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Abstract: The modular exponentiation operation used in popular public key encryption schemes, such as RSA, has been the focus of 

many side channel analysis (SCA) attacks in recent years. Current SCA attack countermeasures are static, referring to the algorithmic 

elements as implemented in hardware. Given sufficient signal-to-noise ratio and a number of power traces, static countermeasures 

can be defeated, as they merely attempt to hide the power consumption of the system under attack. This paper develops a dynamic 

countermeasure which constantly varies the timing and power consumption of each operation, making correlation between traces 

more difficult. By randomizing the radix of encoding for Booth multiplication and randomizing the window size for exponentiation, 

we demonstrate a SCA countermeasure can be constructed which increases RSA SCA attack protection up to at least 100,000 

encryption cycles, as well as a reduced execution time due to a reduction in required operations. 
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1. INTRODUCTION 

In the seminal 1999 paper [1], Kocher et al. present a method to recover a secret key from cryptographic hardware by 

monitoring the hardware’s power consumption. In recent years, these so called side channel analysis (SCA) attacks have 

become a focus of the cryptographic community. These attacks are conducted by collecting power consumption data of 

the hardware, referred to as power traces, over many cryptographic cycles and statistically correlating this data to the 

likely cryptographic key. These attacks allow an adversary to recover keys much faster than traditional cryptanalysis. The 

RSA public key encryption algorithm [2] has been the target of many of these attacks. Current methods of SCA 

protection fall into two main categories: masking and hiding [3]. Masking introduces randomness into the input text to 

introduce independence between intermediate calculations and power consumption. Hiding obscures correlation by 

introducing electrical noise or designing the hardware in such a way that minimizes the signal an attacker wishes to 

capture, thus making successful attacks more difficult. However, these static
1
 countermeasures are insufficient because 

they can be broken by collecting more or higher fidelity power traces, and by improved post processing using better 

algorithms. 

This paper introduces a dynamic countermeasure that incorporates run-time algorithmic randomness into operations, 

intermediate values, power consumption, and timing. This constantly changing algorithmic signature drives side channel 

attackers to perform a “brute force” search to achieve the correlation needed for successful attacks. The paper is 

organized as follows: Section 2 provides a short background on RSA, Booth multiplication, and modular exponentiation 

methods. Section 3 introduces the dynamic algorithmic countermeasure. Sections 4 and 5 discuss several well-known 

side channel attacks and current existing countermeasures. Sections 6 and 7 present the results of implementing the 

countermeasures and metrics respectively.  Lastly, Section 8 provides the research conclusions. 

2. BACKGROUND 

Modern cryptographic algorithms use very large integers for keys, e.g., 4096-bit RSA. Many public key 
cryptographic algorithms, including RSA, rely on modular exponentiation operations. RSA decryption, as seen in 
Equation 1, raises the ciphertextC to the power of the private key d modulo N. The result is the plaintext message M. 

                                                           
1 We use the term static to refer to non-changing algorithmic elements utilized at run-time. 
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M = C
d
  (mod N )   (1) 

Naively computing C
d
 via d−1 multiplications of C is impractical because of memory and timing constraints [4]. 

Therefore, algorithms are required to decrease storage requirements and the number of steps required for the modular 
exponentiation operation. These algorithms are known as square-and-multiply algorithms. The algorithms represent the 
exponent (i.e., key) in binary and repeatedly compute modular multiplication operations.These algorithms keep the 
memory space limited as they perform modular reduction during exponentiation and complete after log2 d iterations. 
Additionally, exponentiation methods can operate on a single bit of the exponent (binary) or multiple bits of the exponent 
(k-ary) for a given iteration. 

A. Modular Exponentiation 

Binary exponentiation is the most straightforward method for exponentiation; operating on a single bit of the binary 
representation of the exponent each iteration. This process can be performed either from the left-to-right (MSB to LSB) 
or right-to-left (LSB to MSB). The square-and-multiply algorithm for left-to-right binary exponentiation can be seen in 
Algorithm 1. 

