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Abstract:  This paper addresses the problem of lens distortion calibration from a single image of a sphere. Almost all calibration methods based 

on spheres have focused on estimating all the camera parameters except the lens distortion ones which are left for another independent 

calibration process not using spheres. The paper presents for the first time a radial lens distortion calibration method based on the analysis of 

local shading measures in the sphere image. Several properties of these measures are pointed out and validated. While these measures are robust 

to noise, they are shown to vary nonlinearly as a function of lens distortion. As such, they can work as a basis for lens distortion calibration. The 

proposed method is easy to use and requires no specific feature extraction from the images. Experiments on simulated and real data are reported 

with comparisons to well-known techniques.  

  Keywords: lens distortion, camera calibration, image formation, local shading analysis. 

I. INTRODUCTION 

Camera calibration is an important component of any vision 
task which seeks to extract geometric information from a 
scene. It consists of finding the mapping between the 3D space 
and the camera plane. This modeling requires the 
determination of several camera parameters, including its 
position and orientation in space (extrinsic parameters), the 
image center, and lens focal length (intrinsic parameters). This 
distortion-free camera model simplifies a lot of considerations 
on geometry in which cameras are involved. However, for 
some applications which require high accuracy, or in cases 
where low-cost or wide-angle lens are used, these parameters 
are not sufficient and more parameters should be estimated to 
take into account camera lens distortion. 

Up to now, a variety of methods for lens distortion 
calibration have been developed to accommodate various 
applications. These methods exhibit a trade-off between 
geometric accuracy and flexibility. Classical calibration 
techniques use a highly accurate tailor-made 3D calibration 
grid to estimate the lens distortion parameters along with the 
(extrinsic and intrinsic) parameters of the camera model [22, 
24, 28]. These methods can achieve high calibration accuracy, 
but are less flexible and easier to use. Some more recent, less-
demanding methods make use of 2D grids to calibrate only 
lens distortion parameters [12, 23, 29, 33]. Several other non-
metric methods do not rely on known scene points or need 
calibration objects of known structure. These methods thus 
seek more flexibility of use at the possible expense of less 
accuracy or stability of results. The majority of such methods 
rely on the presence of straight lines in the scene [3, 5, 17, 21, 
7, 8, 4, 32]. However they need some user guidance to localize 
these lines. Similarly, the method of Becker and Dove [2] 
requires the manual grouping of three mutually orthogonal 

sets of parallel lines and then the minimum vanishing point 
dispersion constraint to recover distortion parameters. Other 
methods use correspondences between points in different 
images from multiple views to compute camera distortion 
parameters [20, 10]. Correspondence can be established 
manually or automatically. However establishing 
correspondence automatically is rather not easy to solve and is 
likely to produce some false data to the calibration algorithm. 
Texture has also been utilized for lens distortion calibration 
[30]. The technique of blind removal of lens distortion based 
on polyspectral analysis [9] represents the extreme of 
calibration flexibility, but works where only qualitative (less-
accurate) results are required. 

The use of spheres in camera calibration dates back to 1991, 
when Penna [15] presented a simple method for recovering the 
aspect ratio of the two image axes from an image of a sphere. 
Due to their complete symmetry, spheres are attractive as a 
calibration pattern. Their silhouette is always visible by a 
camera in any arbitrary orientation provided that the sphere is 
inside the field of view of the camera. This justifies the 
increasing number of calibration methods based on spheres 
(e.g., [25, 26, 31]) especially for calibrating multiple camera 
systems. However almost all these methods have focused on 
estimating the camera parameters except the lens distortion 
ones which are presumably left for another independent 
calibration process not using spheres. 

