neurons in hidden layer and output 
layer, respectively. The control unit is used to control the 
forward computation of logic neural layers, i.e., selecting 
the right weight vector and appropriate input vector to the 
physical hardware layer.  

Since we intend to perform handwritten digit 
recognition with MNIST database consisting of 784-pixel 
images, we may increase the number of inputs to neural 
network up to more than 784. This allows for using those 
input directly, thereby removing the feature extraction 
with PCA module (see Figure 1). For doing so, we reserve 
up to 1024 (2

10
) 18-bit positions in weight ROMs in SHL-

ANN architecture, allowing for input vector length to 
neural network up to 1024 elements. 

4. EVALUATION 

We perform handwritten digit recognition with the 
MNIST database for performance evaluation. The neural 
network training is performed off-line using MATLAB on 
a desktop PC having 8 GB RAM and running at a system 
clock of 3.2 GHz under Windows 7. The optimal weight 
matrices obtained from the training phase are then used 
for code generation of VHDL specifications for hardware 
implementation on FPGA. For hardware synthesis and 
implementation, we use the Xilinx ISE tool 14.1 and 
Virtex-5 XC5VLX-110T FPGA board. 

A. MHL-ANN versus SHL-ANN in MNIST 

We compare the MHL-ANN architecture with the 
SHL-ANN architecture at the same neural network 
configuration 20-12-10 with respect to FPGA resources, 
execution time and recognition rate, as shown in Table II. 
The SHL-ANN implementation uses about 1.8x less 
registers, LUTs, BRAMs and DSP units than the MHL-
ANN counterpart while guaranteeing the same recognition 
accuracy (90.88%) as well as (almost) the same execution 
time per image (509 cycles and 507 cycles).  

Both implementations shown in Table II use only 20 
principal features extracted from 784 original image 
pixels, meaning that a feature extraction unit with PCA 
technique is required. Note, that with respect to peak 
execution performance, the MHL-ANN implementation 
would potentially outperform the SHL-ANN 
implementation as the forward computations of hidden 
layer and output layer in the MHL-ANN architecture can 
be pipelined. 

TABLE II. COMPARISON BETWEEN IMPLEMENTATIONS OF MHL-ANN 

AND SHL-ANN FOR MNIST DATABASE AT NETWORK CONFIGURATION 

20-12-10 ON XILINX XC5VLX110-T FPGA (SPEED GRADE -3) 

 MHL-ANN 

20-12-10 

SHL-ANN 

20-12-10 

Availa

ble 

FFs 24025 13111  69120 

LUTs 28340 15938 69120 

BRAMs 22 12 148 

DSPs 22 12 64 

fmax (MHz) 205 188 - 

Exec. time (cycles) 507 509 - 

Recog. rate (%) 90.88 90.88 - 

 

B. Scalability of MHL-ANN architecture 

Since hardware implementation of ANN is expensive 

in terms of resources, determining the biggest neural 

network implementable on a given FPGA device is of 

importance. We investigate how well the two proposed 

ANN architectures scale with increased network size on 

the chosen Virtex-5 XC5VLX-110T FPGA. To do so, we 

vary the network size, generate VHDL models and 

implement the designs on FPGA using Xilinx ISE tool. 

We run both synthesis and implementation processes in 

Xilinx ISE software to verify if the designed network can 

really be implemented on the chosen FPGA. 
 

TABLE III. IMPLEMENTATION RESULTS OF VARIOUS MHL-ANN 

CONFIGURATIONS ON XILINX VIRTEX-5 XC5VLX-110T; SPEED GRADE -
3; TOTAL SLICE: 69,120. 