 

It is also possible to operate on multiple bits of the exponent each iteration. For maximum efficiency, the goal is to 
compute C

d
 using the fewest number of operations, given that it is only possible to multiply two already computed 

powers of C [5]. Since multiple bits are being operated on at once, there are fewer total operations needed. This approach, 
referred to as windowing, provides some speedup; however, this speedup comes as trade off of higher memory 
requirements and required precomputations.  As seen in Algorithm 2, precomputation and storage of additional powers of 
C are needed. The larger the window size k, the fewer multiplication operations needed and more memory space 
required. 

 

In order to complete the modular multiplications we must implement a multiplier. Basic binary multiplication is 
accomplished by repeated addition and shift operations. In contrast, Booth encoded multiplication [6] recodes operands to 
reduce the number of costly addition steps. This paper focuses on a modification of the Booth concept to dynamically 
randomize the calculation, which provides a level of SCA protection to RSA. 

B. Booth Multiplication and Modular Reduction 

Booth multiplication was chosen as the base multiplication architecture because it allows for multiple bits to be 
encoded and operated on during a single iteration. Booth multiplication tests the LSBs of the multiplier to determine 
whether adding or subtracting the multiplicand is needed in each iteration. Booth’s approach has a speedup benefit since 
arithmetic operations are only required on 0-to-1 and 1-to-0 transitions. For each iteration, the LSBs of the multiplier are 
tested, arithmetic operation is completed (if needed), and multiplier and product registers are shifted. 
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To complete modular multiplication, the product of Booth multiplication must be reduced viaa modulo operation. 
There are two main classes of reduction techniques for modular multiplication: multiply-then-reduce and reduce-as-you-
go [7]. This paper implements the reduce-as-you-goapproach. 

The resultant modular Booth multiplier design is shown in Figure 1. The Booth multiplier hardware concurrently 
computes all possible encoding results and uses a multiplexer to choose the correct result based on the Booth encoding of 
the multiplier and the shift-left-amount (SLA). This result is fed into the modular reducer section of the hardware. Here, 
all possible reductions are computed concurrently and the MSB of the results determine the correct reduction. Using 2’s 
complement arithmetic, a MSB of 1 represents negative numbers while MSB of 0 represents positive numbers. The 
modular reducer selects the smallest non-negative result. Therefore, this architecture implements combinational logic that 
concurrently computes all possible Booth results, selects the correct Booth result, computes all possible modular 
reductions, and selects the correct modular reduction all within a single clock cycle. 

 

Figure 1. Modular Booth Implementation 

3. DYNAMIC ALGORITHMIC  COUNTERMEASURES 

As previously stated, we use the term static to refer to non-changing algorithmic elements utilized at run-time. Figure 
2 shows a complete categorizationof our terms of static and dynamic as used in this paper. The classification of our 
dynamic algorithmic countermeasures is indicated by the shaded portion. 

 

 Figure 2. Static vs. Dynamic Countermeasures 

A. Randomized Radix Encoding Booth Multiplier 

This paper introduces a design for a Booth multiplier with randomized radix encoding. Increasing the radix of Booth 
encoding causes more bits to be encoded each cycle, thus further decreases the number of required cycles to complete 
multiplication. The Booth encoding for radix 2, 4, and 8 are shown in Table 1. Note that all multiples of the multiplier M 
are trivial (i.e., shifts and 2’s complements) except the multiple of three. However, the multiple of three is easily pre-
computed and stored for later use. 

The radix of Booth encoding is randomly selected as 2, 4, or 8 to provide SCA protection. Driven by a pseudorandom 
number generator, henceforth referred to as random, the multiplier hardware randomly selects a radix at each iteration. A 
simple linear feedback shift register is utilized for this research; however, more appropriate sources of randomization and 
a larger choice of radix bases could be used during implementation. This dynamic approach induces randomness into the 
timing of operand use, randomizes intermediate operands, randomizes power consumption, and multiplication completes 
in a non-deterministic number of clock cycles. This randomization causes alignment of traces to be lost and varied power 
consumption, making correlation much more difficult. 
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Table 1. Table of Booth Encoding For Given Radix 

 

 

