
Int. J. Com. Dig. Sys. 2, No. 3, 109-121 (2013)                                                                                                             109 

 

 

© 2013 UOB SPC, University of Bahrain 

 

 

 

 

 

A Practical Neuro-fuzzy Mapping and Control for a 2 DOF 

Robotic Arm System 
 
Ebrahim Mattar 

 

Dept. of Electrical and Electronics Engineering,   

College of Engineering, University of Bahrain, P.O. Box 32038, Kingdom of Bahrain. 
 

E-mail addresses:  ebmattar@theiet.org, ebmattar@ieee.org  
 

Received 23 Sep. 2012, Revised 9 Feb. 2013, Accepted 15 Mar. 2013, Published 1 Sep. 2013 
 

Abstract:  Relating an arm Cartesian space to joint space and arm dynamics,  is an essential issue in arm control  that 

has been given a substantial attention by number of researches.  Arm inverse kinematic, is a nonlinear relation, and a 

closed form solution is not a straight forward, or does not even always exist. This research is presenting a practical use 

of Neuro-Fuzzy system to solve inverse kinematics problem that used for a two links robotic arm.  The concept here is 

to learn kinematics relations for a robotic arm system.  This is to learn and map its environment and remembers what it 

learnt. For learning the inverse kinematics, Neuro-fuzzy needs information about coordinates, joint angles and actuator 

position. Information flow needed for the training for a Neuro-fuzzy  network is slow and difficult to get by measuring 

the real structure.  Desired Cartesian coordinates are given as input to a Neuro-fuzzy that returns actuator positions. 

Hence to express them as linguistics fuzzy rules.  Neuro-fuzzy system is to generalize and produce an appropriate 

output. The assembled system has been equipped with C
++

 interface routines, as being executed from a MATLAB 

environment,  in addition to high-speed low-level communication with the robotic arm sensing devices. 
 

Keywords:   UOB Robotic Arm;   Inverse Dynamics;   Computed Torque Law;    Neuro-fuzzy mapping. 

 

I. INTRODUCTION 

Robotics arms are widely used and employed for 

industrial and non-industrial applications. However, for 

more precise and accurate motion control, dynamic 

model do play important role for such applications.  It is 

always not an easy task to get the forward and the inverse 

models for robotics structure, specifically, once 

redundancy exists. Kinematics models are always 

nonlinear relations, and closed form solutions are not 

easy tasks to be achieved. There are a number of 

approaches that have been reported in literature regarding 

building kinematics models. In its boarder sense, 

manipulator kinematics is the study of motion without 

regard to the forces which cause it.  Within kinematics, it 

is possible to study position, velocity and acceleration, 

and all higher order derivatives of an arm position 

variables. The kinematics of manipulators involves the 

study of the geometric and time based properties of the 

motion, and in particular how the various links move 

with respect to one another and with time.  Typical robots 

are serial-link manipulators comprising a set of bodies, 

(links), in a chain, connected by joints.  Each joint has a 

single Degree of Freedom (DOF), either translational or 

rotational. For a manipulator with (n joints numbered 

from 1 to n, there are (n+1) links, numbered from 0 to 

(n).  Link 0 is the base of the manipulator, generally 

fixed, and link n carries the end­effector. Joint (i) 

connects  links (i) and i  first and last links are 

meaningless, but are arbitrarily  chosen to be 0. Joints 

may be described by two parameters.  The link (o) set is 

the distance from one link to the next along the axis of 

the joint.  The joint angle is the rotation of one link with 

respect to the next about the joint axis.  To facilitate 

describing the location of each link we affix a coordinate 

frame to it, frame (i) is attached to link (i).   

Denavit and Hartenberg [1] proposed a matrix method 

of systematically assigning coordinate systems to each 

link of an articulated chain.  Axis of revolute joint (i) is 

aligned with (Zi).  Parallel link and serial/parallel hybrid 

structures are possible, though much less common in 

industrial manipulators. 
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A. Issues Related to Robotics Task-Space Control. 

 When we restrict ourselves to the control of robotic 

arms, we generally faced by three dedicating issues: (i) If 
a target (a grasp) position is known, usually in Cartesian and 

where an arm gripper must move to, the corresponding joint 

angles must be computed. This problem known as “INVERSE 

KINEMATICS”. (ii) Secondly, a path must be generated along 

which each joints must be moved from the current position. 

This problem is known as “PATH PLANNING”. (iii) Third, the 

right torques must be exerted on the joints (by giving an 

actuator the accurate current). This problem is also known as 

“INVERSE DYNAMICS”. 

B. ANN Arm Control:  Advanced Robotic Arm. 

 Control: In many studies of nonlinear system control, 

Artificial Neural Networks (ANN) have been used as 

effective solutions by exploiting their nonlinear mapping 

properties. Learning and adaptive capabilities of ANN to 

control nonlinear systems, have played an important role 

in performance and have proven its promising future of 

ANN as an auxiliary nonlinear controller. 

 

     Typical popular nonlinear systems, are the multi DOF 

robotic manipulators. Consequently, they do need 

nonlinear control methodologies.  A one possibility is an 

ANN based methods. Over the last few decades there has 

been rapid development in both the theory and 

application of Artificial Neural Networks. Taking 

advantage of those characteristics of  ANN, many ANN 

control schemes have been proposed in the literature.  

The important issue of ANN control application is to 

determine an appropriate training signal for training 

purposes. The known “back propagation-learning” 

algorithm is always used to adjust the internal weights in 

on-line fashion.  

