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Abstract: In this note we express Karmarkar's potential function in terms of the geometric mean of the decision variables of the 

linear programming problem, and obtain bounds on it. We also study the behaviour of the gradient and the hessian of the potential 

function at the center of the simplex and observe that the sum of all entries of the gradient and the hessian matrices at the center of 

the simplex are zero; and the center of the simplex is a saddle point for the potential function. Finally, we prove that the β-superlevel 

set of the function G(x) is a convex set. 
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1. INTRODUCTION  

In 1984 N. Karmarkar of Bell Laboratory proposed a 

projective method to solve linear programming problems. 

From theoretical point of view it is a polynomial-time 

algorithm, which works on the interior of the feasible 

region. After seminal work of Karmarkar [7], thousands 

of paper appeared in literature on interior point methods 

(for details see [8] and various references cited in it). The 

most of these interior-point methods can be classified 

into three major categories, namely, 1) Affine Scaling 

Methods, 2) Potential Reduction Methods, and 3) The 

Central Path methods. The potential reduction methods 

make use of the potential function and generate sequence 

of points that minimizes the value of the potential 

function at each iteration. The details of the potential 

reduction methods can be found in Todd [9], Gonzaga [3]  

and Singh and Singh [8]. In this note our objective is to 

study the behavior of the primal-potential function used 

in Karmarkar [7]. The primal-potential functions have 

been used by some other authors also, for example 

Gonzaga [3]. The details of the other types of potential 

functions like primal-dual potential functions, the 

symmetric primal-dual potential functions etc. can be 

found in Todd [7] and Singh and Singh [8]. The potential 

reduction methods use potential function to optimize the 

objective function of the linear programming problems. 

Karmarkar's potential function is used to measure the 

progress at each iteration, analyze the convergence and 

facilitate the complexity analysis of the algorithm. It is 

expected that the study of the behavior of the potential 

function may be useful in developing and analyzing the 

efficient algorithms for the linear programming problems, 

based on the reduction of the potential functions. The 

original algorithm of Karmarkar [7] considers a linear 

programming problem in canonical form: 

. .

1

0,

T

T

Minimize c x

s t Ax b

e x

x


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

                                                      (1) 

where , , (1,1, ,1),n m n Tc Z A Z and e   which 

can be obtained from a standard form linear 

programming problem 

. .

0,

TMinimize c x

s t Ax b

x





     (2) 

by using a projective transformation. The targeted 

minimum value of the objective function 
Tc x  is zero, 

which in turn implies that c does not depend linearly on 

vector of all ones e = (1,1,…,1)
T

. For transforming a 

linear programming in standard form to canonical form 

Karmarkar [7] has used the following projective 

transformation. 
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X x
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
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and whose inverse transformation is given by 

1( ) ,
T

Xx
x T x

e Xx

 
 


 

where 

1 0

( )

0 n

x

X diag x

x

 
 

   
 
 

a diagonal 

matrix is whose diagonal elements are the components of 

vector .nx R  

 

1.1 The potential Function 

 
We know that linear functions are not invariant 

under projective transformations, but the ratio of two 
linear functions can be transformed to the ratio of the 
two linear functions. Keeping this fact in mind 
Karmarkar [7] has introduced a potential function  

: nf R R   as a ratio of two linear functions as 

follows: 

1 1

( ) ln ln ln
Tn n

T

j

j jj

c x
f x n c x x

x 

     ,(4) 

     where { : 0}n n

iR x R x     is called 

positive orthant of 
nR . It is easy to see that 

Karmarkar's potential function ( )f x is a 

homogeneous function of degree zero. The potential 

function consists of two terms: ln Tn c x and 

1

ln
n

j

j

x


 . The second term of the potential function 

is the logarithmic barrier function, defined on the 
interior of positive orthant of Rⁿ, which compels the 
feasible solution to remain away from the boundary 
of the feasible region. This potential function is used 
to measure the progress of the algorithm. We expect 
a certain decrease δ in the potential function at each 
iteration of the algorithm. If we don't observe the 
expected improvement, i.e.,  

   ( 1) ( )k kf x f x     then we stop, and 

conclude that the minimum value of the objective 

function 
Tc x  is strictly positive. This situation 

corresponds to the case that the original problem 
does not have finite optimum i.e., it is either 
infeasible or unbounded.  

    In this note we study the behavior of the 
Karmarkar's potential function at the center of the 

simplex and the level set properties of the function 
1/

1

( )

n
n

j

j

G x x


 
  
 
  used in the potential function. 