B. Randomized Window Exponentiator 

Building upon the randomness introduced via the variable radix encoding Booth multiplier, the window size of the 
exponentiator is also randomized by selecting between three options. Starting with the general windowing Algorithm 2, 
the precomputations needed for a maximum window size of 3 are computed. Continuing into the second loop of the 
algorithm, the window size k is randomly varied between 1, 2, or 3 each iteration, essentially determining the multiplier 
and multiplicand inputs into the Booth multiplier. If window size 1 is chosen, the algorithm simplifies to simple binary 
exponentiation. If a window size of 2 (or 3) is chosen, R = R

4
 (R = R

8
 ) is computed  and R = R ∙ cdi is calculated using 

the precomputed powers of c. Similar to randomizing the radix in Booth multiplication, randomizing the window size for 
exponentiation further introduces timing randomness, operations randomness, and randomness in calculated intermediate 
values. Although this paper presents an architecture with window sizes of 1, 2, and 3, it is possible to increase the 
window size further for added randomization. However, increasing window size is a tradeoff, since increasing the 
window size exponentially increases the number of precomputations and storage needed for very large integers. 

4. SIDE CHANNEL ATTACKS 

Our goal of adding randomness to timing and operations is to decrease the side channel attack susceptibility of the 
modular exponentiation operation. There are many known side channel attacks. Here we highlight a few well known 
attacks and reasons why our architecture is able to thwart them. 

A. Simple Power Analysis 

Simple Power Analysis (SPA) involves directly observing power traces to gather information about the secret key[1]. 
SPA leaks are caused by programming conditional branch decisions based on secret keys or intermediate values. For 
example, in binary exponentiation as described in Algorithm 1, if there is a distinguishable difference between a squaring 
operation and a multiplying operation (time or power), the implementation is vulnerable to SPA. The dynamic 
countermeasure introduced in this paper uses a single set of hardware constructs for multiplication. Squaring and 
multiplication are both completed as simple modular multiplication operations using the same hardware; there is no 
distinction between operations. Additionally, any possible timing or power variations will be difficult to discern as the 
true operation versus the randomness introduced by this dynamic countermeasure.  

B. Differential and Correlation Power Analysis 

Differential power analysis (DPA), presented by Kocher [1], is a very common and very powerful side channel attack. 
Based on key guesses, an attacker calculates an expected intermediate bit and checks whether the difference between the 
mean traces partitioned according to this bit differ. Similarly in correlation power analysis, attackers calculate an 
expected intermediate value and check for statistical correlation within the captured power traces. There are many 
variants of this attack using either the Hamming weight of the intermediate value, Hamming distance, zero value model, 
etc [3]. All of these attacks depend heavily upon first being able to calculate the correct intermediate values. With our 
randomly changing architecture there are many possible intermediate values for each multiplication and exponentiation 
bit. Secondly, DPA attacks require these intermediate values to be correlated to the power traces. Even in the instances 
when our architecture calculates the same intermediate values, there is randomization in the way they are calculated. 
Different methods of calculation will drive different transistor switching activity which draws different power, also 
decreasing correlation. Lastly, DPA relies on trace alignment to correlate operations at the same slice in time. While there 
are advanced algorithms to aid in trace alignment, all the randomness heretofore discussed makes this task more difficult. 

5. EXISTING  COUNTERMEASURES 

As previously mentioned, many SCA countermeasures are static. That is, once these countermeasures are designed 
into a system, little is done to randomize the countermeasure at run-time. Static countermeasures rely on hiding the signal 
from an attacker. Several common ways this is attempted isdual-rail precharge logic (DPL) [8], bit balancing [9], noise 
addition [10], and delay insertion [11]. DPL and bit balancing concurrently calculate anintermediate result and its inverse, 
with the goal of hiding the true switching activity based on constant Hamming weights. The problems with these 
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countermeasures are imperfections in device fabrication or variations in the FPGA synthesis process (i.e., place and route 
algorithms). It is nearly impossible to fabricate a device that perfectly balances switching power consumption [12]. Static 
noise addition countermeasures can be defeated by simply taking additional traces, isolating the power of only the 
cryptocircuit under attack, or filtering. While random delay insertion has some dynamic operations, there are multiple 
techniques to defeat this countermeasure, such as integration [13]. The security of these countermeasures relies only on 
the signal quality the attackers are able to capture and the sophistication of attack processing. In contrast, the security of 
the dynamic countermeasure presented in this paper relies on the random algorithmic choices at two layers of operations 
within the architecture. 