 

    Since the control application of ANN requires an on-

line tuning, hence the adaptation capability of ANN plays 

more important role than that of learning capability. It 

has been reported that the complete mapping from one 

domain to another domain, to identify INVERSE 

DYNAMICS of robot manipulators, is not easy.  This  

often requires an off-line training procedure, which is 

time consuming.  

 

     One of the ANN applications was done by Bogdanov 

and Timofeev [2].  Here ANN controller was synthesized 

to compensate dynamics approximation errors in the 

model of  a two link robotic system. Thus providing 

robust control. Obtained robustness estimates for  the 

developed ANN algorithms establish relation between 

transients quality and parameter disturbances caused by 

inaccurate approximation. The controller used to stabilize 

the system could be any type because it’s independent of  

ANN training parameters.  Refer to  Fig. (1), Fig. (2), and 

Fig. (3) for possible robotic arm control topologies.  

Among the various kinds of ANNs, great attention has 

been devoted to  those  (called mapping networks) which, 

 
Fig. 1. A static ANN robotic arm control. ANN is trained once.  

PD  is standing for Proportional Derivative Controller 

synthesis. 

 

 
Fig. 2.  Another topology of ANN robotic arm control. 

 

 
Fig. 3.   Adaptive type ANN based arm control detailed 

structure. 

 

through simple, ordered processing structures, reproduce 

the main functions of the human brain, in particular those 

of learning and adaptation. These ANNs can learn a 

mapping between an input and an output and synthesize 

an associated memory which gives the appropriate output 

when a certain input is presented to it. The output is 

either one corresponding to an input which is known at 

the start, or is the result of a capacity for generalization 

when the input is unknown. In addition, due to their 

inherent nonlinearity, these neural models are capable of 

executing functional approximations better than the best 

classical techniques, which are essentially based on 

linearization hypotheses. Such capabilities, along with 

others of less importance, are supported by the 

considerable calculation speed characterizing ANNs, due 

to their massively parallel architecture. Such 

characteristics have made the use of ANN a valid 

alternative to the better-known classical techniques in the 

solution of various problems ranging from pattern 
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recognition to process control, to telecommunications, to 

robotics. 

C. Feedback Error Learning Technique. 

One popular non-model based robot arm control 

approach is to apply a simple Proportional Derivative 

Controller (PD) synthesis to a robot manipulator.  The 

PD controllers are continuously stable, but its tracking 

performance is generally poor due to uncertainties caused 

by the robot dynamics. To compensate for such 

uncertainties, feedback error learning scheme has 

proposed to augment the PD controller as shown in Fig. 

(2).  This approach requires the ANN to identify the 

complete robotic arm inverse dynamics for possible 

compensation,  De Azevedo and Barreto [3].  

D. Other ANN Control Technique. 

Hisa, as in [4],  has applied a PD controller system for 

a robot arm. He stated that, “The PD controller system is 

always stable, but its tracking performance is generally 

poor due to uncertainties caused by the robot dynamics. 

To compensate for such uncertainties, feedback error 

learning (FEL) scheme has proposed to augment the PD 

controller as shown in Fig. (3).  This approach requires 

the NN to identify the complete robot inverse dynamics 

for compensation”,  Hsia [4]. 

 

 One of the ANN applications most explored in the 

last few years is the adaptive control of robotic arms with 

unknown dynamics. This kind of control is generally split 

into two phases: identification of the most representative 

parameters of the system dynamics to be controlled, and 

design of the most suitable regulator for this control.  The 

presence of an identification module and the possibility 

of on-line tuning of the regulator parameters allow any 

external disturbance or variations in the system dynamics 

itself to be compensated for, thus guaranteeing successful 

control of a process in all its dynamic conditions.  In the 

past three decades, major progress has been made in 

adaptive identification and control for linear time-

invariant plants with unknown parameters. The 

mathematical theories developed for adaptive control 

(both identification and design of the regulator) are now 

well consolidated and are all based on linear algebra and 

the theory of ordinary linear differential equations. In 

other words, the choice of the identifier and controller 

structures is based on well-established results in linear 

systems theory. 

 

     In their research paper, Lakshmi and Mashuq [5],  

have both introduced  an adaptive Neuro-Fuzzy control 

method.  This  is  for a Cartesian motion control of a 4 

DOF  robot arm.  In their  paper,  the foucs was the 

control of   Selective Compliant Assembly Robot Arm 

(SCARA) type robot arm.  The main controller concept 

was based on  the use of  inverse learning Adaptive 

Neuro-Fuzzy Inference System (ANFIS) model only to 

train itself from certain given robot trajectories.  In 

reality, these trajectories should be obtained by directly 

measuring the robot arm responses for given inputs to 

capture the actual dynamics in the presence of all 

uncertainties.  The employed approach was used for the 

design and implementation of an ANFIS controller which 

has shown to work with satisfactorily performance. 

 

     A Neuro–Fuzzy Controller synthesis for position 

control of robotic arm was also presented by Tavoosi et. 

al. [6].  In their approach, they stated that,  “robot 

manipulators have become increasingly important in the 

field of flexible automation.  So modeling and control of 

robots in automation will be very important.  But Robots, 

as complex systems, must detect and isolate faults with 

high probabilities while doing their tasks with humans or 

other robots with high precision and they should tolerate 

the fault with the controller.” In this respect and 

background,  they introduced  a Neuro-Fuzzy Controller 

(NFC) for position control of robot arm.  Hence,  they 

proposed  a five layer ANN  to adjust input and output 

parameters of membership function in a fuzzy logic 

controller.  For training purposes, a hybrid learning 

algorithm was also used for training  of such 5-layres  

ANN network.  While using  such a learning  algorithm, 

the least square estimation method is applied for the 

tuning of linear output membership function parameters 

and the error backpropagation method is used to tune the 

nonlinear input membership function parameters.  To 

validate the proposed NFC  algorithm, the obtained 

simulation results show that Neuro fuzzy controller is 

better and more robust than the PID controller for robot 

trajectory control. 

