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Abstract: RC4 stream cipher is one of the most significant symmetric cryptosystems, it is simple and used in many commercial 

products. RC4 uses dynamic permutations and avoids using Linear Feed Back Shift Register (LFSR). It has many weaknesses, such 

as the tendency in the generated key stream that some key bytes are biased toward different values. This paper presents a new 

algorithm using S-box of Advanced Encryption Standard (AES) to solve the correlation between public known outputs of the internal 

state. The state table is filled from S-box values and additional swapping operations are used. The analysis of the proposed algorithm 

over variable key length produces key byte streams that have no single and double bias. This paper obtains a new algorithm that 

combines the efficiency of the RC4 and robustness of AES. The results show that the sequences that are generated by the developed 

RC4 are more random than the sequence that was generated by the RC4. Also, the developed algorithm demands little time more 

than RC4 execution time. Additionally, the developed algorithm is robust against most attacks, such as distinguishing attack and can 

be used in different protocols such as Secure Sockets Layer (SSL) Protocol, Oracle Secure SQL, and Wired Equivalent 

Privacy (WEP) Protocol.  
 

Keywords: RC4, Stream Cipher, S-box, Key Scheduling Algorithm (KSA), Pseudo Random Generation Algorithm (PRGA), 

Advanced Encryption Standard (AES), Single Bias, Double Bias. 

1. INTRODUCTION   

Encryption is a process that transforms plaintext into 

cipher text. It is basically used to ensure confidentiality. 

Organizations and companies are encrypting their data 

before transmitting in order to ensure secure data 

transmission in a public channel. Cryptographic 

algorithms are designed to be characterized by high speed 

of implementation, lower size, less complexity, and  

larger degree of security. Conventional cryptographic 

algorithms are complex and take a higher amount of 

energy when they are used by resource constrained 

devices in order to provide secure communication. Indeed, 

public key algorithms are still not appropriate in tracer 

networks for many reasons, such as finite storage and 

higher usage of energy. Therefore, security systems 

should be based on a symmetric key cryptography, 

especially in the systems that have limited hardware 

resources [1]. The strength of a stream cipher is the 

random key stream that assures secure computation of the 

cipher. The cryptanalysis of stream ciphers is essentially 

focused on identifying non-random proceeding; till date, 

the analysis of stream ciphers has been employed to  

 

identify the happening of non-random proceedings [2]. 

The same algorithm is used for encryption and decryption; 

the plaintext stream is XOR-ed with the generated series 

of the random key generator. RC4 algorithm is used in 

many wireless network systems and protocols [3]. It is 

used in SSL protocol, Oracle Secure SQL, WEP Protocol; 

it is also used to protect wireless networks as part of WPA 

protocol and to protect the internet traffic as part of the 

TLS (Transport Layer Security) protocol [4]. There are 

many attacks presented to analysis RC4 by [5]. RC4 is 

analyzed by different cryptanalysis according to RC4 

different weaknesses [6]. The modern researches proved 

that you can practically utilize single and double byte 

biases for RC4 to acquire any part of the Internet traffic, 

depending on TLS (Transport Layer Security) with RC4 

option. The objective of this suggestion is to develop RC4 

algorithm and analyzing the developed algorithm and 

shows that this algorithm is free from single and double 

bias while RC4 shows the bias that proved in the previous 

researches. 

 

http://dx.doi.org/10.12785/ijcds/070404 
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2. RELATED WORKS 

Many researchers work on analyzing the RC4 

algorithm based on its weakness and suggest different 

algorithms. Prasithsangaree and Krishnamurthy (2003)[7] 

worked on analyzing RC4 and AES algorithms based on 

energy consumption. They determined that RC4 is more 

suitable for large packets, while AES symmetric 

algorithm is more suitable for small packets; further, RC4 

is faster than AES. Maitra and Paul (2008) [8] worked on 

analyzing RC4 based on weakness in biases and proposed 

additional layers over the key scheduling algorithm 

and pseudorandom generation algorithm. In the same 

year, they determined the bias that can be perceived in S 

[S [y]] based on this form of permutation bias after the 

Key Scheduling Algorithm (KSA); a total work is 

presented to demonstrate that many key stream output 

bytes of RC4 are highly biased towards several linear 

collections of private key bytes (Maitra & Paul, 2008a) 

[5]. Al -Fardan et al. (2013) [2] determined the security of 

RC4 in Transport Layer Security (TLS) and Wi-Fi 

Protected Access (WPA) and applied single and double 

byte bias attack on RC4 and could retrieve some plain 

text bytes. In the same year, Hammood, Yoshigoe, and 

Sagheer (2013) [1] suggested RC4 stream cipher with 

two state tables (RC4-2S) as an enhancement for RC4. 