MHL-ANN  

configuratio

n 

Total 

numbe

r of 

neuron

s 

Resource 

utilizatio

n (%) 

Max. 

frequenc

y fmax 

(MHz) 

Implementabl

e 

     

20-12-10 22 41 205 Yes 

20-16-10 26 48 192 Yes 

20-20-10 30 56 192 Yes 

20-24-10 34 62 188 Yes 
30-30-10 40 74 188 Yes 
30-30-15 45 82 180 Yes 

30-30-20 50 92 180 Failed 
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Figure 7. Comparison among various neural network implementations 

in terms of FPGA resource utilization (%) and recognition rate (%) 

(MHL: MHL-ANN, SHL: SHL-ANN)  

Table III reports the implementation results for MHL-

ANN architecture with seven network configurations 

considered. Among them, the first four implementations 

follow the configurations for the handwritten digit 

recognition application reported in Table I. The last three 

network configurations aim to investigate whether the 

designed neural network is implementable on the chosen 

FPGA with respect to routing resources required for the 

connections in the whole network. Note, that the routing 

resource of a design on FPGA is normally not reported 

explicitly like the computing resource, therefore, it may 

happen that a design can be synthesized but cannot be 

implemented (Place-and-Route) on an FPGA due to 

limited routing resource.  

Generally, Table III shows that the area cost for the 

MHL-ANN implementations scales proportionally with 

the network size (or total number of neurons). The 

average area cost for one neuron is about 1.85% of the 

total slices (69,120), or about 1300 slices per neuron. The 

maximum operating frequency of neural network 

decreases with increased network size, as expected. 

While the first six networks are successfully synthesized 

and implemented, the last one (configuration 30-30-20 

with 50 neurons) can be synthesized but is failed to 

implement on the chosen FPGA device.  

From our experiments, it is shown that an MHL-ANN 

with 45 neurons (30 inputs, 30 hidden neurons, and 15 

output neurons) is currently the biggest neural network 

implementable on Virtex-5 XC5VLX-110T FPGA. 

Obviously, larger FPGAs like the Virtex-6 and Virtex-7 

devices are needed for implementation of more 

complicated MHL-ANNs. 

 

C. Scalability of SHL-ANN architecture 

We investigate the scalability of the SHL-ANN 

architecture on the chosen Virtex-5 FPGA. The 

experimental results are shown in Table IV, for which all 

investigated neural network configurations are both 

synthesizable and implementable. Since the proposed 

SHL-ANN architecture can accept large input vector to 

the network, this allows for: a) removing the feature 

extraction unit in the recognition system shown in Figure 

1, and b) using 784 image pixels as direct inputs. As 

shown in Table IV, increasing number of inputs to 784 

pixels while still employing 12 hidden neurons can 

improve the recognition rate by 2.45% (from 90.88% to 

93.33%) while it costs about 5% more hardware resource 

(from 23% to 28%) compared to the case when using 20 

principal components as inputs.  

 

 

TABLE IV. IMPLEMENTATION RESULTS OF SHL-ANN CONFIGURATIONS 

ON XILINX VIRTEX-5 XC5VLX-110T; SPEED GRADE -3; TOTAL SLICE: 
69,120. 

SHL-ANN 

configuration 

Total 

number 

of 

neurons 

Resource 

utilizatio

n (%) 

Max. 

frequen

cy  

fmax 

(MHz) 

Recog

nition 

rate 

(%) 

     

20-12-10 22 23 188 90.88 

784-12-10 22 28 193 93.33 

784-40-10 50 91 180 96.83 

More importantly, it is shown in our experiments that 

an SHL-ANN implementation (configuration 784-40-10) 

having maximal of 50 neurons can be fitted on the 

Virtex-5 XC5VLX-110T FPGA chip and it offers the 

best recognition rate of 96.83%, i.e., only 317 

misclassified images out of 10.000 test images in the 

MNIST database.  

Figure 7 compares various neural network 

implementations with respect to FPGA hardware 

resource utilization (%) and corresponding MNIST 

recognition rate (%), which obviously shows that the 

SHL-ANN architecture is much more efficient than the 

MHL-ANN one. 

5. CONCLUSION 

We have presented the design, implementation and 

verification on FPGA of 2-layer feed-forward artificial 

neural network architectures for handwritten digit 

recognition system. We study the scalability and hardware 

resource utilization of our two proposed neural network 

architectures (MHL-ANN and SHL-ANN) on the Xilinx 

Virtex-5 XC5VLX-110T FPGA. Experimental results 
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showed that the SHL-ANN architecture is very potential 

for high performance embedded recognition applications. 

Future work will focus on improving performance of the 

proposed neural network architectures as well as 

extending the networks to other recognition applications 

like face recognition and/or image recognition. 
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