6. RESULTS 

A. Simulation Results 

We develop our customized countermeasure design in VHDL and simulated using Mentor Graphics ModelSim. The 
following sections discuss simulated execution of the randomized radix encoding Booth multiplier, variable window 
exponentiator, and the combined countermeasure. 

1) Randomized Multiplication Simulation 
Three identical computations of 146 ∙85 (mod 207) were simulated to show the induced randomness in timing and 

operations. The simulation results are presented in Figure 3. It is clearly seen that all three modular multiplication 
computations’ output arrive at the correct answer of 146 ∙ 85 (mod 207) = 197. However, the simulations complete in 9, 
5, and 6 cycles respectively. 

 

Figure 3. ThreeSimulationsof146·85(mod207)=197 

Table 2 presents the three computations in tabular form in order to show the randomness in the calculations, where 
the multiplier 85 is represented in binary. As each computation traverses from MSB to LSB of the multiplier, horizontal 
separating lines show which bit(s) each cell operates on. Notice where given radix bases (i.e., radix iterations) end on the 
same bit (n.b., horizontal lines line up), the calculated intermediate value is the same, but where iterations end on 
different bits of the multiplier (n.b., horizontal lines do not line up) the addition operation and results are different. This 
effect is significant because although the algorithm is computing the same answer, the power signature will be vastly 
different not only because of the induced timing variance, but also the switching activity from different operands in each 
iteration. 

Table 2. Three Computations of 146 ∙ 85 (mod 207) [Entire Table   (mod 207)] 
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2) Randomized Window Exponentiator 
A simulation  of three  identical  calculations  of 146

187
 (mod 207) is  presented in Figure 4. First, all three iterations 

are verified to arrive at the correct answer of 146
187

 (mod 207) = 47. Multiplication is held constant, 11 cycles to 
complete, and the only variability is from the randomized window. The timing variance of the randomized exponentiation 
leads to completion in 231, 220, and 242 cycles respectively. 

 

Figure 4. Random Window Configuration Simulation of 146187  (mod 207) = 47 

More interestingly, the tabular calculation shown in Table 3 is inspected to see the countermeasure’s effect on 
intermediate calculations. Because intermediate calculations, power consumption, and timing are of such importance to 
DPA attacks, this randomized modular exponentiation architecture is a countermeasure to defeat SCA attacks. Again, 
take notice where given exponentiation windows (i.e., window iterations) end on the same bit (n.b., horizontal lines line 
up), the calculated intermediate value is the same, but where iterations end on different bits of the exponent (n.b., 
horizontal lines do not line up) results are different. 

Table 3. Three Computations of 146187  (mod 207) [Entire Table   (mod 207)] 

 

B. Hardware Attack Results 

The simulation results from the previous sections are the result of VHDL code. This code was subsequently 
synthesized onto a Xilinx Virtex-5 FPGA using Xilinx’s XPS Design Suite. Four configurations were ultimately 
synthesized to hardware for attack analysis. The configurations used follow as: 

1. Baseline Configuration.  RSA configuration with no countermeasures. 

2. Randomized Multiplication Configuration.  Configuration uses a dynamic approach to binary exponentiation 

utilizing Booth multiplier that randomly selects between radix of 2, 4, or 8. 

3. Random Window Exponentiator Configuration.  The random window configuration uses static 2-radix 

Booth multiplication, but varies the exponentiation window size between 1, 2, or 3. 

