

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 7, No.4 (July-2018)

E-mail: ali.m.sagheer@gmail.com, surasms917@gmail.com, Salihsami90@gmail.com

 http://journals.uob.edu.bh

Developing RC4 Algorithm Using S-Box of Advanced

Encryption Standard Cipher

Ali M. Sagheer
 1
, Sura M. Searan

1
 and Salih S. Salih

1

1Department of Information Technology, University of Anbar, Anbar, Iraq

Received 5 Dec. 2017, Revised 21 Jan. 2018, Accepted 15 Feb. 2018, Published 1 July 2018

Abstract: RC4 stream cipher is one of the most significant symmetric cryptosystems, it is simple and used in many commercial

products. RC4 uses dynamic permutations and avoids using Linear Feed Back Shift Register (LFSR). It has many weaknesses, such

as the tendency in the generated key stream that some key bytes are biased toward different values. This paper presents a new

algorithm using S-box of Advanced Encryption Standard (AES) to solve the correlation between public known outputs of the internal

state. The state table is filled from S-box values and additional swapping operations are used. The analysis of the proposed algorithm

over variable key length produces key byte streams that have no single and double bias. This paper obtains a new algorithm that

combines the efficiency of the RC4 and robustness of AES. The results show that the sequences that are generated by the developed

RC4 are more random than the sequence that was generated by the RC4. Also, the developed algorithm demands little time more

than RC4 execution time. Additionally, the developed algorithm is robust against most attacks, such as distinguishing attack and can

be used in different protocols such as Secure Sockets Layer (SSL) Protocol, Oracle Secure SQL, and Wired Equivalent

Privacy (WEP) Protocol.

Keywords: RC4, Stream Cipher, S-box, Key Scheduling Algorithm (KSA), Pseudo Random Generation Algorithm (PRGA),

Advanced Encryption Standard (AES), Single Bias, Double Bias.

1. INTRODUCTION

Encryption is a process that transforms plaintext into

cipher text. It is basically used to ensure confidentiality.

Organizations and companies are encrypting their data

before transmitting in order to ensure secure data

transmission in a public channel. Cryptographic

algorithms are designed to be characterized by high speed

of implementation, lower size, less complexity, and

larger degree of security. Conventional cryptographic

algorithms are complex and take a higher amount of

energy when they are used by resource constrained

devices in order to provide secure communication. Indeed,

public key algorithms are still not appropriate in tracer

networks for many reasons, such as finite storage and

higher usage of energy. Therefore, security systems

should be based on a symmetric key cryptography,

especially in the systems that have limited hardware

resources [1]. The strength of a stream cipher is the

random key stream that assures secure computation of the

cipher. The cryptanalysis of stream ciphers is essentially

focused on identifying non-random proceeding; till date,

the analysis of stream ciphers has been employed to

identify the happening of non-random proceedings [2].

The same algorithm is used for encryption and decryption;

the plaintext stream is XOR-ed with the generated series

of the random key generator. RC4 algorithm is used in

many wireless network systems and protocols [3]. It is

used in SSL protocol, Oracle Secure SQL, WEP Protocol;

it is also used to protect wireless networks as part of WPA

protocol and to protect the internet traffic as part of the

TLS (Transport Layer Security) protocol [4]. There are

many attacks presented to analysis RC4 by [5]. RC4 is

analyzed by different cryptanalysis according to RC4

different weaknesses [6]. The modern researches proved

that you can practically utilize single and double byte

biases for RC4 to acquire any part of the Internet traffic,

depending on TLS (Transport Layer Security) with RC4

option. The objective of this suggestion is to develop RC4

algorithm and analyzing the developed algorithm and

shows that this algorithm is free from single and double

bias while RC4 shows the bias that proved in the previous

researches.

http://dx.doi.org/10.12785/ijcds/070404

208 Ali M. Sagheer, et. al.: Developing RC4 Algorithm Using S-Box of é

http://journals.uob.edu.bh

2. RELATED WORKS

Many researchers work on analyzing the RC4

algorithm based on its weakness and suggest different

algorithms. Prasithsangaree and Krishnamurthy (2003)[7]

worked on analyzing RC4 and AES algorithms based on

energy consumption. They determined that RC4 is more

suitable for large packets, while AES symmetric

algorithm is more suitable for small packets; further, RC4

is faster than AES. Maitra and Paul (2008) [8] worked on

analyzing RC4 based on weakness in biases and proposed

additional layers over the key scheduling algorithm

and pseudorandom generation algorithm. In the same

year, they determined the bias that can be perceived in S

[S [y]] based on this form of permutation bias after the

Key Scheduling Algorithm (KSA); a total work is

presented to demonstrate that many key stream output

bytes of RC4 are highly biased towards several linear

collections of private key bytes (Maitra & Paul, 2008a)