This paper investigates solving the problem of lens 
distortion calibration using a single image of a sphere under 
uniform illumination. To the best of our knowledge, this has 
not been addressed before in literature. We focus here on 
recovering the radial component of lens distortion, as it is 
often the most prominent in images [13, 11]. To tackle this 
problem, we pursue a non-traditional approach in the context 
of the calibration from spheres. For example, the occluding 
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contour of the sphere and its relationship to the absolute conic 
are not employed. Instead, we examine the mathematical 
model of the process of image shading formation of a sphere. 
This is typically done within the classical framework of Shape 
from Shading (SFS) [13]. Our approach is based on local 
shading measures derived under typical SFS assumptions. We 
go further with the analysis of image shading beyond the 
works by Pentland [16], Zheng and Chellappa [27], and Lee 
and Rosenfeld [14]. All these previous efforts used some local 
shading measures to estimate the light source direction as a 
pre-requisite step needed for subsequent SFS recovery 
algorithms. We derive a set of measures that are function of 
the second order derivatives of the image intensity values. 
These measures have a number of interesting properties, such 
as invariance to linear transformation of image intensities, 
albedo changes across the image, and to the light source 
direction. While these measures are shown to be robust to 
noise, they deviate nonlinearly from their theoretical average 
values as a function of lens distortion. We thus show that it is 
indeed possible, both theoretically and practically, to calibrate 
lens distortion using an image of a sphere. All that is required 
by this new calibration method is an image of a sphere, with 
no user intervention required at all. Accordingly this method 
can be a very easy and flexible way to calibrate and remove 
lens distortion of a camera. 

The rest of the paper is organized as follows. Section II 
studies the image formation process for a sphere and derives 
some local shading measures. Implementation issues and noise 
sensitivity are also analyzed. In Section III, we propose a new 
algorithm to calibrate radial lens distortion. Section IV 
describes several experiments to evaluate our method. Finally, 
a record of our conclusions and future work is given in Section 
V. 

II. SPHERE-BASED LOCAL SHADING MEASURES 

Let assume that a sphere placed in front of the camera is 

parameterized as:  

      = sin cos ,X a r    

        = sin sin ,Y b r    

         = cos ,Z c r                                             (1) 

 where ( , , )X Y Z  is a 3D point on the sphere whose center is 

( , , )c b c  and radius r . = ( , , )X Y Z   and = ( , , )X Y Y   

represent the tilt and slant angles, respectively, of the surface 

normal of the sphere at this 3D point. Assuming a Lambertian 

surface of the sphere, the intensity ( , )I x y  at any ( , )x y  point 

in an image of this sphere is given by [13]  

( , ) = . ,I x y N L                                      (2) 

 where   is the surface albedo, 

= (cos sin ,sin sin ,cos )N       is the surface normal at 

the 3D point ( , , )X Y Z , while L  is the unit vector for the 

illuminant direction, which can be parameterized such that 

= (cos sin ,sin sin ,cos )L      , where   is the tilt angle and 

  is the slant angle. The last equation term,  , is an ambient 

lighting term. We exclude the presence of interreflections 

among surface patches. 

An image point ( , )x y  is related to its corresponding 3D 

point ( , , )X Y Z  via the perspective projection equations [11, 

13]. However if the depth variation of the surface is small 

compared with its distance to the camera, then the perspective 

projection can be well approximated by weak perspective 

projection [1]. Following this assumption with the Z  axis 

parallel to the optical axis of the camera, the 3D-2D 

relationship is given by: 
0 0

=  / , =  /x k X Z y k Y Z , where 
0

Z  

is the average depth of the 3D surface, and k  is a scale factor 

(related to camera focal length). Note that in typical SFS 

formulation the projection is assumed orthographic (i.e., 

= , =x X y Y ), which we improve on in this work. 

Using these representations, (2) becomes  

( , ) = (cos sin cos sinI x y        

 sin sin sin sin cos cos ).        (3) 

After some computation, the image derivative 
x

I  at a point 

( , )x y  can be found as:  

 = =
x

I I I
I
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These derived quantities are then normalized by the image 

Laplacian 
2
I  leading to the following ratios at any image 

point ( , )x y :  

2 2 2

2 2

sin cos cos
= = ,

1cos

xx

xx

I
i

I

  




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= = ,

1cos
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I
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


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2

2 2

sin 2 (1 )cos
= = .

2( 1)cos

xy

xy

I
i

I

 






               (6) 

A careful examination of these derived ratios of (6) reveals 

several interesting properties. They depend only on the tilt and 

slant angles of the surface normal at any point. However they 

do not depend on the illuminant direction, ambient lighting, 

the radius and center of the sphere, the reference depth plane 
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0
Z  of the weak-perspective projection or the camera scale (or 

focal length) k . More importantly, the dependency on the 

surface albedo is eliminated. Thus it does not matter whether 

the albedo is uniform or varying throughout the surface points. 