4. Combined Countermeasure Configuration.  Dynamic countermeasure that combines the randomized radix 

encoding Booth multiplier hardware with the randomized exponentiation window architecture. 
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The synthesized configurations were subjected to a side channel electromagnetic (EM) correlation power analysis 
attack. First, a collection of 10,000 power traces with random ciphertexts is decrypted. During decryption, EM probes are 
used to collect emissions related to power consumption. These emissions and ciphertexts are saved for attack processing. 
This attack setup is identical for each configuration under attack. Next, a key-bit guess is made, and an intermediate value 
is calculated based on this guess. The Hamming weight (HW) of 8-bits of the resultant intermediate guess is calculated. 
These 10,000 8-bit HW values are statistically correlated to the collected EM power traces. If the resultant correlation 
trace contains a correlation spike, the power consumption matches the HW values and the key-bit guess is verified as 
correct. If no correlation spike is seen, the key-bit guess is incorrect or the protection countermeasure has been 
successful. If the current key-bit can be identified, the traces are subsequently analyzed with the next subsequent key-bit 
guess, repeating until the key-bit sequence is revealed. 

1) Attack on Baseline 
The first implementation from this paper to be attacked is the baseline configuration. As expected, correlation power 

analysis is able to easily recover the key-bit. Without any randomizations of intermediate values, randomizations in 
power, or trace misalignments, the attack is successful as seen in Figure 5. To provide the reader an idea of an 
unsuccessful attack, the correlation trace with an incorrect key-bit guess is also included. Notice the noisefloor remains 
the same but a correlation spike is not present. Therefore, the baseline configuration is not protected against correlation 
power analysis. 

 

Figure 5. Correlation Attack on Baseline Configuration - Correct Vs. Incorrect Guess 

Figure 6 reveals that beyond ≈ 30 traces the noise floor is reduced to a level that reveals the correlation. Attacks 
attempted with less than 30 traces will be unsuccessful, as it will be impossible to discern the correlation spike from the 
noise floor. However, attacks with greater than 30 traces will be successful because an attacker can distinguish the 
correlation spike in correct key-bit guesses. Also notice that the correlation spike neither increases nor decreases as 
excess power traces are collected, the noise floor simply shrinks further. This constant amount of leakage is due to the 
static nature of the implementation. An attacker only needs to collect enough traces to lower the noise floor to a level that 
allows distinguishment of the correlation spike. This demonstrated inherent weakness plagues all static countermeasures, 
such as dual-rail logic. 

 

Figure 6. Baseline - Correlation Vs. Noise Floor 

2) Attack On Randomized Multiplication 
Since the randomized multiplication configuration has elements of low level misalignment and randomization, the 

effectiveness of the SCA attack is expected to be degraded. The attack still generates a correlation spike; however, since 
there is timing randomness the correlation is spread out among many clock cycles. This causes the correlation spike to be 
shorter and wider instead of the narrow tall spike seen in the attack against the baseline configuration. 

Although the randomized multiplier countermeasure significantly reduced the correlation spike, the spike is still much 
larger than the noise floor. Thus, the attack is successful and this countermeasure does not protect against correlation 
power analysis attacks. Figure 7 shows some increased protection. This configuration requires ≈ 80 power traces for 
successful attack. Also, notice how the correlation no longer remains at a constant level as more traces are collected. The 
changing power consumption and misalignment introduced by the random multiplier continually decrease correlation, 
although the noise floor was able to be reduced at a steeper slope thus revealing the correlation. This tenet of dynamic 
countermeasures highlights the promise of their use for SCA obfuscations. 
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Figure 7. Randomized  Multiplier - Correlation Vs. NoiseFloor 

3) Attack On Random Window Exponentiator 
Based on the ending times variance examined previously, the random window exponentiator configuration is 

expected to provide increased protection. Attacks against this configuration indicate a small area of increased correlation. 
This correlation area is much more dispersed than the previous two configurations, indicating that the random window 
configuration provides the best protection so far. Looking at Figure 8, it is immediately apparent that the randomized 
window configuration isable to maintain correlation below the noise floor up until≈2, 000 traces. The increased timing 
variance allows this configuration to spread the correlation over a larger time frame, which decreases its impact. 