[5]. Al -Fardan et al. (2013) [2] determined the security of

RC4 in Transport Layer Security (TLS) and Wi-Fi

Protected Access (WPA) and applied single and double

byte bias attack on RC4 and could retrieve some plain

text bytes. In the same year, Hammood, Yoshigoe, and

Sagheer (2013) [1] suggested RC4 stream cipher with

two state tables (RC4-2S) as an enhancement for RC4.

This enhancement solves the correlation problem

between public known outputs of the internal state using

permutation between (State1) and (State 2). In addition,

the time period to generate the key of RC4-2S is faster

than that original RC4, reduces the number of required

operations in key generation. Also, Hammood, Yoshigoe,

& Sagheer, 2015) [9] worked on enhancing security and

speed of RC4 by proposing algorithms to enhance RC4,

solve weak keys problems, and make it robust by using

random initial state. The weaknesses in RC4 still

represent an open challenge for developers.

3. DESCRIPTION OF RC4 CIPHER

The RC4 algorithm was proposed by Ron Rivest in 1987

and kept secret as a trade until it was leaked in 1994 [10].

It is a set of stream words of size n-bits [11]. RC4 starts

with the permutation and uses a secret key to produce a

random permutation with KSA. Based on the secret key,

the next stage is Pseudo Random Generator Algorithm

(PRGA) that generates key stream bytes which XORed

with the original bytes of plaintext to produce the cipher

text [8]. The state table is used to get pseudo-random

bytes. This is done in the first phase of the algorithm [7].

The key is sometimes used as a 128-bit key. This

operation is performed between key and plain text

equivalent to Vernam cipher [12]. Many stream cipher

algorithms use LFSR, especially in hardware

architecture, but RC4 design does not. RC4 has a variable

length of key that ranges between (0-255) bytes to

initialize a 256-byte array in initial state (State [0] to

State [255]) [1]. RC4 operated in two phases: the first

consists in KSA, which initializes the internal state.

Algorithm 1. KSA of RC4

Input: Key

Output: State

1. For (i = 0 to 255)

1.1. State[i] = i

2. Set j = 0

3. For (i = 0 to 255)

3.1. j = (j + State[i] + Key [i mod key-length]) mod

256

3.2. Swap (State[i], State[j])

4. Output: State

The second is a PRNG. It generates the output key

stream.

Algorithm 2. PRGA of RC4

Inputs: State, Plaintext i

Outputs: Key sequence (K sequence)

1. i = 0, j = 0

2. For (i = 0 to Plaintext length)

2.1. i = (i + 1) mod N

2.2. j = (j + State[i]) mod N

2.3. Swap (State[i], State[j])

2.4. K sequence = State [State[i] + State[j]] mod N

3. Output: K sequence

The output sequence of key K is XORed with the

plaintext

Ci = Ki ṥ Plaintext i [13].

4. RC4 WEAKNESSES

The RC4 algorithm shows several weaknesses; some

can be worked out, but others are difficult to resolve. One

of these weaknesses in the initialization state is the

statistical bias which occurs in distributing words of the

first output. This bias makes it slight to distinguish

between many short output of RC4 and random strings

by analyzing their second word. This weakness is used to

make effective cipher-text-only attack on this algorithm

in broadcast applications, where the same plaintext is

sent to multiple receivers with different keys. The unique

statistical behavior is independent from the KSA and

remains applicable even when the RC4 begins with a

totally random permutation [14]. The slide in search

effort from this attack is 25:1, but, when using linearly

related session keys, the slide in effort increments to 218,

that causes the weak keys [15]. Roos found weaknesses

in RC4 that show a robust correlation between generated

value and the first few values of the state table [16]. The

main cause is the state table began in series (0, 1, 2, é.,

255) and at least one out of every 256 possible keys, the

 Int. J. Com. Dig. Sys. 7, No.3, 207-214 (July-2018) 209

http://journals.uob.edu.bh

first byte of the generated key, is highly correlated with a

few key bytes. So, the keys allow for the precursor of the

first bytes from the PRGA output [9]. The goal of the

attack is to retrieve the original key, the internal state, or

the output key stream to have access to the original

messages. From the previous studies based on KSA and

PRGA, RC4 shows the following weaknesses: biased

bytes, distinguishers, key collisions, and key recovery

from the state [1]. Mantin and Shamir found the major

weakness of the algorithm in the second round is the

probability of zero output bytes [17]. Fluhrer and

McGrew found a serious weakness: anyone who knows a

portion of the private key can potentially attack fully on

the RC4 [18]. Maitra and Paul found a secret key by

using the initial state table. Specifically, these authors

generated an equation on the basis of the initial state

table, selected some bytes of the secret key based on their

assumption, and found out the private key by using the

equation [8]. The attack aims to retrieve the main key, the

internal state, or the final key stream to access to the

original messages [19].