They are also invariant to linear transformation of the image 

intensity. For example, scaling and/or shifting the image 

intensities will not affect them. One last clear observation, 

=1xx yyi i  for any point. 

If the statistical distributions of   and   are known, one 

can obtain the theoretical expected values of these local 

measures throughout the whole image. Such distributions can 

be easily derived for a sphere. The distributions f  and f  of 

  and  , respectively, are obtained as  [27]  

1
= ,0 < 2 ; = cos ,0 / 2.

2
f f     


         (7) 

 As such, the expected value of 
xx

i  is given by:  

2 /2

=0 =0

1
= E{ } =   cos   = 0.5.

2
xx xx xx

I i i d d
 

 
  


      (8) 

Similarly, = E{ } = 0.5
yy yy

I i , and = E{ } = 0xy xyI i . In simple 

words, the theoretical average values of the local shading 

measures 
xx

i  and 
yy

i  are 0.5 , while that of the local measure 

xy
i  is 0 . 

The expected values of these local measures are practically 

estimated from the images using the arithmetic means. In 

common practice, the derivatives of a Gaussian function are 

employed to compute the derivatives of a sampled image 

function via convolution [18]. This way, differentiation is 

combined with smoothing. The 2D zero mean Gaussian is 

defined as [18]  

 

2 2

2 2

1
= exp( ).

2 2

x y
G

 


                         (9) 

 The second order partial derivative are 
2 2 4

= ( ) /  
xx

G x G  , 
2 2 4

= ( ) /  
yy

G y G  , and 

4
=  /  

xy
G x y G . A larger   produces better noise 

suppression but, at the same time, distorts the signal more, and 

vice versa. In our implementation, we used = 0.5  and 

kernel size 5 5 . With these kernels, 
xx

I , for example, is 

implemented for an image I  as  

 
1

= ,
( )

xx

xx
x I y I

xx yy

I G
I

size I I G I G 


 

  
            (10) 

where   denotes convolution. The summation is done on all 

image points belonging to the surface image, but points with 

zero Laplacian (zero denominator in (10)) are discarded. It is 

also important to point out that a more robust estimate of the 

means of these local measures can be obtained by replacing 

the arithmetic mean in (10)) by the median function. 

Validation. To validate these local measures and their 

arithmetic means (10), a set of one hundred real and synthetic 

images for spheres are harvested from the Internet (mainly 

using Google Image Search); several examples are shown in 

Figure 1. The sphere images in these images are segmented 

out manually (and thus the backgrounds are removed), and 

converted to gray-scale images. Then the local shading 

measures are computed. The mean, standard deviation and 

median of each local measures, computed over all the 

collection of images, are listed in Table 1. Clearly, in spite of 

the variations of the spheres’ colors and textures, the tabulated 

results show that the computed values are nearly as expected: 

0.5
xx

I  , 0.5
yy

I   and 0
xy

I  . 

 

Figure 1. Sample validation sphere images harvested from the Internet. 
 

TABLE  1: STATISTICS OF LOCAL SHADING MEASURES. 

 

 

 

 

 

 

Noise sensitivity. Due to image noise, there may be some 

fluctuations in the estimations of 
xx

I , 
yy

I  and 
xy

I . This would 

lead to fluctuations in the estimated averages of the local 
shading measures. However using the way described above to 
compute the local shading means, one can show, both 
theoretically and experimentally, that these means have rather 
small noise sensitivity. To demonstrate this, the sphere image 
in Figure 2(a)) is corrupted with zero-mean Gaussian noise 

with standard deviation   . The arithmetic averages of the 

local measures are computed for different noise levels up to 

= 50   in steps of 5, repeated 10 times per noise level. The 

averaged variations as a function of    are shown in Figure 

2(b). The figure shows a predominantly stable performance of 
the three measures even at high noise levels. 