      In [7], both Pham and Fahmy have introduced a 

Neuro-Fuzzy Modelling and Control technique for  

Robotics Manipulators Trajectory Tracking system.  In 

their research efforts,  they presented a novel Neuro-

fuzzy controller synthesis for robotic manipulators 

control.  First, an inductive learning technique is applied 

to generate the required modelling rules from 

input/output measurements recorded in the off-line 

structure learning phase. Second, a fully differentiable 

fuzzy neural network is developed to construct the 

inverse dynamics part of the controller for the on-line 

parameter learning phase. Finally, a fuzzy-PID-like 

incremental controller was used and employed as 

feedback servo-controller.  For validation purposes,  the 

suggested control system was also tested using dynamic 

model of a six-axis industrial robot (6-DOF) arm.  The 

control system showed good results compared to the 

conventional-PID individual joint controller. 

 

     Furthermore, Lazarevska [8] have introduced a Neuro-

fuzzy modeling network for the issue of  inverse 

kinematics problem of  a 4 DOF robotic arm.  In this 

context, the manuscript presented a detailed structure  of  

Neuro-fuzzy model of the inverse kinematics of 4 DOF 

robotic arm employing the relevance vector learning 

algorithm.  Lazarevska [8] has stated that,  “although the 
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direct kinematics of the robotic arm can be modeled with 

ease by the same approach, the paper focuses on the 

much more interesting kinematic task, since its solution 

presents a basis for robot control design”.   Hence,  the 

presented model was based on the use of a Takagi-

Sugeno type, but its parameters and number of fuzzy 

rules are automatically generated and optimized through 

the adopted learning algorithm based on M. E. Tipping's 

relevance vector machine. The presented model 

illustrates the effectiveness of the adopted neuro-fuzzy 

modeling approach. 

 

In terms of MIMO NARX models,  pham et. al. [9] 

have presented Dynamic model identification of the 2-

Axes PAM robot arm using neural MIMO NARX model.     

In their resarch, a novel inverse dynamic MIMO NARX 

model is employed for modeling and identifying 

simultaneously both of joints of the prototype 2-axes 

PAM robot armpsilas inverse dynamic model.   In reality,  

the contact force variations and highly nonlinear coupling 

features of both links of the 2-axes PAM robot arm are 

modeled thoroughly through an inverse neural MIMO 

NARX model-based identification process using 

experiment input-output training data.   For the first time, 

the nonlinear inverse dynamic MIMO NARX model 

scheme of the prototype 2-axes PAM robot arm has been 

investigated.   For validation,   the obtained  results  have 

shown  that proposed dynamic intelligent model trained 

by back propagation learning algorithm yields 

outstanding performance and perfect accuracy.  Kelly  et. 

al., [10],  and in their proposed control method, they 

presented  and discussed a reasoning and a technique for 

combining artificial neural networks (ANN) and fuzzy 

logic structure.  Hence, they also presented a discussion 

of the problem of moving a robotic arm in the presence of 

an obstacle. The approach was based on the use of 

several Neuro-fuzzy controllers as are trained,  using 

sample data obtained from a human’s control of a robotic 

arm.  Their performance is quantified and compared.  

Kelly  et. al., [10] have shown that the definition of the 

fuzzy membership functions plays a significant role in 

the ability of the Neuro-fuzzy controller to learn and 

generalize. Possible directions for future work are 

suggested. 

E. Manuscript Contribution. 

Having presented few literature works within this 

focus, the main objective of this research is to employ a 

Neuro-fuzzy architecture for a control of a home built 

robotic arm system. This would include a secondly 

defined objective, which is to build a robotic arm system 

with an adequate sensing abilities being interfaced to a 

high level computing environments (Matlab and C
++

).   

The development of such an arm is useful for gentle 

exploration of an unknown objects in un-structured 

environments. Similar to a human, an object position is 

sensed by the eyes and then the arm move toward it in 

precise motion to get the object; here we need also 

feedback sensors to be included in our system, and even 

cheap feedback sensor can do the job.  To accomplish 

this, our strategy is to develop a good model and 

controller of the system. Using an arm manipulator, by 

careful modeling and parameter estimation, does the 

development of the system model. Usually,  a position of 

an object is given in Cartesian. This dictates, to do the 

inverse kinematics. After modeling the system and found 

a suitable controller, a program is needed to predict the 

manipulator torque required to follow a certain desired 

trajectory to reach an object. 

F. Manuscript Organization. 

The manuscript has been divided for six Sections. In 

SECTION (I), we gave an introduction to concept of 

model based robotic  arm control. Few literature studies 

are given within this section.  The UOB 2-DOF robot arm 

system and associated models are also described in 

SECTION (II). In specific, we present the UOB arm 

system. Here both KINEMATIC and DYNAMIC models 

do play important role over an arm control.  Hence, this 

section is focused to present the overall hardware 

implementation and all the work related to 

communication and interfacing with the arm.  In Section 

(III), we present the concept of the learning system, that 

was built behind the Neuro-fuzzy system.  The Neuro-

fuzzy UOB-Arm control I s also presented in SECTION 

(IV). In SECTION (V), we present few discussion 

remarks, and discus the achieved results. Finally, in 

SECTION (VI),  we draw few conclusions remarks. 