This enhancement solves the correlation problem 

between public known outputs of the internal state using 

permutation between (State1) and (State 2). In addition, 

the time period to generate the key of RC4-2S is faster 

than that original RC4, reduces the number of required 

operations in key generation. Also, Hammood, Yoshigoe, 

& Sagheer, 2015) [9] worked on enhancing security and 

speed of RC4 by proposing algorithms to enhance RC4, 

solve weak keys problems, and make it robust by using 

random initial state. The weaknesses in RC4 still 

represent an open challenge for developers. 
 

3. DESCRIPTION OF RC4 CIPHER  

The RC4 algorithm was proposed by Ron Rivest in 1987 

and kept secret as a trade until it was leaked in 1994 [10]. 

It is a set of stream words of size n-bits [11]. RC4 starts 

with the permutation and uses a secret key to produce a 

random permutation with KSA. Based on the secret key, 

the next stage is Pseudo Random Generator Algorithm 

(PRGA) that generates key stream bytes which XORed 

with the original bytes of plaintext to produce the cipher 

text [8]. The state table is used to get pseudo-random 

bytes. This is done in the first phase of the algorithm [7]. 

The key is sometimes used as a 128-bit key. This 

operation is performed between key and plain text 

equivalent to Vernam cipher [12]. Many stream cipher 

algorithms use LFSR, especially in hardware 

architecture, but RC4 design does not. RC4 has a variable 

length of key that ranges between (0-255) bytes to 

initialize a 256-byte array in initial state (State [0] to 

State [255]) [1]. RC4 operated in two phases: the first 

consists in KSA, which initializes the internal state.  

 

Algorithm 1. KSA of RC4 

Input:  Key 

Output:  State 

1.  For (i = 0 to 255) 

1.1.  State[i] = i 

2.  Set j = 0 

3.  For (i = 0 to 255) 

3.1.  j = (j + State[i] + Key [i mod key-length]) mod 

256 

3.2.  Swap (State[i], State[j]) 

4. Output:  State 

 

The second is a PRNG. It generates the output key 

stream. 
 

Algorithm 2. PRGA of RC4 

Inputs:  State, Plaintext i 

Outputs: Key sequence (K sequence) 

1. i = 0, j = 0 

2. For (i = 0 to Plaintext length) 

2.1.  i = (i + 1) mod N 

2.2.  j = (j + State[i]) mod N 

2.3.  Swap (State[i], State[j]) 

2.4.  K sequence = State [State[i] + State[j]] mod N 

3. Output:  K sequence 

 

The output sequence of key K is XORed with the 

plaintext 

Ci = Ki ṥ Plaintext i [13]. 

4. RC4 WEAKNESSES 

The RC4 algorithm shows several weaknesses; some 

can be worked out, but others are difficult to resolve. One 

of these weaknesses in the initialization state is the 

statistical bias which occurs in distributing words of the 

first output. This bias makes it slight to distinguish 

between many short output of RC4 and random strings 

by analyzing their second word. This weakness is used to 

make effective cipher-text-only attack on this algorithm 

in broadcast applications, where the same plaintext is 

sent to multiple receivers with different keys. The unique 

statistical behavior is independent from the KSA and 

remains applicable even when the RC4 begins with a 

totally random permutation [14]. The slide in search 

effort from this attack is 25:1, but, when using linearly 

related session keys, the slide in effort increments to 218, 

that causes the weak keys [15]. Roos found weaknesses 

in RC4 that show a robust correlation between generated 

value and the first few values of the state table [16]. The 

main cause is the state table began in series (0, 1, 2, é., 

255) and at least one out of every 256 possible keys, the 
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first byte of the generated key, is highly correlated with a 

few key bytes. So, the keys allow for the precursor of the 

first bytes from the PRGA output [9]. The goal of the 

attack is to retrieve the original key, the internal state, or 

the output key stream to have access to the original 

messages. From the previous studies based on KSA and 

PRGA, RC4 shows the following weaknesses: biased 

bytes, distinguishers, key collisions, and key recovery 

from the state [1]. Mantin and Shamir found the major 

weakness of the algorithm in the second round is the 

probability of zero output bytes [17]. Fluhrer and 

McGrew found a serious weakness: anyone who knows a 

portion of the private key can potentially attack fully on 

the RC4 [18]. Maitra and Paul found a secret key by 

using the initial state table. Specifically, these authors 

generated an equation on the basis of the initial state 

table, selected some bytes of the secret key based on their 

assumption, and found out the private key by using the 

equation [8]. The attack aims to retrieve the main key, the 

internal state, or the final key stream to access to the 

original messages [19]. 