III. LENS DISTORTION CALIBRATION ALGORITHM 

 In this section, we use the derived local shading measures 

and their expected values to develop an easy method to 

calibrate the camera’s radial lens distortion. The measures are 

invariant under linear transformation of image intensity 

values. However, common imaging non-linearities, such as 

lens distortion, give rise to deviations in the computed local 

measures. To see this, consider the standard model for the 

radial lens distortion [11, 19] that maps the observable 

distorted image coordinates, ( , )
d d

x y , to the physically 

unmeasurable, undistorted image coordinates, ( , )
u u

x y , 

according to the equation:  

  mean   std   median 

xx
I   0.4978  0.0579  0.4911  

yy
I  0.5022  0.0579  0.5089  

xy
I   0.0086  0.0291  0.0020  



42                                     M. El-Melegy: Radial Lens Distortion Calibration …  

 

 
2 2

= ( )[( ) ( ) ],
u d d x d x d y

x x x c x c y c      

2 2
= ( )[( ) ( ) ],

u d d y d x d y
y y y c x c y c          (11) 

where   is the radial distortion coefficient and ( , )
x y

c c  is the 

distortion center, often assumed at the image center [5, 7] 

(which we will follow in the sequel). Some researchers (e.g., 

[19, 24]) employ a higher-order lens distortion model with 

more coefficients than the one in (11) to account for lenses 

with severe distortion. However the common model in (11) is 

found sufficiently accurate in many practical cases [5, 11, 7, 

4]. 

 

 
(a) 

 
(b) 

Figure 2: Noise sensitivity analysis: (a) A sample input image. (b) The 
arithmetic averages of the three measures versus different noise levels in the 
sphere image. 

 

Now if an image, like the one shown in Figure 2(a)), is 

subjected to various amounts of radial distortion controlled by 

different values of   in the big distortion range of 
6 6

10 10 10 10
 

     , the computed means of the local 

shading measures will, expectedly, deviate from their 

theoretical no-distortion values in (8) as   moves away from 

zero, see Figure 3(a)-(c). To assess how much these measures 

are far from the distortion-free case, the following error is 

proposed  

 =| ( ( )) 0.5 | | ( ( )) |,
xx xy

I U I I U I               (12) 

where ( ( ))
xx

I U I  denotes the mean of the shading measure 

computed for the image after being undistorted via the 

mapping U  in (11) at  . In principle, this error estimates 

how much the means of the local shading measures 
xx

i  and 
xy

i  

for the undistorted image are far from their theoretical value 

( 0.5  and 0 , respectively). For a properly undistorted image, 

the averages of these local shading measures will be close to 

their theoretical values rendering the error 
  significantly 

small (ideally zero). Note that 
yy

I  is not utilized (nor needed) 

in (12) as the two shading measures 
xx

I  and 
yy

I  are related 

(thus not independent). 

Figure 3(d) plots the error 
  as a function of   for the 

distortion-free image in Figure 2(a)). The error shows here 
several local minima, but the global minimum is still at the 
correct value of   (zero for this distortion-free image). 

 

 

 

 

 

 

 
(a) 

(b) 

 
(c) 

 
(d) 

Figure  3: Effect of lens distortion on means of local shading measures: (a) 

xx
I , (b) 

yy
I  (c) 

xy
I , (d) Error 


  versus  . 

 

Following this idea we can devise a easy procedure to 

calibrate the radial lens distortion coefficient for a given 

camera: Capture an image by that camera for a ball with a 

surface, which can be assumed Lambertian, under constant 

distribution of illumination. According to the mean value 

theorem, any constant distribution of illumination is 

equivalent to a single distant point-source illuminant [16]. If 

the camera is placed at a rather large distance compared to the 

sphere radius, the weak perspective projection can also be 

reasonably assumed. At this point, the deviation of the image 

intrinsics off their theoretical values is presumably attributed 

to lens geometric distortion. 

It is then required to find the radial distortion coefficient 

  in the distortion model (11) that will drive the local 

shading measures of the image undistorted by U  closer to 

their theoretical average values, thus minimizing the error in 

(12). 

To solve this nonlinear optimization problem, some care 

must be taken. Since the error 
  often has several local 

minima (please refer to Figure 3(d)), relying on pure gradient-

based minimization routines will not have much luck in 

finding the optimal solution due to being trapped in local 

minima. We therefore resort to a global optimization routine, 

such as simulated annealing starting from the initial point 

= 0 , in order to solve this nonlinear optimization problem in 

one variable. 