Imai [6] has also studied the convexity of the 
multiplicative version of the Karmarkar's potential 
function and proved that the Karmarkar's potential 
function is not necessarily convex in general, but is 
strictly convex when the feasible region is bounded. 
As the Karmarkar's potential function works on the 
simplex, a bounded set, so it is convex function. 
Karmarkar's algorithm can be viewed as a gradient 
projection method for minimizing potential function 

1

( ) ln
Tn

j j

c x
f x

x

  in projected space, so the study 

of its properties may be useful in designing the 
efficient potential reduction algorithms for the other 
classes of problems like semidefinite programming 
(SDP) and second order cone programming (SOCP). 

    In section 2.1 of this note we express the 
Karmarkar's potential function in the terms of the 

geometric mean ( )G x  of the decision variables 

1 2, , , nx x x  and obtain the lower and the upper 

bounds on it, in the terms of the matrices used to 
define projective transformations of the algorithm. In 
section 2.2 we study the behavior of the gradient and 

the hessian of the potential function ( )f x ) at the 

center  0 1/ ,1/ , ,1/a n n n  of the simplex

{ : 0, 1}T

iS x x e x    and prove that: a)

2

0[ ( )] 0Te f a  ; b) 
2

0[ ( )] 0Te f a e  and c) 

the center of the simplex 0a is a saddle point of the 

potential function ( )f x . Finally in theorem 2 we 

study the problems related to the level set and 

convexity of function ( )G x and prove that the β-

superlevel set of function ( )G x is a convex set.  

2. PROPERTIES OF THE KARMARKAR'S POTENTIAL 

FUNCTION 

    2.1 Bounds on potential Function 

The Karmarkar’s Potential function 

1

( ) ln
Tn

j j

c x
f x

x

  

can be written as
( )

( ) ln
( )

n
Tc x

f x
G x

 
  

 
, where 

1/

1

( )

n
n

j

j

G x x


 
  
 
 is the geometric mean of
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1 2, , , nx x x . If ( )A x and ( )H x denote the arithmetic 

and the harmonic means respectively then 

 

( )A x =

1

1 Tn

i

i

e Xe
x

n n


 and 

1

1

( ) .
1n T

i i

n n
H x

e X e

x





 



 

Since, ( ) ( ) ( )A x G x H x   we have 

       

( ) ( ) ( )
ln ln ln

( ) ( ) ( )

n n n
T T Tc x c x c x

A x G x H x

     
      

     
 

i.e. 
( ) ( )

ln ( ) ln
( ) ( )

n n
T Tc x c x

f x
A x H x

   
    

   
 

i.e., 

1( ) ( )
ln ( ) ln

n n
T T T

T

n c x c x e X e
f x

e Xe n

   
    

   
 (5) 

 

2.2 Behavior of the Gradient and the Hessian of the 

Karmarkar's Potential Function at the Center of the 

Simplex 

 

At each iteration of Karmarkar's algorithm the current 

iterate 
( )kx  is mapped to the center 

 0 1/ ,1/ , ,1/a n n n of the simplex S. In this 

subsection we study the behavior of the Karmarkar's 

potential function at the center of the simplex. 

Theorem 1 let 

1

( ) ln
Tn

j j

c x
f x

x

 be the Karmarkar's 

potential function and 0a  be the center of the simplex, 

 a) 0[ ( )] 0Te f a   

 b)
2

0[ ( )] 0Te f a e  , and 

 c) The center of the simplex is a saddle point for the 

potential function ( )f x . 

Proof.   a) We have 
1( ) ,

T

nc
f x X e

c x

    where X

is defined as before and e  denotes the vector of ones.  

We have  0

1
,a e

n


    

i.e., 
 

2

0( )
T

n c
f a ne

c e
    

 

 

i.e., 

2
2

0[ ( )] . 0T T

T

n c
e f a e ne n n n

c e

 
      

 
 

 

b) We have 

 
2 2 1

2
( ) ,

T

n
f x X X e

c x

      

i.e.,  

3
2 2

0 2
( ) ,T

T

n
f a n I cc

c e
   where I is the 

identity matrix. 

i.e., 
2 2 3

0( ) . 0.Te f a e n n n       

 

c) We have 

 

3
2 2

0 2
( ) .T

T

n
f a n I cc

c e
    

The eigenvalues of 
2

0( )f a are of the form 

3
2

2
,

( )T

n
n

c e
 where  runs through the eigenvalues 

of 
Tcc . The eigenvalues of 

Tcc being 0  with 

multiplicity ( 1)n  and c .The eigenvalues of 

2

0( )f a are
2n  and 

23

2

2
.