5. THE PROPOSED ALGORITH M (RC4 WITH S-BOX 

OF AES) 

This section presents a new development of the RC4 

algorithm by using S-box of the AES algorithm. The idea 

of this proposition is taken from Rijndael algorithm. The 

substitution bytes of the AES is a nonlinear 

transformation that uses 16 bytes of S-Boxes tables, S-

Box is the multiplicative inverse of a Galois field GF (2
8
) 

followed by affine transformation [7]. This suggestion 

aims to combine the robustness and the security of the 

AES algorithm with the speed and the simplicity of the 

implementation of the RC4. More in detail, the initial 

state table contents are substituted with the elements of S-

box to eliminate the correlation between the internal state 

and public known output and to reduce the weakness that 

is exploited by the attacks by increasing the randomness 

and the complexity. This algorithm starts with the 

initialization KSA algorithm and then the PRGA 

algorithm, as shown in Figure 1 below. All operations are 

implemented mod State length. The KSA takes a secret 

key k with a 128 n-bit long word in the first step; the state 

tables are filled by numbers from 0 to N-1 and then 

substituted by S-box. The input secret key is used as a 

state table seed. After the KSA, the PRGA performs 

additional swapping operations between state[i] and 

state[i+1], and between state[j] and state[j+1], to generate 

the key stream that will XORed with the plaintext to get 

the cipher text. 

The first phase is KSA: 

 

 

 

 

Algorithm 3. KSA for RC4 with S-Box of AES 

Input:  Secret Key 

Output:  State 

1. S-box [256] = S-box of AES algorithm 

2. For (i = 0 to N ï 1) 

2.1 State[i] = S-box(i) 

3. Set j = 0 

4. For (i = 0 to N ï 1) 

4.1 j = (j + State[i] + Key [i mod key-length]) 

mod N 

4.2 Swap (State[i], State[j]) 

5. Output:  State 

 

The other is PRGA phase as shown below: 

Algorithm 4.  PRGA for RC4 with S-Box of AES 

Inputs:  State Table, Plaintext 

Outputs: Key sequence (K), Ciphertext (C) 

1. Initialization: 

1.1 i = 0 

1.2 j = 0 

2. For (i = 0 to P_Length) 

2.1 i = (i + 1) mod N 

2.2 j = (j + S-box(j) + State[i]) mod N 

2.3 j2 = (j2 + S-box(j2) + State[i]) mod N 

2.4 Swap (State[i], State[j2]) 

2.5 For (j = 0 to N ï 1) 

2.5.1 Swap (State[j], State[j+1]) 

2.6 K sequence = State [(State[i] + State[j] + S-

box (j2 mod N) ) mod N]  

2.7 Ci = Ki ṥ Pi 

3. Output: K sequence and Ci 

 

The model of double RC4 with S-box of AES is 

shown in figure 1. 

Initial with numbers from 0 to State length. Fill with 

chosen key. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The model of developed RC4 encryption algorithm.  

S-Box 

 

Permutation of the first array 
based on the array of the key. 

(KSA) 

Permutation of the first array by 

itself to get the final key (PRGA) 

Generating the final key 

Key 

Cipher text Plain text 
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6. THE ANALYSIS OF RC4 AND DEVELOPED RC4 

ALGORITHM BASED ON SINGLE BYTE BIAS 

Mantin and Shamir (2002) [17] were the first researchers 

that denoted bias in the key stream of the RC4; their 

result was highly accurate. Sarkar, Gupta, Paul, and 

Maitra (2015) [4] determined a key-length-dependent 

bias in the key streams of the RC4 and worked with 256-

byte keys. (AlFardan, Bernstein, Paterson, Poettering, & 

Schuldt, 2013) [2] denoted additional biases in the key 

stream of RC4 that do not have theoretical 

observations. In this work, these researchers analyzed the 

RC4 and the proposed algorithm. The proposed algorithm 

has no bias in the key distribution bytes as determined 

below as a result of the use of additional operations that 

cause no correlation between internal state and the output 

sequence. Algorithm 5 is used to measure the distribution 

of key stream bytes. 

  

Algorithm 5. Measuring distributions of key stream 

bytes 

Input:  Key [k1, k2, é., k16]. 

Output:  Key position (Kp), Key value (Kv), and the 

number of Frequents in each position (Kf). 