5. THE PROPOSED ALGORITH M (RC4 WITH S-BOX

OF AES)

This section presents a new development of the RC4

algorithm by using S-box of the AES algorithm. The idea

of this proposition is taken from Rijndael algorithm. The

substitution bytes of the AES is a nonlinear

transformation that uses 16 bytes of S-Boxes tables, S-

Box is the multiplicative inverse of a Galois field GF (2
8
)

followed by affine transformation [7]. This suggestion

aims to combine the robustness and the security of the

AES algorithm with the speed and the simplicity of the

implementation of the RC4. More in detail, the initial

state table contents are substituted with the elements of S-

box to eliminate the correlation between the internal state

and public known output and to reduce the weakness that

is exploited by the attacks by increasing the randomness

and the complexity. This algorithm starts with the

initialization KSA algorithm and then the PRGA

algorithm, as shown in Figure 1 below. All operations are

implemented mod State length. The KSA takes a secret

key k with a 128 n-bit long word in the first step; the state

tables are filled by numbers from 0 to N-1 and then

substituted by S-box. The input secret key is used as a

state table seed. After the KSA, the PRGA performs

additional swapping operations between state[i] and

state[i+1], and between state[j] and state[j+1], to generate

the key stream that will XORed with the plaintext to get

the cipher text.

The first phase is KSA:

Algorithm 3. KSA for RC4 with S-Box of AES

Input: Secret Key

Output: State

1. S-box [256] = S-box of AES algorithm

2. For (i = 0 to N ï 1)

2.1 State[i] = S-box(i)

3. Set j = 0

4. For (i = 0 to N ï 1)

4.1 j = (j + State[i] + Key [i mod key-length])

mod N

4.2 Swap (State[i], State[j])

5. Output: State

The other is PRGA phase as shown below:

Algorithm 4. PRGA for RC4 with S-Box of AES

Inputs: State Table, Plaintext

Outputs: Key sequence (K), Ciphertext (C)

1. Initialization:

1.1 i = 0

1.2 j = 0

2. For (i = 0 to P_Length)

2.1 i = (i + 1) mod N

2.2 j = (j + S-box(j) + State[i]) mod N

2.3 j2 = (j2 + S-box(j2) + State[i]) mod N

2.4 Swap (State[i], State[j2])

2.5 For (j = 0 to N ï 1)

2.5.1 Swap (State[j], State[j+1])

2.6 K sequence = State [(State[i] + State[j] + S-

box (j2 mod N)) mod N]

2.7 Ci = Ki ṥ Pi

3. Output: K sequence and Ci

The model of double RC4 with S-box of AES is

shown in figure 1.

Initial with numbers from 0 to State length. Fill with

chosen key.

Figure 1. The model of developed RC4 encryption algorithm.

S-Box

Permutation of the first array
based on the array of the key.

(KSA)

Permutation of the first array by

itself to get the final key (PRGA)

Generating the final key

Key

Cipher text Plain text

210 Ali M. Sagheer, et. al.: Developing RC4 Algorithm Using S-Box of é

http://journals.uob.edu.bh

6. THE ANALYSIS OF RC4 AND DEVELOPED RC4

ALGORITHM BASED ON SINGLE BYTE BIAS

Mantin and Shamir (2002) [17] were the first researchers

that denoted bias in the key stream of the RC4; their

result was highly accurate. Sarkar, Gupta, Paul, and

Maitra (2015) [4] determined a key-length-dependent

bias in the key streams of the RC4 and worked with 256-

byte keys. (AlFardan, Bernstein, Paterson, Poettering, &

Schuldt, 2013) [2] denoted additional biases in the key

stream of RC4 that do not have theoretical

observations. In this work, these researchers analyzed the

RC4 and the proposed algorithm. The proposed algorithm

has no bias in the key distribution bytes as determined

below as a result of the use of additional operations that

cause no correlation between internal state and the output

sequence. Algorithm 5 is used to measure the distribution

of key stream bytes.