 

Figure 8. Randomized Window - Correlation  Vs. NoiseFloor 

4) Attack On Combined Countermeasure 
Combining the low level randomness of the random multiplier with the randomness of the random window 

exponentiator proves to be the best chance at protection. Performing a 10,000 trace attack indicates no correlation 
discernible from the noise floor. In this scenario, the correlation cannot be distinguished from the noise floor in the 
correlation trace; therefore this configuration is declared protected against the 10,000 trace correlation power analysis 
attack.Subsequently, the number of traces collected against the combined countermeasure configuration was increased by 
an order of magnitude to 100,000 traces. The 100,000 trace attack required about 48 hours of constant CPU processor 
time for trace collection, filtering, and associated processing. The results from this 100,000 trace correlation power 
analysis attack are shown in Figure 9. With 100,000 traces there continues to be no discernible difference in the correct 
vs. incorrect key guess in this attack and the correlation never becomes greater than the noise floor. 

 

Figure 9. Combined Countermeasure - Correlation Vs. NoiseFloor-100K Traces 

It is acknowledged that an attacker may be able to collect many orders of magnitude more traces in order to reduce 
the noise floor such that the correlation is discernible to break the combined countermeasure configuration. However, the 
amount of trace collection and processing time, as well as storage requirements, will also significantly increase. This 
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effect can be limited to reasonable amounts with sufficiently often key changes, with appropriate key lifetimes 
determined by operational risks assessments. 

7. METRICS 

Regardless of a countermeasure’s security, no implementation is realizable if it does not meet the user’s needs. Any 
security approach is useless if it cannot provide the required functionality in a timely manner. 

A. Protection 

This research seeks to force attackers into a brute force type correlation attack. If an attacker knew each random 
window size and radix, they could easily align/filter traces to reveal the correlation. Because these windows and radixes 
are randomized, an attacker would be forced to attempt correlation on all possible combinations of window sizes and 
radixes (i.e., brute force) for each key-bit. 

Recall that the baseline, random multiplier countermeasure, and random window countermeasure were vulnerable to 
attackers capturing 10,000 traces, with the exact level indicated as when the correlation of the key-bit guess exceeded the 
noise floor. The combination of both the random multiplier and random window countermeasure did not show any 
correlation with 10,0000, or even with 100,000, traces and is considered protected. Table 4 summarizes these results. 
Note that this research did not uncover a successful attack against the combined countermeasure. 

Table 4. Number of Traces Required for SuccessfulAttack 

Configuration Number of Traces Increased Protection 

Baseline 30 N/A 
Random Multiplier 80 166% 
Random Window 2,000 6,500% 
Combined Countermeasure >100,00 >300,000% 

B. Execution Time 

The other metric examined is execution time. Any countermeasure that increases encryption/decryption execution 
time decreases throughput. The execution time is shown in Figure 10, with all configurations running at 12.5 MHz

2
. It 

may seem counter intuitive that the additional logic in the combined countermeasure results in faster run time; however, 
recall the combined countermeasure is actually using fewer clock cycles due to incorporating the randomized Booth 
encoding previously described.  

 

Figure 10. Execution Time of Configurations Compared(Running At 12.5 MHz) 

8. CONCLUSIONS 

This research is driven by the fact that current static SCA countermeasures rely on hiding the signals, not protecting 
them. These countermeasures’ successes are largely based upon the quality of equipment and quality of signal an attacker 
is able to capture. The dynamic algorithmic countermeasures presented in this paper do not attempt hide power 
consumption, only to randomize it. Because the signal is not simply hidden beneath noise, the probability of successful 
attack is not determined by the sophistication of attacker equipment or quality of signal they capture. Combining the two 
forms of randomness (e.g., randomized window exponentiator and randomized Booth multiplication) creates a synergistic 
increase in protection. This randomized approach forces an attacker into a brute force side channel attack in which the 
attacker must attempt every possible combination of intermediate values for every trace. Therefore, this research lays a 
foundation for exponential difficulty side channel attack protection. 

Assuming the correct trade off choices are made with respect to performance and security requirements, it is 
conceivable that large enough pools of radixes and window sizes could lead to a future system with brute force side 

                                                           
212.5 MHz is based on the is the maximum frequency for the combined countermeasure on the Xilinx Virtex-5 FPGA. 
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channel attack difficulty no worse than the underlying encryption algorithm’s functional security, thus rendering side 
channel attacks impractical. 
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