1. For (x = 1 to 2
21

) Do 

 1.1 i = 0 

1.2 j = 0 

 1.3 Call Algorithm 1: KSA  

1.4 Call Algorithm 2: PRGA.   

1.5 Deducting new key with length = 16 from 

each generated key to be a new secret key. 

2. For (i = 1 to N) 

 For (j = 1 to values. Count) 

2.1 If (values [i] == value) 

2.2 Increment count by 1 

2.3 Frequents = (count / (2
21

 * 16)) 

3. Return Kp, Kv, and Kf for each position of key stream 

bytes. 

 

The state table is analyzed with 32 positions to reduce 

the search space and 2
21

 secret keys, each one with length 

16, and produces 32 positions to calculate the frequent of 

each of the 32 values in each position. The key 

distribution bytes of the RC4 and the modified RC4 are 

determined in the following charts. 

 

 

Figure 2. Key distribution bytes in the first position with 221 for the RC4 
and the developed RC4. 

 

 

Figure 3. Key distribution bytes in the second position with 221 for the 
RC4 and the developed RC4. 

 

 

Figure 4. Key distribution bytes in the 16th position with 221 for the 
RC4 and the developed RC4. 
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Figure 5. Key distribution bytes in the 32th position with 221 for the 

RC4 and the developed RC4. 

 

The distribution of key stream bytes of the RC4 

algorithm has shown the same biases that are observed in 

literature. The experiment executed with generated key 

stream of 32 bytes and the number of generated keys 

ranging from 2
16

 to 2
21

 with independent random secret 

keys of 16 bytes. Expected biases started to appear 

for runtime beyond 2
16

 key generations, as shown in 

figure 2 to figure 5. They became apparent when the 

generated key stream increased to 2
20

. The proposed 

algorithm shows that there is no bias in its key 

distribution bytes and the implementation time of the key 

stream generation is more than that required for the 

implementation of the RC4. The complexity and 

randomness in the proposed algorithm key is higher than 

the RC4 key bytes. 

This algorithm is implemented in C#.Net 

programming language. Several biases were identified in 

literature. The RC4 successfully reproduced and proved 

these biases in the first 32 bytes of the key stream, while 

the developed RC4 has no bias in the first 32 positions of 

the key stream bytes. 
 

7. THE ANALYSIS OF RC4 AND DEVELOPED RC4 

ALGORITHM BASED ON DOUBLE BYTE BIAS 

After explaining single-byte biases, that are 

significant to the cryptographic society, the attack simply 

can be avoided by ignoring the initial bytes. Thus, the 

RC4 with additional configuration can still be resistant to 

the single-byte bias attack. However, several authors 

have investigated biases beyond initial bytes and have 

discovered different multi-byte biases in the key stream 

of the RC4. 

Fluhrer and McGrew (2001) [18] were the first 

researchers that discovered the biases in a consecutive 

pair of bytes (Ki, Ki+1) and detected long-term biases of 

the RC4. They discovered ten positive biases that mean 

their probability was higher than the desired value; 

besides, they detected two negative biases that mean their 

probability was lower than the desired value. Hammood 

and Yoshigoe (2016) [13] estimated the probability of the 

cipher for generating each pair of byte values through 

each 256 byte cycles and got a complete view of the 

distributions of every pair of byte values at the positions 

(i, i + 1). They replicated Fluhrer and McGrewôs biases 

and indorse their work by Al-Fardan et al.ôs (2013) 

studies. They found two new positive biases not 

mentioned by Fluhrer and McGrew (2001). 

This work reproduced Fluhrer and McGrewôs (2001) 

biases and Hammood and Yoshigoe (2016) bias with 

1024 keys of 16 bytes to generate 2
32

 keystream bytes 

after discarding the first 1024 bytes. Each key from the 

1024 keys generates 2
32

; therefore, the whole amount of 

generated keys is 2
42

. The developed RC4 using S-box 

did not generate any statistical bias and its output in the 

range only ±2
4
 from the predicted occurrences. 

Algorithm 6 below determines the measuring of double 

byte bias. The main idea of this algorithm is to measure 

the appearance of the pair (Zi, Zi+1) in each position of the 

output of the RC4. 

 

Algorithm 6. Measuring distributions of key stream 

bytes (K a, Ka+1) 

Input:  K [k1, k2, é., k16] 

Output:  3-Dimentions array 

1. i = j = i1 = k = 0  

2. For (x = 1 to 2
10

)   

2.1. Call Algorithm 2.1: KSA 

2.2. For (R= 1 to 2
32

) 

2.2.1. i = (i + 1) mod N  

2.2.2. j = (j + State[i]) mod N 

2.2.3. Swap (State[i], State[j])  

2.2.4. Generated Key = State[(State[i] 

+ State[j]) mod N]  

   2.2.5. A[k] [Generated Key] [i1] = A[k] 

[Generated Key] [i1] + 1  

2.2.6. Deducting new key with 16 bytes 

from each generated key to be a new secret key. 