II. UOB ROBOT ARM SYSTEM 

      In order to program and control a robotic arm system, 

a first step towards this task,  is to learn the arm dynamics 

and related kinematics.  Robot  dynamics algorithm is a 

process for calculating equations of motion of an arm 

robot mechanism, and to learn the acting forces that 

cause these motions.  Arm dynamics do appear in two 

different representations: (i) FORWARD DYNAMICS, 

which calculates how the robot will move in response to 

a given force, (ii) and inverse dynamics. INVERSE 

DYNAMICS calculates what are the forces that are 

required to make a defined motion.  The former are used 

in simulators and the latter in control systems. 

A. UOB Robot Arm Dynamic Modelling. 

     Typical, robotic arms consist of a serial-link.  

Manipulators are comprising a set serial-links in a chain, 

as connected by joints. Each joint has a single DOF either 

rotational or translational.  Each joint is supported by a 

torque.  Joints torques are produced by DC motor.  It is 

important to have accurate sensing of the arm motion.  

Therefore, driving motors are fitted with sensors for 

control purposes. The two links robotic system consists 

of two links with representations to their lengths  
1

  and 

 
2

  for (link_1) and (link_2) respectively.  In addition, 

links weights of  
1

m  and  
2

m  for link_1 and link_2. A 

general inverse dynamic equation of a two link robotic 

system is known in form of Lagrange’s equation.  It sums 
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total forces affects the two link robotic systems.  In terms 

of  I  is the moment of inertia,     is the 

acceleration of the rigid-body and  
in

  is torque applied.  

The specific Lagrange’s equation for a typical  n  links 

robotic arm is expressed by: 

 

                              
in

C,NM                  (1) 

 

in which the used symbols designate the followings:  

  is arm joint trajectory and  : velocity trajectory. 

(rad/sec),   : acceleration of the trajectory. (rad/sec
2
).  

in
  12  input torque vector.  (N.m),  M  22 : 

inertia forces matrix. (N.m).  N
 12 gravity  vector. 

(N.m),  C
 12  centrifugal force  vector. (N.m). The 

two-links UOB manipulator with rotational joints  
21

,  

is shown in Fig. (4). 

 

 
(i) 

 
(ii) 

Fig. 4. (i) UOB Two-links two actuation robotic arm 

system.  (ii)  Arm kinematics and related frames assignments 

model, [11]. 

 

    Each UOB link has a point masses  
1

m  and  
2

m  at 

distal end of links.  The dynamic equation for a  two DOF 

manipulator in joint space coordinates are given by the 

form: 

                            
inF

C,NM            (2) 

 

    The input torque vector  T

2in1in
  do represent input 

torques to both arm links  
21

, . Arm inertia force 

matrix: 

                                  



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
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
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mm
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M                          (3) 
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 (4)  

        

The arm centrifugal forces, are also given by   ,N : 

           
     






















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




2sin1m

2sin2212m

n

n
,N

2

212

2

212

2

1








 (5) 

 

The arm gravity force vector,  is therefore  given as  C

: 

 

 
         
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
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
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c

c
C
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22121

2

1









(6) 

     

     Further analysis of the UOB robot arm system, shows 

that it can be represented as a one dynamically defined 

computational block.  This involves the inverse dynamics 

for the two links arm system and solving for  
21

, .  

Ignoring effect of   
F

 , and rewriting  the relationship 

between joint velocity and Cartesian space velocity,   this 

involves the followings: 

 

                          
in

C,NM                     (7) 

                     Jx      and         JJx                    (8) 

                                   JxJ 1  
                             (9) 

                         
in

1 CNJxJM              (10) 

                                     FJ T

in
                                 (11) 

                         FJCNJxJM T1             (12) 

                         FCNJxJMJ 11T 

       (13) 

 

 

     The above derived equation, do represent the actuator 

forces in Cartesian space. 

B. Jacobian  Based Inverse Kinematics. 

      In the field of robotics, we generally refer to the  

Jacobian matrix. Jacobian relates joint position and 

velocity to Cartesian position and velocity arm posture. 

An approximation of the kinematics equation for two 

links arm is obtained as shown below: 
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Join 1
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     
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                  (14) 

      In our work we will not use the Jacobians due to 

number of reasons.  Specifically, some of them are: (i) 

Do not give precise results. (ii) The inverse could not be 

defined due to singularities. (iii) Specific closed form 

solutions, may be out of the environment range.  (iiv) 

Computed  Torque  Controller  (iv) Defining an Error 

Based Control Law.  As we saw, from the above, that an 

arm dynamic equation is a highly nonlinear and complex 

to model. In an absence of an accurate arm model, 

however, control of a robotic arm motion is frequently 

carried out with a standard PD controller.  Such an 

approach is referred to as non-model based control. The 

PD based control for robot manipulators has been of great 

interest because of its simplicity and stability.  The 

control law has the form: 

                                  eKeK
pd

                            (15) 

                                                                                        

     In Equ. (15), the term  e do represent the error in 

Cartesian arm posture.  This is due to joint space motion 

demand.  Substitute (2) in torque equation (1).  Evidently, 

the error dynamics  can also be represented by the left 

hand side: 

                 
fpd

CNMeKeKeM           (16) 

Multiplying by inertia matrix inverse,  i.e.  1M  : 

 

   
f

1

p

1

d

1 CNMMeKMeKMe    
     

(17) 

 

    In above last equation of Equ. (17), this makes and 

behave unpredictable as the robot arm configuration and 

dynamics do change once the arm is in motion.   