The simulated annealing routine requires many evaluations 

of the objective error in (12) at the various attempted values of 

 . One such evaluation would require the whole input image 

be undistorted first using the attempted  , and then the 
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shading measures and their averages are to be computed from 

the undistorted image. However significant speedup can be 

attained by avoiding the computationally expensive operation 

of undistorting the whole input image before computing the 

shading measures. This can be done by relating the first and 

second image derivatives of the unknown undistorted image to 

the derivatives of the given distorted image as a function of 

 , see Appendix. This way, the local shading measures for 

the undistorted image (and thus the error   at a particular 

 ) can be computed from those obtained image derivatives 

without having to undistort the input image first. 

Once the distortion model coefficient for a particular 

camera has been estimated, any images captured by this 

camera can be easily undistorted. Note that the above 

calibration procedure can be used if the image captured by the 

camera includes one or more balls. The latter case of having 

multiple balls in the captured image is in practice more 

desirable as it allows the balls to occupy more of the image 

spatial domain thus capturing more from the distortion effect 

introduced in the image, without the need to use larger balls. 

In the same time, this helps satisfy the required condition 

between the ball-to-camera distance and the ball diameter, 

which is needed for the weak perspective projection 

assumption. 

IV. EXPERIMENTAL RESULTS 

 The calibration method is evaluated using simulations as 

well as experiments with real data to calibrate the lens 

distortion of two cameras. The proposed method is compared 

with two popular methods in the literature, namely the well-

known line straightness based method [5] and a differential 

approach for lens distortion calibration [7]. 

A. Simulations 

An experiment with simulated data is carried out to 

quantify the accuracy of the proposed method versus various 

noise levels noise. Since the existing methods under 

comparison [5, 7] require different input data, no comparative 

results are obtained for this experiment. 

A synthetic image of size 1024×1024 for a textureless 

sphere has been generated, see Figure 4(a). The image is then 

distorted with a number of different radial distortion 

coefficients (1×10
-6

, 5×10
-6

, and 9×10
-6

). For each distortion 

degree, the distorted image is afterwards corrupted with 

Gaussian noise of zero mean and standard deviation in the 

range of 0 to 20. At each value of noise standard deviation, the 

proposed method is applied to estimate the lens distortion 

coefficient. The same procedure is repeated 10  times and the 

average estimated distortion coefficient is plotted in Figure 

4(b) versus the noise standard deviation. The figure clearly 

shows a predominantly accurate performance of the proposed 

method versus noise. The estimated distortion coefficient is 

consistently close to the ground-truth value even at high noise 

levels. 

To test the proposed method performance on textured 

surfaces, the whole above experiment is repeated for a 

textured sphere image, see Figure 5(a). The image is also 

distorted with the same three values for the radial distortion 

coefficient, and the Gaussian noise standard deviation is 

varied in the range of 0 to 20. The average distortion 

coefficient estimated by the proposed method is plotted in 

Figure 5(b) versus the noise standard deviation for the three 

ground truth values. Again the estimated distortion 

coefficients are consistently close to the ground-truth values 

even at high noise levels. 

 
(a) 

(b) 

Figure  4: Proposed method performance versus noise: (a) Input synthetic 

sphere image. (b) The estimated lens distortion coefficient   versus noise 

standard deviation for 3 ground truth values (1×10-6, 5×10-6, and 9×10-6). 

   

 

 
(a) 

 
(b) 

Figure  5: Proposed method performance versus noise: (a) Input synthetic 

textured sphere image. (b) The estimated lens distortion coefficient   versus 

noise standard deviation for 3 ground truth values (1×10-6, 5×10-6, and 9×10-6). 
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B. Real Experiment I 

The proposed method is then experimentally evaluated to 

calibrate the lens distortion for a cheap BenQ camera. Figure 

6(a) shows an image acquired by that camera for a ball. In 

addition, two more images are taken by the same camera, one 

for a group of straight lines on a white paper, and another for a 

scene in our lab, see Figure 6(b) and (c). All acquired images 

are 320×240. Due to the low lens quality of this cheap camera, 

the images have noticeable lens distortion as evident from the 

small curvature of the images’ supposed straight lines. 
 