Algorithm 5. Measuring distributions of key stream

bytes

Input: Key [k1, k2, é., k16].

Output: Key position (Kp), Key value (Kv), and the

number of Frequents in each position (Kf).

1. For (x = 1 to 2
21

) Do

 1.1 i = 0

1.2 j = 0

 1.3 Call Algorithm 1: KSA

1.4 Call Algorithm 2: PRGA.

1.5 Deducting new key with length = 16 from

each generated key to be a new secret key.

2. For (i = 1 to N)

 For (j = 1 to values. Count)

2.1 If (values [i] == value)

2.2 Increment count by 1

2.3 Frequents = (count / (2
21

 * 16))

3. Return Kp, Kv, and Kf for each position of key stream

bytes.

The state table is analyzed with 32 positions to reduce

the search space and 2
21

 secret keys, each one with length

16, and produces 32 positions to calculate the frequent of

each of the 32 values in each position. The key

distribution bytes of the RC4 and the modified RC4 are

determined in the following charts.

Figure 2. Key distribution bytes in the first position with 221 for the RC4
and the developed RC4.

Figure 3. Key distribution bytes in the second position with 221 for the
RC4 and the developed RC4.

Figure 4. Key distribution bytes in the 16th position with 221 for the
RC4 and the developed RC4.

 Int. J. Com. Dig. Sys. 7, No.3, 207-214 (July-2018) 211

http://journals.uob.edu.bh

Figure 5. Key distribution bytes in the 32th position with 221 for the

RC4 and the developed RC4.

The distribution of key stream bytes of the RC4

algorithm has shown the same biases that are observed in

literature. The experiment executed with generated key

stream of 32 bytes and the number of generated keys

ranging from 2
16

 to 2
21

 with independent random secret

keys of 16 bytes. Expected biases started to appear

for runtime beyond 2
16

 key generations, as shown in

figure 2 to figure 5. They became apparent when the

generated key stream increased to 2
20

. The proposed

algorithm shows that there is no bias in its key

distribution bytes and the implementation time of the key

stream generation is more than that required for the

implementation of the RC4. The complexity and

randomness in the proposed algorithm key is higher than

the RC4 key bytes.

This algorithm is implemented in C#.Net

programming language. Several biases were identified in

literature. The RC4 successfully reproduced and proved

these biases in the first 32 bytes of the key stream, while

the developed RC4 has no bias in the first 32 positions of

the key stream bytes.

7. THE ANALYSIS OF RC4 AND DEVELOPED RC4

ALGORITHM BASED ON DOUBLE BYTE BIAS

After explaining single-byte biases, that are

significant to the cryptographic society, the attack simply

can be avoided by ignoring the initial bytes. Thus, the

RC4 with additional configuration can still be resistant to

the single-byte bias attack. However, several authors

have investigated biases beyond initial bytes and have

discovered different multi-byte biases in the key stream

of the RC4.

Fluhrer and McGrew (2001) [18] were the first

researchers that discovered the biases in a consecutive

pair of bytes (Ki, Ki+1) and detected long-term biases of

the RC4. They discovered ten positive biases that mean

their probability was higher than the desired value;

besides, they detected two negative biases that mean their

probability was lower than the desired value. Hammood

and Yoshigoe (2016) [13] estimated the probability of the

cipher for generating each pair of byte values through

each 256 byte cycles and got a complete view of the

distributions of every pair of byte values at the positions

(i, i + 1). They replicated Fluhrer and McGrewôs biases

and indorse their work by Al-Fardan et al.ôs (2013)

studies. They found two new positive biases not

mentioned by Fluhrer and McGrew (2001).

This work reproduced Fluhrer and McGrewôs (2001)

biases and Hammood and Yoshigoe (2016) bias with

1024 keys of 16 bytes to generate 2
32

 keystream bytes

after discarding the first 1024 bytes. Each key from the

1024 keys generates 2
32

; therefore, the whole amount of

generated keys is 2
42

. The developed RC4 using S-box

did not generate any statistical bias and its output in the

range only ±2
4
 from the predicted occurrences.

Algorithm 6 below determines the measuring of double

byte bias. The main idea of this algorithm is to measure

the appearance of the pair (Zi, Zi+1) in each position of the

output of the RC4.