However, when controller gains are high such that 

 1K
d
  and  1K

p
 , the above equation of Equ. (17) 

can be approximated by a first order differential equation 

of the following: 

 

     0CNMKeMKeKKe
f

1

d

1

dp

1

d
    (18) 

 

     From Equ. (18), the error dynamics are now nearly 

independent of arm model.  Thus the choice of PD gains 

has crucial effects on the performance of robot 

manipulators. 

C. Cartesian Control : Non-model Based Control. 

     Computed torque control in Cartesian space is shown 

in Fig. (5). The actual arm model system performance in 

Cartesian space will be elaborated on more in SECTION 

(IV.) Here the arm performance is degraded and 

unpredictable.  Thus the computed torque based position 

control in Cartesian space (using system Jacobian) is not 

robust in practice.  In our situation we shall extend the 

same above design approach to non-model based robot 

control as will be shown in later in Fig. (7).    From Fig.  

(5)  a defined control law is stated as: 

                                eKeKS
pdd

                       (19) 

 

 
Fig. 5. Computed torque control in Cartesian space. 

 

                    *

f

**

pdd
FNxMeKeK             (20) 

 

     A learning mechanism is used to learn parts of the 

Computed torque control parameters.   A computer code 

was hence written for simulation (using numerical 

integration to solve the dynamics), where the controller 

parameter  
d

K  and  
p

K  were estimated by standard 

tuning approaches. The resulting input torque to the 

system will be in the form: 

                Ĉ,N̂eKeKM̂
pddin

    (21) 

     Finally, simulating the computer torque method, will 

generate a set of input-output patterns, that can be used 

for learning purposes.   

 

     The learning mechanisms is based on using the 

architecture of Neuro-fuzzy system. This is additional 

enlightened within  SECTION (III). 

III.   A LEARNING NEURO-FUZZY ARCHITCTURE 

     Neuro-fuzzy systems combine the positive attributes 

of a ANN and a Fuzzy system. ANN  became largely 

popular, as due to their ability to universally approximate 

continuous nonlinear function using only the information 

contained in a set of input/output training pairs. Learning 

rules are used to adapt the interconnection weights.  In 

other hand, a major criticism of most ANN is their 
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opaque structure where the information stored cannot be 

easily interpreted by the designer.  Fuzzy systems consist 

of a rule base composed of vague production rules such 

as:  if (input is small) then (output is small).  The rules 

are generally linguistic representations and because the 

information can be easily interpreted by the designer, it is 

said to be transparent. The power of Fuzzy system lies in 

the way these production rules are given a precise 

mathematical meaning so that the resulting system can 

generalize to produce an appropriate output for 

previously un seen inputs. Fuzzy systems have a serious 

drawback when applied to many applications, their rules 

are often very difficult or even impossible to determine. 

This has motivated the development of an adaptive 

FUZZY SYSTEMS, that adjusts their rule base 

parameters via heuristic training rules about which little 

can be proved.  This is known as the Neuro-Fuzzy shown 

in Fig. (6).  

 
Fig. 6. Fuzzy implementation  via cascaded multi-layers ANN 

( Neuro-fuzzy System). 

     

     Recently, the similarities between Neural Networks 

and Fuzzy systems have been observed, allowing the 

positive attributes of both approaches to be combine.  

The result is termed a Neuro-fuzzy system since it 

embodies the well-established modeling and learning 

capability of neural network with the transparent 

knowledge representation of fuzzy systems. To 

summarize the two approaches for the arm control,  this 

is listed below as:  

A. Benefits and Weakness  of  FUZZY Arm Control. 

 

i. Fuzzy system lets us to compute precise values for 

arm data points not contained in the training data set 

i.e. an appropriate output for previously unseen 

inputs. 

ii. Fuzzy rules are generally linguistic representations 

and because information can be easily interpreted by 

the designer, it is said to be transparent.  

iii. Weakness of  fuzzy robot arm Control:  Their rules 

are often very difficult or even impossible to 

determine. 

iv. Benefits of  Neural Network Robot Arm Control: 

v. The ability to universally approximate any 

continuous nonlinear function using only the 

information contained in a set of input/output 

training pairs. 

vi. Weakness of Neural Network Robot Arm Control: 

The designer cannot easily interpret their opaque 

structure, where the information stored.  

B. The Learning Process. 

      As mentioned above, the learning process is 

completed by finding the appropriates weight for each 

neuron.  The initial step toward such learning activity, is 

to collect training patterns and data from the arm sensors. 

These data must be collected by moving the arm in the 

space, and by changing the space variables and reading 

the joints angle.  Since, our work didn’t include the space 

sensor, we collect the data using an approximation 

equation (using inverse of Jacobian) by referring to arm 

simulation using the appropriate arm models. However 

the actual data must come from the sensor.   

 

     The below were based on a predefined trajectory of 

the manipulator arm.  The patterns chosen for the training 

of the neural networks in this work were taken from 

points in the workspace of the arm, i.e. the area that can 

be reached by the end effecter of the arm.  The arm 

working space is obtained by considering the robot arm  

geometry of  Fig. 4.   For this particular research, the arm 

working space is a 3-D data, where further tabulation of 

training patterns will be additionally analyzed at a later 

stage within this manuscript. 

IV.   NEURO-FUZZY ARM CONTROL 

A. Arm And Motoring System. 

     In reference to Fig (4), and it was mentioned already 

in SECTION (II), the UOB robotic arm system has 2-

DOF motion in 3-D space.  The system is actuated via 

two high  torques and high resolution d.c.  motors.   Each 

individual motor is being sensed via a high resolution 

position potentiometer. This is to measure the joint 

angular position and angular velocity.  In the same sense,  

each motor has a driving circuitry that work both with 

analog and digital domains, as will be further explained 

in details in the following sub-sections.  