 

 

 

 

 

 

 

 

 
(a) 

 

 

 

 

 

 

 

 
(b) 

 

 

 

 

 

 

 

 

 
(c) 

 

 

 

 

 

 

 

 

 
(d) 

 

 

 

 

 

 

 

 

 
(e) 

 

 

 

 

 

 

 

 

 
(f) 

Figure  6: Lens distortion calibration: (a) Calibration image, (b) Image of 

straight lines on paper, (c) A real scene, (d) 


  versus  , (e) Undistorted 

lines image, (f) Undistorted real scene. 
 

   The proposed method is applied to the image of the 

calibration ball, and the optimal value of the distortion 

coefficient is searched for over the range from 0 to 5×10
-6

. For 

the sake of better visualization of the error being minimized, 

the objective error in (12) is plotted versus   over this range 

in steps of 0.05×10
-6

 in Figure 6(d). The error clearly exhibits 

several local minima, which makes finding the global 

minimum of the error rather more difficult. The simulated 

annealing routine has estimated this global minimizer to be 

 =3.7×10
-6

. The run time is within 220s on a PC with 

2.2GHz AMD processor and 4GB RAM. For the obtained  , 

the camera images can be undistorted as shown in Figure 6(e) 

and (f). Clearly the lines have become fairly straighter in the 

corrected images, which reflects the good accuracy of the 

found distortion coefficient. Some circular artifacts are left on 

purpose on the undistorted image to demonstrate the inverse 

mapping of the distortion model, and to help visualize the 

differences between the original distorted images and the 

corrected ones. These artifacts can fairly removed, if desired, 

by doing some post-processing (as will be done in the 

following experiment). 

The image of Figure 6(b) is also used to estimate the radial 

distortion coefficient by two well-known existing methods: the 

line straightness method [5] and a differential approach [7]. 

The results of these two methods as well as the proposed 

method are given in Table 2. The radial distortion coefficient 

found by the three methods are fairly close, and they give rise 

to virtually similar undistorted images. So it is rather hard to 

judge which method is more accurate. However the proposed 

method is easier and more flexible, with no user intervention 

required all. No specific features are needed to be reliably and 

accurately extracted from images. The other two methods need 

lines that should be straight to be accurately extracted from the 

image, and thus need some user guidance. 

 

 
TABLE  2: REAL EXPERIMENT I COMPARISON. 

 

 

 

 

C. Real Experiment II 

The proposed method is then used to calibrate lens 

distortion for a small-sized DiscoveryULTRA camera with a 

2.0 mega pixel CCD imager. Figure 7(a) shows an image 

acquired by that camera for two ping-pong balls. Two balls are 

used here for calibration, not just one, to allow the balls to 

occupy more of the image spatial domain to capture more of 

the lens distortion effect without the need to use larger balls. 

In addition, another image is taken by the same camera for a 

group of straight lines on a white paper, see Figure 7(b). By 

looking at the images’ lines, one can notice the evident lens 

distortion effect. 

Applied to the two ball image, the proposed method has 

provided a value of  = 5.61×10
-6

. The run time is within 

140s on a PC with 2.2GHz AMD processor and 4GB RAM. 

For this value of  , the camera images can be undistorted as 

shown in Figure 7(c). Clearly the lines have become indeed 

straighter in the corrected image. In this experiment, all 

artifacts resulting from the undistortion mapping are removed 

by 2D intensity interpolation. To test the method stability, 

another image for a larger ball is also captured, see Figure 

7(d). Applied to this image, the method has yielded  = 

5.59×10
-6

, which is rather close to the previous estimate. As 

such, the proposed method is considerably stable. 

The image of Figure 7(b) is also used to estimate the radial 

distortion coefficient by the two methods under comparison 

[5, 7]. The results are reported in Table 3. The radial distortion 

coefficient found by the three methods are again fairly close. 

While the two methods require precise localization of the 

lines’ points and often under user’s supervision, the proposed 

method works directly on the image of a sphere, without the 

need for specific features to be reliably extracted. As such, the 

proposed method is considered easier and more flexible with 

accuracy comparable to the other methods. 