Algorithm 6. Measuring distributions of key stream

bytes (K a, Ka+1)

Input: K [k1, k2, é., k16]

Output: 3-Dimentions array

1. i = j = i1 = k = 0

2. For (x = 1 to 2
10

)

2.1. Call Algorithm 2.1: KSA

2.2. For (R= 1 to 2
32

)

2.2.1. i = (i + 1) mod N

2.2.2. j = (j + State[i]) mod N

2.2.3. Swap (State[i], State[j])

2.2.4. Generated Key = State[(State[i]

+ State[j]) mod N]

 2.2.5. A[k] [Generated Key] [i1] = A[k]

[Generated Key] [i1] + 1

2.2.6. Deducting new key with 16 bytes

from each generated key to be a new secret key.

2.2.7. k = Generated Key

2.2.8. i1 = (i1 + 1) mod N

3. Return A[k] [Generated Key] [i1]

Figure 6 shows the distribution of (Zr, Zr+1) for all the

first 32 bytes of RC4 where Zr = i and Zr+1 = i to discover

possible double-byte biases. Y-axis determines the

frequents of each pair of values while the X-axis contains

each pair of values.

212 Ali M. Sagheer, et. al.: Developing RC4 Algorithm Using S-Box of é

http://journals.uob.edu.bh

Figure 6. Double-byte biases (Zr, Zr+1) for RC4 where Zr=i and Zr+1=i.

Figure 7 shows the distribution of (Zr, Zr+1) for all the

first 32 bytes of the developed RC4 with AES S-box

where Zr = i and Zr+1 = i.

Y-axis determines the frequents of each pair of values

while the X-axis contains each pair of values.

Figure 7. Double-byte biases (Zr, Zr+1) for RC4 with AES S-box where
Zr=i and Zr+1=i.

8. RANDOMNESS TEST

The key stream generated by the RC4 and the

developed RC4 was tested by the NIST (National

Institute of Standards and Technology) Test Suite. The

NIST is a statistical group for random number generator

tests that consist of sixteen statistical tests to measure the

randomness of output sequences of pseudo-random

number generators or true random number generators, as

shown below. The tests of this PRNG were done by using

NIST STS-1.6.

The good random number generator likelihood was

represented by the P-value in the test; this P-value was

compared to 0.01. If the value is higher than 0.01, then

the series is accepted, otherwise it is rejected because it

shows no randomness. Some tests accepted large series

sizes and failed in small series sizes, while other tests

accepted both. In this paper, a large size (12 kilobyte) is

generated from each secret key that has been used. These

series are tested and the average of p-values results are

calculated from these tests. As table I shows, the p-values

are succeeded and the obtained series are uniformly

distributed and random. If the tests give p-value equal to

1, then the sequence has complete randomness for this

test. A p-value of zero means that the sequence has fully

nonrandom.

TABLE I. RESULTS OF RUNNING NIST ON THE GENERATED KEY BY

RC4 AND RC4 WITH AES S-BOX.

RC4 with AES

S-box

RC4
Statistical Test

Name

Test

No. Conclu

sion

P-

VALUE

Conclu

sion

P-VALUE

SUCC

ESS
0.687713

SUCC

ESS

0.805578 Approximate

Entropy
1

SUCC

ESS
0.621580

SUCC

ESS

0.742455 Block

Frequency
2

SUCC

ESS
0.464227

SUCC

ESS

0.739164 Cumulative

Sum(Forward)
3

SUCC

ESS
0.311231

SUCC

ESS

0.854066 Cumulative

Sum (Reverse)
4

SUCC
ESS

0.913344
SUCC
ESS

0.279715
FFT 5

SUCC
ESS

0.481208
SUCC
ESS

0.898580
Frequency 6

SUCC

ESS
0.453945

SUCC

ESS

0.889521 Lempel-Ziv

compression
7

SUCC

ESS
0.842261

SUCC

ESS

0.407918 Linear

Complexity
8

SUCC

ESS
0.913467

SUCC

ESS
0.767817 Longest Runs 9

SUCC
ESS

0.570862
SUCC
ESS

0.540708 Non periodic
Templates

10

SUCC

ESS
0.597580

SUCC

ESS

0.497550 Overlapping

Template
11

SUCC

ESS
0.402825

SUCC

ESS

0.528198 Random

Excursions
12

SUCC

ESS
0.497233

SUCC

ESS

0.525591
Random

Excursion
Variant

13

SUCC

ESS
0.321188

SUCC

ESS

0.610871
Rank 14

SUCC
ESS

0.903451
SUCC
ESS

0.115965
Runs 15

SUCC
ESS

0.763967
SUCC
ESS

0.646168
Serial 16

SUCC

ESS
0.074774

SUCC

ESS

0.380374 Universal

Statistical
17