B. Arm Actuation Closed Loop System. 

     In an attempt to realize such class of controller and 

other controllers themes practically,  an attempt has been 

achieved to build a robotic arm system which has been 

equipped with the right set of motion sensors.  This is to 

be used for implementing advanced robotics control 

algorithms.  In this sense, the UOB arm was implemented 

with the subsequent closed loop control circuit. The 

entire system hardware is shown in Fig. (7).  It consists of 

a number of (D/A A/D) convertors, signals conditioning 

circuitries, summing points, lead controller and a simple 

push pull driver for driving the two DC motors.  

N Outputs

Outputs
Memberships

First Layer Second Layer Third Layer

Fourth Layer Fifth Layer

Inputs
Memberships

Joints
Motion
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      In addition it consist of a number of digital 

interfacing circuitries. Both joints has such inartificial 

circuit structure. The UOB-arm system has two degrees 

of freedom actuated via two high resolution D.C.  motors.   

Each motor is being sensed via a high resolution position 

potentiometer.  Within same sense, every arm actuator is 

connected through interfacing buses to PC system as this 

is illustrated by the hardware shown in  Fig (7).  

C. Neuro-Fuzzy Training Pattern Generation. 

 The most familiar or known category of the Neuro-

fuzzy is the multilayer ANN that performs fuzzy 

functions.  It consists of five layers, an input layer, three 

hidden layers, and an output layer. The input layer is 

made up of sources nodes (sensory units), the second 

layer is the hidden layer (three layers) of high enough 

dimensions.  Finally, is the output layer that supplies the 

response of the network to the activation patterns applied 

to the input layer. The transformation from the input 

space to the hidden unit space is non-linear.  If the input 

vector is presented each neuron in the hidden layer will 

output a value (weight) corresponding to how close the 

input vector is to each neuron’s center. Each hidden 

neuron has an activation function. 

 

 
Fig. 7. UOB robotic arm interfacing hardware and  

associated system layout. 

 

      Fig. (8) shows only a segment of a C
++

 coding that 

was written for interfacing the machine with arm 

hardware. There are two main cards. Individually, they 

are paralleled interfaced through specific hardware 

circuitry. C
++

 coding has been used,  as the ability of such 

coding to communicate with low level ports and the high 

level Matlab toolboxes and commands.  In addition, Fig. 

(9) shows few segments of the Matlab coding that was 

employed for the robotic arm control.  At such high level,  

there are a number of defined functions and routines as 

related to arm kinematics, dynamics, training patterns 

generation, and the Neuro-fuzzy training itself. Matlab 

has been used extensively for such robot arm control, as 

due to the ability of such high level coding to perform the 

Neuro-fuzzy training and the learning process itself. 

 

 
       Fig. 8.  Arm Hardware and C++ low level interfacing 

windows. 

 

 
Fig. 9. Generating training patterns.  Arm dynamic simulations. 

Solution of Fourth order Runge-Kutta differnational equation. 

     

     This is the overall system structure that have been 

used for implement the defined Neuro-fuzzy arm control.   

Few typical Matlab statements and functions used in this 

research are: 

 

    Arm Motion and Dynamics Simulation:  The following 

Matlab coding and segments were written (using 

approximation) to collect the numerical data required for 

learning process: 

 
[X,XP,tr1,tr2,tr3,tr4,tr5,tr6,y1,y2,y3]=rotine3(X,XP,Qd,Qdp,Qdpp,k); 

  for I =1:NX; 
               X1(I)=X(I)+0.5*Ts*XP(I); 

                   end; 

  t=t+0.5*Ts; 
  

[X1,XP1,tr1,tr2,tr3,tr4,tr5,tr6,y1,y2,y3]=rotine3(X1,XP1,Qd,Qdp,Qdpp,

k); 
   for I =1:NX; 

                 XP(I)=XP(I)+2*XP1(I); 

                      X1(I)=X(I)+0.5*Ts*XP1(I); 
                    end; 
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PC  interfacing 

Cards

PCL-714

Card No. 1

Card 

No. 2

High Level 

Commands

C++ 

Codes

Matlab 

Codes

Power Supply
Power Amplifiers



E. Mattar:  A Practical Neuro-Fuzzy Mapping…                                                                                                            117 

 
  

[X1,XP1,tr1,tr2,tr3,tr4,tr5,tr6,y1,y2,y3]=rotine3(X1,XP1,Qd,Qdp,Qdpp,

k); 
  for I =1:NX; 

               XP(I)=XP(I)+2*XP1(I); 

                    X1(I)=X(I) +Ts*XP1(I); 
                        end; 

  t=t+0.5*Ts; 

  
[X1,XP1,tr1,tr2,tr3,tr4,tr5,tr6,y1,y2,y3]=rotine3(X1,XP1,Qd,Qdp,Qdpp,

k); 
  for I =1:NX; 

               X(I)=X(I)+Ts*(XP(I)+XP1(I))/6; 

                  end; 
 

 

D. Neurofuzzy Training Cycle. 

 

 
% To do train 

 

for i=1:791 
 ndx1(i) = data1((i),1); ndx2(i) = data1((i),2); 

  ndx3(i) = data1((i),3); nx1(i)  = data1((i),4); 

   ndx12(i) = data2((i),1); ndx22(i) = data2((i),2); 
   ndx23(i) = data2((i),3); nx2(i)     = data2((i),4); 

end 

 
trndata =[ndx1'     ndx2'    ndx3']; 

trnout  = [nx1 ]; 

trndata2 =[ndx12'    ndx22'   ndx23']; 
trnout2  = [nx2 ]; 