 

Method      

Line straightness method [5]   3.00×10-6  

Differential method [7]  2.37×10-6  

Proposed method  3.70×10-6  
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(d) 

 
Figure  7: Lens distortion calibration: (a) Calibration image of two balls, (b) 

Image of straight lines on paper, (c) Undistorted lines image, (d) Another 
calibration image of one ball. 

   

 
TABLE  3: REAL EXPERIMENT II COMPARISON. 

   

 

 

 

V. CONCLUSIONS AND FUTURE WORK 

This paper has addressed the problem of lens distortion 

calibration from a single image of a sphere. To the best of our 

knowledge, this has not been addressed before in literature. 

We have shown that this is possible both in theory and 

practice. We have presented the first method in the literature 

for that sake. 

Spheres have been found attractive for camera calibration 

[26, 25], especially in multiple camera systems, because of 

their complete symmetry and their ease to image by a camera 

in any arbitrary orientation (provided that the sphere is inside 

the field of view of the camera). However, all such methods 

have focused on estimating all the camera parameters except 

the lens distortion ones which are left for another independent 

calibration process not using spheres. As such, the proposed 

method can be useful to complement these methods. 

Moreover, the paper has tackled this problem in a non-

traditional approach in the context of the calibration from 

spheres as found in the literature (e.g., [25, 26, 31]). For 

example, the occluding contour of the sphere and its 

relationship to the absolute conic are not employed. Instead, 

the proposed method is built upon the analysis of the 

mathematical model of the image shading formation process 

in an image of a sphere and the derivation of some local 

shading measures. The paper has pointed out several 

properties of these measures, such as invariance to linear 

transformation of image intensities and to albedo changes 

across the image. These measures deviate nonlinearly away 

from their theoretical averages as a function of lens distortion. 

Thus they can work as a basis for lens distortion calibration. 

All that is required by this new calibration method is an image 

of one or more spheres under uniform illumination, with no 

user intervention required at all. Other than the simple 

segmentation of the sphere surface from the image, no specific 

features (e.g., corners or lines) are needed to be reliably and 

accurately extracted. Accordingly this method is an easy and 

flexible way to calibrate and remove a camera’s lens 

distortion. It is also interesting to note that one can often find 

images of spheres in many every-day images. This opens the 

door to applying the proposed method to those images already 

captured with unknown cameras in order to estimate their lens 

distortion models. 

The paper has presented several experiments to validate 

some properties of the developed measures. Simulations as 

well as experiments with real cameras have been reported to 

demonstrate the performance of the proposed calibration 

method. It it has provided comparable results to some well-

known techniques [5, 7] that rely on specific and precise 

feature extraction. 

It should be pointed out that there are certain limitations 

and restrictions to the proposed method. The method may 

suffer from the presence of shadows or specularities on the 

spheres. Furthermore, the sphere radius should be small 

compared with its distance to the camera. These are required 

to make the assumptions set forth in the derivation hold. 

However, these conditions are not very limiting to the 

applicability of the proposed method, keeping in mind the 

method’s simplicity and ease-of-use. We are currently 

investigating relaxing some of these conditions (e.g., 

upgrading the weak perspective assumption to full 

perspective) to increase the method’s applicability. 

Another ongoing research direction is to generalize the 

findings of this work by investigating the question whether 

lens distortion can be calibrated from an image of any smooth 

surface, not just spheres. We have drafted some early answers 

to this question in a recent submission [6]. 

APPENDIX 

The image derivatives needed to compute the shading 

measures for the unknown undistorted image (.,.)
u

I  can be 

computed from the derivatives of the input distorted image 

(.,.)
d

I  (to avoid the computationally expensive operation of 

undistorting the whole input image before computing the 

shading measures). This is given below in terms of the partial 

derivatives of the distorted image coordinates ( , )
d d

x y  with 

respect to the undistorted coordinates ( , )
u u

x y . These 

derivatives can be computed from the distortion model (11). 

=
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I I I
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Method      

Line straightness method [5]   5.81×10-6  

Differential method [7]  5.53×10-6  

Proposed method 5.61×10-6   
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