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Abstract: This article is concerned with  q  exponential type-1 distribution. Recurrence relations for single and product moments 

of generalized order statistics have been derived from q  exponential type-1 distribution. Single and product moments of ordinary 

order statistics and upper  k  records cases have been discussed as a special case from generalized order statistics. 
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1. INTRODUCTION  

 

      Kamps (1995) introduced the concept of  generalized order statistics ( gos ) as follows: 

Let nXXX ,,, 21   be a sequence of independent and identically distributed ( iid ) random variable ( rv ) with the df  

)(xF  and the pdf  )(xf . Let Nn , 2n , 0k , 
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on the cone )1()0( 1
21

1   FxxxF n  of 
n . 

The joint density of the first r - gos  is given by  
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on the cone )1()0( 1

21

1   FxxxF n . 

Then it is called generalized order statistics of a sample from distribution with )(xFdf .  

The pdf  of thr  gosm  is given by [Kamps, 1995]: 
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and the joint pdf  of ),,,( kmnrX and ),,,( kmnsX , the thr  and 
ths  gosm , ,1 nsr   is 
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We define the q  exponential distribution is a generalization of the exponential distribution. The main reason for 

introducing q  exponential model is the switching property of the exponential form to corresponding binomial 

expansion. We refer the reader to Seetha and Thomas (2012) for a comprehensive study on the properties of q  

exponential distribution 
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The main properties of the  q  exponential distribution as follows, 

(1) Exponential distribution is a special case 

(2) It has  equi- dispersed data via shape parameter 

(3)  It allows for non- constant hazard rates 

A random variable  X  is said to have   q  exponential type-1 distribution )10(  q  if its pdf  is given by 

           qxqqxf  1

1
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and the corresponding df  is 
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Therefore, in view of (1.5) and (1.6), we have  
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Kamps (1998) investigated the importance of recurrence relations of order statistics in characterization. Recurrence 

relations for moments of order statistics and upper k-records were investigated, among others, by  Khan .alet  (1983a, 

1983b), Grudzien and Szynal (1997) and Pawlas and Szynal (1998, 1999) among others. 

In this paper, we are concerned with the generalized order statistics from q  exponential type-1 distribution. Sections 

2 and 3 give the recurrence relations for single and product moments of generalized order statistics. Section 4 is based 

on  the characterization result.  
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2. RECURRENCE RELATIONS FOR SINGLE MOMENTS 

 

THEOREM 2.1: For the  q  exponential type-1 distribution given (1.5) and RmNn  ,  , nr 2  
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PROOF: From (1.3), we have 
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Integrating by parts taking  )()]([
1

xfxF r
 as the part to be integrated, we get 
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The constant of integration vanishes since the integral considered in (2.2) is a definite integral, on using (1.7), we obtain 
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and hence the Theorem 

 

 

REMARK 2.1: Setting  1,0  km  in the Theorem 2.1, we obtain the recurrence relations for the single moments of 

order statistics of the  q  exponential type-1 distribution in the form 
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REMARK 2.2: Setting  1,1  km  in the Theorem 2.1, we get the recurrence relations for the single moments of  

upper  k   record  of the  q  exponential type-1 distribution in the form 
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3. RECURRENCE RELATIONS FOR PRODUCT MOMENTS  

 

THEOREM 3.1:  For the q  exponential type-1distribution given (1.5) and RmNn  ,  , 11  nsr  
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PROOF:  From (1.4), we have 
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Solving the integral in  )(xI  by parts and substituting the resulting expression in (3.2), we get 
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The constant of integration vanishes since the integral in  )(xI  is definite integral. On using relation (1.7), we obtain 
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and hence the Theorem 

 

REMARK 3.1: Setting  1,0  km  in  the Theorem 3.1, we obtain the recurrence relations for the product moments 

of order statistics of the  q  exponential type-1 distribution in the form 
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REMARK 3.2: Setting  1,1  km  in the Theorem 3.1, we get the recurrence relations for the product moments of  

upper  k   record  of the  q  exponential  type-1 distribution   in the form 
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4. CHARACTERIZATION  

THEOREM 4.1:  Let X  be a non-negative random variable having absolutely continuous distribution  )(xF  with     

0)0( F  and 1)(0  xF , for all 0x  
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if and only if 
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Proof: The necessary part follows immediately from equation (2.1). On the other hand if the recurrence relation in 

equation (4.1) is satisfied, then on using equation (1.3), we have 
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Integrating the first integral on the right hand side of equation (4.2), by parts, we get 
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which reduces to 
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Now applying a generalization of the Muntz- Szasaz Theorem (Hawang and Lin, 1984) to equation (4.3), we get   
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