 

Kin_Comp_1=[ndx1'    ndx2'     ndx3'     nx1']; 
Kin_Comp_2=[ndx12'  ndx22'   ndx23'   nx2']; 

  
 

numMFs=4; 

mfType='gbellmf'; 
epoch_n=5; 

in_fismat =genfis1(Kin_Comp_1, numMFs, 

mfType); 
 

in_fismat2=genfis1(Kin_Comp_2, numMFs, mfType)  

% 
End 

 

V. RESULTS AND DISCUSSION 

 

     Having presented a detailed description of the overall 

system structure hardware and software,  within this 

section we shall be presenting few results.  In this 

context,  after the extensive mathematical kinematics and 

dynamic modeling of the UOB robotic arm system, the 

following stages were followed for validating the 

proposed control methodology. 

 
i. Step_1: This involves the arm kinematics 

and dynamics mathematical modeling and 

expression in terms of a defined Cartesian  

coordinate frame located at the arm base.  

 

ii. Step_2:  Within this step,  the robotic arm 

system was dynamically and kinematically  

simulated using Matlab.  Over this stage, 

large number of training data and patterns 

where therefore gathered and tabulated.  

The simulation has taken all arm dynamics 

and other effects in consideration. Such 

resulting movements are shown in Fig. (10).  

Gathered training patterns are also listed in 

Table (1).  Smoothness can be seen among 

the collected data, i.e. indicating how the 

arm was moving in periodic sinusoidal 

fashion. 

 

 
 

Fig. 10.  Training patterns generation.  Simulating the robotic 

arm. (i)  Joint-space arm motion.  (ii)  Joint-space  rate of 

change. 

 

iii. Step_3:  Once the training patterns are 

available, a five layers ANN that can 

implement the fuzzy if then rules is used for 

learning the relations between arm posture 

in 3-D space and the correspondence arm 

joints displacements movements. 

 

 

iv. Step_4:  Adjustment of fuzzy memberships. 

This gives an indication that the fuzzy 

system has learned relations relating arm 

motion to the corresponding  z,y,x
P  

postures. 

Table 1. Part of generated training patterns. 
X              Y           Z             θ1 X              Y           Z             θ2 

-130100   -130311   -130311   -035810 

-0.1033   -0.3600   -0.2744   -1.8503 

-0.1033   -0.3600   -0.1889   -1.8503 

-0.1033   -0.3600   -0.1033   -1.8503 

-0.1033   -0.3600   -0.0178   -1.8503 

-0.1033   -0.3600    0.0678   -1.8503 

-0.1033   -0.3600    0.1533   -1.8503 

-0.1033   -0.3600    0.2389   -1.8503 

-0.1033   -0.3600    0.3244   -1.8503 

-0.1033   -0.3600    0.4100   -1.8503 

-0.1033   -0.2744   -0.3600   -1.9309 

-0.1033   -0.2744   -0.2744   -1.9309 

1310.5   -130311   -137.00   -133815 

-0.0178   -0.3600   -0.1889   -0.4827 

-0.0178   -0.3600   -0.1033   -0.2792 

-0.0178   -0.3600   -0.0178   -0.0493 

-0.0178   -0.3600    0.0678    0.1859 

-0.0178   -0.3600    0.1533    0.4022 

-0.0178   -0.3600    0.2389    0.5853 

-0.0178   -0.3600    0.3244    0.7329 

-0.0178   -0.3600    0.4100    0.8496 

-0.0178   -0.2744   -0.3600   -0.9184 

-0.0178   -0.2744   -0.2744   -0.7844 

-0.0178   -0.2744   -0.1889   -0.6018 
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-0.1033   -0.2744   -0.1889   -1.9309 

-0.1033   -0.2744   -0.1033   -1.9309 

-0.1033   -0.2744   -0.0178   -1.9309 

-0.1033   -0.2744    0.0678   -1.9309 

-0.1033   -0.2744    0.1533   -1.9309 

-0.1033   -0.2744    0.2389   -1.9309 

-0.1033   -0.2744    0.3244   -1.9309 

-0.1033   -0.2744    0.4100   -1.9309 

-0.1033   -0.1889   -0.3600   -2.0714 

-0.1033   -0.1889   -0.2744   -2.0714 

-0.1033   -0.1889   -0.1889   -2.0714 

-0.1033   -0.1889   -0.1033   -2.0714 

-0.1033   -0.1889   -0.0178   -2.0714 

-0.0178   -0.2744   -0.1033   -0.3594 

-0.0178   -0.2744   -0.0178   -0.0646 

-0.0178   -0.2744    0.0678    0.2416 

-0.0178   -0.2744    0.1533    0.5086 

-0.0178   -0.2744    0.2389    0.7152 

-0.0178   -0.2744    0.3244    0.8677 

-0.0178   -0.2744    0.4100    0.9800 

-0.0178   -0.1889   -0.3600   -1.0858 

-0.0178   -0.1889   -0.2744   -0.9659 

-0.0178   -0.1889   -0.1889   -0.7832 

-0.0178   -0.1889   -0.1033   -0.4987 

-0.0178   -0.1889   -0.0178   -0.0934 

-0.0178   -0.1889    0.0678    0.3431 

 