( )T

n c
n

c e
  obviously

2 0n   

and one can easily find a vector c  so that the eigenvalue 

is negative. In fact due to Cauchy-Schwartz inequality 

this hold for any vector c which is linearly independent 

of .e  

We have, 

              

2 2 22( )Tc e c e n c 
 

Now,

2 23 3

2 2

2
0

( )T

n c n c
n n

c e n c
    . 

Thus we see that 
2

0( )f a has both positive and 

negative eigenvalues, so the center of the simplex is a 

saddle point for Karmarkar’s potential function. 
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Theorem 2 The β-superlevel set of the function G(x), used in the definition of Karmarkar's potential function is a convex 

set.  

Proof.  We have  

1/

1

( )

n
n

j

j

G x x


 
  
 
 , 

1/

2
1

2 2 2 2 2

( ) ( 1) ( 1) ( )
, 1,2, ,

n
n

j

j

k k k

x
G x n n G x

k n and
x n x n x



 
 

       



 

1/

2
1

2 2

( ) ( )
,

n
n

j

j

k l k l k l

x
G x G x

if k l
x x n x x n x x



 
 

    
 


. 

 

2 2 2

2

1 1 2 1

2 2 2

2 2

2 1 2 2

2 2 2

2

1 2

( )

n

n

n n n

x x x x x

G x x x x x x

x x x x x

      
 
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      
 
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 
 
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 
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=
2

G

n


2 2

1 1 1 2 1

2 2

2 1 2 2 2

2 2

1 2

1 1 1

1 1 1

1 1 1

n

n

n n n n
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x x x x x x

n

x x x x x x

n

x x x x x x
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22

1 1 2 11

2 2

2 2 1 2 22

2 2

1 2

1 1 11
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0 0

1 1 1 1
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n

n
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G
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n

x x x x x x
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This implies for all 
nu R , we have 

2 2

2

2
1 1

( )
n n

T i i

i ii i

u uG
u G x u n

n x x 

    
          

     
  (6) 
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For any two vector r and s  in 
nR , it follows from 

Cauchy-Schwartz inequality that 

 
2( ) ( )( ).T T Tr s r r s s  

In particular, if we take 

1 2

1 2

(1,1, ,1) , , , n

n

uu u
r e and s

x x x

 
    

 
 then  

2 2

1 1

n n
i i

i ii i

u u
n

x x 

   
   

   
   this implies 

 
2 2

1 1

2 2

2

2
1 1

0

( ) 0.

n n
i i

i ii i

n n
T i i

i ii i

u u
n

x x

u uG
u G x u n

n x x

 

 

   
    

   

    
            

     

 

   

This means the hessian matrix 
2 ( )G x of ( )G x  is 

negative definite, so ( )G x is a concave function. Hence 

it follows that the sup ( ),erlevel set of G x  i.e., 

1/

1

: 0, 0

n
n

j

j

L x x x



   
    

   

  is a convex set. 

 

3. CONCLUDING REMARKS 

 

The linear programming models are one of the most 

frequently used models to solve a large variety of real-life 

problems in operations research. The application of linear 

programming in agriculture, telecommunication, 

transportation problems, maximization of profit and 

minimization of production costs etc. are well known in 

literature. It remains one of many operational research 

techniques used by armed forces worldwide. Before 

Karmarkar [7], developed an efficient  interior-point-

method to solve linear programming problems, large 

linear programming problems were not solvable. In these 

days a linear programming problem with millions of 

variables and equations can be solved using various 

interior-point-methods developed after seminal work of   

Karmarkar [7]. As linear programming models are used 

in various sectors of economy and business, developing 

efficient algorithms to solve linear programming 

problems using various variants of potential-reduction 

methods will be extremely useful in decision making for 

the problems related to economy, business and industries. 

Starting from Karmarkar [7] several types of potential 

functions have been proposed including primal-potential 

functions, dual-potential functions, primal-dual potential 

functions and symmetric primal-dual-potential functions. 

Quite recently, the Semidefinite Programming (SDP) and 

the Second Order Cone Programming (SOCP) have 

appeared in literature as a generalization of linear 

programming. All the interior-point-methods  including 

potential-reduction methods are being used to develop 

efficient algorithms for solving SDP and SOCP (further 

details of potential-reduction methods and some issues 

related to efficient implementation of SDP algorithms can 

be found in [4,10] ). It is expected that the various results 

developed in this paper will be helpful in designing and 

developing efficient algorithms not only for linear 

programming but for the SDP and the SOCP also. 
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