2.2.7. k = Generated Key 

2.2.8. i1 = (i1 + 1) mod N  

3. Return A[k] [Generated Key] [i1] 

 

Figure 6 shows the distribution of (Zr, Zr+1) for all the 

first 32 bytes of RC4 where Zr = i and Zr+1 = i to discover 

possible double-byte biases. Y-axis determines the 

frequents of each pair of values while the X-axis contains 

each pair of values. 
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Figure 6. Double-byte biases (Zr, Zr+1) for RC4 where Zr=i and Zr+1=i. 

 

Figure 7 shows the distribution of (Zr, Zr+1) for all the 

first 32 bytes of the developed RC4 with AES S-box 

where Zr = i and Zr+1 = i. 

Y-axis determines the frequents of each pair of values 

while the X-axis contains each pair of values. 
 

 
 

Figure 7. Double-byte biases (Zr, Zr+1) for RC4 with AES S-box where 
Zr=i and Zr+1=i. 

 

8. RANDOMNESS TEST 

The key stream generated by the RC4 and the 

developed RC4 was tested by the NIST (National 

Institute of Standards and Technology) Test Suite. The 

NIST is a statistical group for random number generator 

tests that consist of sixteen statistical tests to measure the 

randomness of output sequences of pseudo-random 

number generators or true random number generators, as 

shown below. The tests of this PRNG were done by using 

NIST STS-1.6. 

 

 

The good random number generator likelihood was 

represented by the P-value in the test; this P-value was 

compared to 0.01. If the value is higher than 0.01, then 

the series is accepted, otherwise it is rejected because it 

shows no randomness. Some tests accepted large series 

sizes and failed in small series sizes, while other tests 

accepted both. In this paper, a large size (12 kilobyte) is 

generated from each secret key that has been used. These 

series are tested and the average of p-values results are 

calculated from these tests. As table I shows, the p-values 

are succeeded and the obtained series are uniformly 

distributed and random. If  the tests give p-value equal to 

1, then the sequence has complete randomness for this 

test. A p-value of zero means that the sequence has fully 

nonrandom.  
 

TABLE I. RESULTS OF RUNNING NIST ON THE GENERATED KEY BY 

RC4 AND RC4 WITH AES S-BOX. 

 

RC4 with AES  

S-box 

RC4 
Statistical Test 

Name 

Test 

No. Conclu

sion 

P-

VALUE 

Conclu

sion 

P-VALUE 

SUCC

ESS 
0.687713 

SUCC

ESS 

0.805578 Approximate 

Entropy 
1 

SUCC

ESS 
0.621580 

SUCC

ESS 

0.742455 Block 

Frequency 
2 

SUCC

ESS 
0.464227 

SUCC

ESS 

0.739164 Cumulative 

Sum(Forward) 
3 

SUCC

ESS 
0.311231 

SUCC

ESS 

0.854066 Cumulative 

Sum (Reverse) 
4 

SUCC
ESS 

0.913344 
SUCC
ESS 

0.279715 
FFT 5 

SUCC
ESS 

0.481208 
SUCC
ESS 

0.898580 
Frequency 6 

SUCC

ESS 
0.453945 

SUCC

ESS 

0.889521 Lempel-Ziv 

compression 
7 

SUCC

ESS 
0.842261 

SUCC

ESS 

0.407918 Linear 

Complexity 
8 

SUCC

ESS 
0.913467 

SUCC

ESS 
0.767817 Longest Runs 9 

SUCC
ESS 

0.570862 
SUCC
ESS 

0.540708 Non periodic 
Templates 

10 

SUCC

ESS 
0.597580 

SUCC

ESS 

0.497550 Overlapping 

Template 
11 

SUCC

ESS 
0.402825 

SUCC

ESS 

0.528198 Random 

Excursions 
12 

SUCC

ESS 
0.497233 

SUCC

ESS 

0.525591 
Random 

Excursion 
Variant 

13 

SUCC

ESS 
0.321188 

SUCC

ESS 

0.610871 
Rank 14 

SUCC
ESS 

0.903451 
SUCC
ESS 

0.115965 
Runs 15 

SUCC
ESS 

0.763967 
SUCC
ESS 

0.646168 
Serial 16 

SUCC

ESS 
0.074774 

SUCC

ESS 

0.380374 Universal 

Statistical 
17 