       Fig. (10) shows a typical full arm simulated joint 

space motion. This is based on the full arm dynamic 

model already derived in SECTION (III).  For such a 

robotic arm, as also in other similar designs and 

situations,  this involved a solution of a four nonlinear 

state space model for both  
21

, .  After simulated arm 

model was achieved,  then training data are gathered and 

collected. Normalized sample data collected for  both 

joints and the  z,y,x
P  arm  z,y,x  posture, were collected 

as on Table (1).  The arm model parameters are as listed 

here:  Weights of link_1 and link_2 are:  kg4.0m
1
   

and   kg3.0m
2
 . Lengths of link_1 and link_2 are:  

m3.0
1
  and m25.0

2
 . The defined trajectories to 

the system  are, ( 1.0A
m
 ): 

 

      t5.0sinA1
md

  ,    t5.0cosB2
md

       (22) 

   t5.0cos
2

A1
md

 


 ,    t5.0sin
2

A2
md

 


  (23) 

   t5.0sin
2

A1

2

md









 


 ,    t5.0cos

2
A1

2

md









 


     (24) 

        

     Collected training patterns are then used for training 

the designed Neuro-fuzzy system. Initial fuzzy 

memberships were used at the starting stage prior to  

training. Subsequently, after training, the shape of such 

adopted memberships were updated.  This can be 

observed evidently in Fig. (11).  This gives an indication 

that the used Neuro-fuzzy system has learned the defined 

relations. In addition, Fig. (12) shows 3-D maps 

governing the adopted Neuro-fuzzy rules, whereas Fig. 

(13) shows the 3-D map of the learned Neuro-fuzzy 

system, i.e. the plot of the fired (fuzzy if then rule).  Using 

the Cartesian data as inputs to the Neuro-fuzzy, the joints 

angle will be outputted from the Neuro-fuzzy and it will 

be used to solve for the required joints positions.  This is 

also shown in Fig. (14). 

 

 
Fig. 11. Initial (actual) and final (learned) fuzzy membership  

functions for input 1 & 2 of our system. 

 

 

 
               (i)                                      (ii)                                        (iii) 
Fig. 12. 3-D plots of relations between various fuzzy inputs, and 

fuzzy outputs. i.e.  
21

, . 

 

 
Fig. 13.  A 3-D map of the learned Neuro-fuzzy system. 

The 3-D plot is displaying how actively (fuzzy if then rule) are 

fired for different values of the input training sample. 
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Fig. 14.   Verification of the learned Neuro-fuzzy system. 

(Top):  Output for a randomly excited square wave. 

(Bottom): Output for a randomly excited sinusoidal wave. 

 

      After the learning phase, the adopted and trained 

Neuro-fuzzy system is ready to be used within the control 

loop. In this respect, Fig. (15) shows a schematic diagram 

for the verification stage.  In particular to Fig. (15), the 

“Jacobian inverse” is playing a key role with the forward 

loop,  whereas in Fig. (16), we show the practically 

implemented controller design verification in action. This 

show how the learned Neuro-fuzzy system was used 

within the forward loop, hence it is replacing the 

“Jacobian inverse”.  Fig. (17) shows the robotic arm 

motions while using the Neuro-fuzzy maps within the 

forward controller path. The robotic arm has been under 

experimental trails a number of times.  During such trails, 

the arm has shown accurate and precise motion in 3-D. 

For real verifications, the arm physical motions were 

recorded while the arm was in motion.  Such snaps  are 

also filmed as  in Fig. (18).  

 

 
 

Fig. 15. “Jacobian inverse” controller design verification. 

A schematic of a non-model based robotic arm control in  

Cartesian space. 

 
 

Fig. 16.  Learned Nuero-fuzzy mapping verification.  Insertion 

of the trained Neuro-fuzzy system is within the controller 

forward loop. 

 

 
Fig. 17.   Arm joint space motion control,  

as in reference to the controller scheme of Fig. (16). 

 

 

   

   
Fig. 18.   Snaps of recorded UOB arm video motion. 
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VI.  CONCLUSION 

     This research was focused towards two parts.  The 

first part was completely dedicated towards designing 

and physically building a two DOF robotic arm with two, 

with its associated hardware. The second part was 

directed towards control synthesis,  purposes and an 

employing a Neuro-fuzzy learning system for controlling 

such a locally designed robotic arm system. This  

involves an availability of very precise robot  arm 

kinemtics and dynamics models,  hence to verify such 

models. 

     The arm kinemtics and dynamics models are to be 

essentially available for control.  This allowed to simulate 

the arm motion over time,  hence to generate the precise 

size of the training samples.  It also involves an 

arrangement of the control system hardware, i.e. the 

interfacing electronics and the manipulator low level 

control electronics and convertors.  Results have 

indicated that, the adopted Neuro-fuzzy learning 

mechanism was an excellent approach to approximate the 

nonlinear maps that exist between arm joint-space motion 

and the arm end point displacements. Training the 

employed  Neuro-fuzzy was a real issue. This is due to 

the complexity of such learning architectures. As the 

training samples was increased, the Neuro-fuzzy needs 

more time to learn the right  maps. Arm control was after 

then achieved  using the created maps relating  arm joint-

space displacements to the arm end point motions. 

Results have indicated high degree of accuracy of arm 

point-end motion.   

     It is worth to mention that, the first part of this 

research (i.e. building the arm physical system), was 

indeed an excellent experience for the UOB control 

laboratory.  This is due to the involvement of a number of 

design stages from the mechanical setup to the actuation 

and computer interfacing. The second part was also 

furthermore interesting, (i.e. model based control).    

Neuro-fuzzy system for inverse kinematics has shown 

good degree of accuracy, rather than inverting the UOB 

arm Jacobian.  The built UOB arm will furthermore be 

used for even advanced control methodologies within the 

Control Laboratory at UOB, especially within the extent 

of intelligent control. 
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