

International Journal of Computing and Network Technology
 @ 2014: Scientific Publishing Center, University of Bahrain

E-mail: Dilum.Bandara@uom.lk, Anura.Jayasumana@ColoState.edu

Resource and Query Aware, Multi-Attribute Resource

Discovery for P2P Systems
 H. M. N. Dilum Bandara

1,*
 and Anura P. Jayasumana

2,*

1Department of Computer Science and Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka

2Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA

Received 15 Dec. 2013, Revised 11 Feb. 2014, Accepted 16 Feb. 2014, Published 1 May 2014

Abstract: Distributed, multi-attribute Resource Discovery (RD) is a fundamental requirement in collaborative Peer-to-Peer (P2P),

grid, and cloud computing. We present an efficient and load balanced, P2P-based multi-attribute RD solution that consists of five

heuristics, which can be executed independently and distributedly. First heuristic maintains a minimum number of nodes in a ring-

like overlay while pruning nodes that do not significantly contribute to the range query resolution. Removing nonproductive nodes

reduces the cost (e.g., hops and latency) of advertising resources and resolving queries. Second and third heuristics dynamically

balance the key and query load distribution by transferring some of the keys to its predecessor/successor and by adding new

predecessors/successors to handle transferred keys when existing nodes are insufficient, respectively. Last two heuristics form

cliques of nodes (that are placed orthogonal to the overlay ring) to dynamically balance the highly skewed key and query loads. By

applying these heuristics in the presented order, a RD solution that better responds to real-world resource and query characteristics is

developed. Its efficacy is demonstrated using a simulation-based analysis under a variety of single and multi-attribute resource and

query distributions derived from real workloads.

Keywords: Multi-attribute queries, load balancing, peer-to-peer, range queries, resource discovery

__

1. Introduction

 Collaborative Peer-to-Peer (P2P) systems [1],

grids, and cloud computing require the ability to

discover and aggregate groups of heterogeneous,

distributed, and dynamic resources as and when

needed. These systems utilize a variety of resources

such as processor cycles, storage capacity, network

bandwidth, sensors, scientific algorithms, services, and

data to not only consume a variety of contents but also

to generate, modify, and manage those contents. P2P-

based distributed Resource Discovery (RD) is a natural

fit for collaborative applications and further enhances

their scalability and robustness. P2P-based RD has also

been proposed for conventional applications such as

grid, desktop grid, and cloud computing, as a timely

aggregation of complex resources is becoming

increasingly necessary due to the proliferation of

parallel applications that utilize multiple and

distributed resources.

Many P2P-based solutions have been proposed to

discover multi-attribute, dynamic, and distributed

resources [1-5]. However, compared to single-attribute

P2P systems such as file sharing, formal

characterization of real world, multi-attribute resources

and queries received attention only recently [6-8]. In

the absence of data and understanding of the

characteristics, designs and evaluations of existing

solutions have relied on many simplifying assumptions

such as independent and identically distributed (i.i.d.)

attributes, large domains for attribute values (i.e.,

number of distinct attribute values D ≫ number of

nodes N), uniform or Zipf’s distributions of all the

resources/queries [2, 5], and queries with a large

number of attributes and small range of attribute values

[2-4]. However, in [6, 8-9], we observed that

characteristics of real-world systems diverge drastically

where attributes of resources are correlated and

characterized by different marginal distributions.

Moreover, resources and queries are highly skewed,

domains of most attributes are much smaller (i.e., D ≪

N), and queries tend to request a small number of

attributes and large range of attribute values. Analysis

in [8, 10], using real-world data from [6] to evaluate

seven fundamental design choices for P2P-based RD

shows that existing solutions have a high resource

advertise and query cost (approximating O(N)) as

attribute values change frequently and queries are less

specific. Moreover, they are prone to significant load

balancing issues because D ≪ N and resources and

queries are highly skewed. While many solutions are

48 Int. J. Com. Net. Tech. 2, No. 2, 47-57 (2014) H. Bandara, A. Jayasumana: Resource and Query Aware…

proposed to balance the index size and query load in

P2P systems [4-5, 11-13], they also rely on the

aforementioned assumptions (see [8] for details). Such

assumptions affect the designs, performance analysis,

and applicability of solutions under real workloads.

Therefore, more efficient and load balanced, RD

solutions are needed to support real workloads.

We present an efficient and load balanced, resource

and query aware multi-attribute RD solution. The

solution is based on five heuristics that can be executed

independently and distributedly on a ring-like overlay.

Ring-like overlay is selected as it turns out to be a

relatively more efficient and scalable design choice

compared to the other solutions [8, 10]. First heuristic

maintains only a subset of the nodes in the overlay as D

≪ N. It prunes nodes that do not significantly

contribute to range query resolution while reducing the

cost (e.g., hops and latency) of resolving queries.

Heuristics two and three dynamically balance the query

load and index/key distribution of nodes by transferring

part of the keys to its neighbors and by adding new

neighbors to handle transferred keys when existing

nodes are insufficient, respectively. Last two heuristic,

namely fragmentation and replication, form cliques of

nodes to dynamically balance the skewed key and

query loads associated with few popular resources. In

contrast to the common practice of replicating along

the overlay ring, cliques of fragments and replicas are

placed orthogonal to the ring thereby maintaining

lower query cost and better load distribution. Our key

contributions are the development of a novel heuristic

to prune nodes with lower contribution to the range

query resolution, placing replicas and fragments

orthogonal to the ring, and extending other four

heuristics to support real workloads while overcoming

their deficiencies. Moreover, by applying the five

heuristics in the presented order, our solution can better

respond to the complex characteristics of real-world

resources and queries. Simulation-based analysis is

used to evaluate the efficacy of the proposed solution

under a variety of single and multi-attribute resource

and query distributions derived from real workloads.

 Section 2 presents the problem formulation.

Five heuristics and their application to single-attribute

resources are presented in Section 3, and it is then

extended to multi-attribute resources in Section 4.

Sections 5 and 6 present the simulation setup and

performance analysis, respectively. Concluding

remarks are presented in Section 7. This is an extended

version of the paper in [14]. The major extensions

include the problem formulation, formal presentation

of heuristics, and an extended performance analysis.

2. Problem Formulation

 We first present the resource and query model.

Summary of resource and query characteristics

observed from real-world systems and P2P load

balancing solutions are presented next. Finally, the

research problem is formulated.

2.1 Resource and Query Model

 Let R be the set of resources in the system and A

be the set of attributes used to characterize those

resources. Bold face symbols refer to a set and the

corresponding italic symbol refers to its cardinality,

e.g., R = |R|. List of symbols is given in Table I. A

multi-attribute resource r  R is defined as follows:

 ii vavavar  ,...,, 2211 

 Each attribute ai  A has a corresponding value vi

 Di that belongs to a given domain Di. Di’s are

typically bounded and may be continuous or discrete,

or a set of categories/names. For example, r =

(CPUSpeed = 2.1 GHz, CPUCores = 2, CPUFree =

76%, OS = “Linux_2.6”). Attribute values are further

classified as static (e.g., CPUSpeed) and dynamic (e.g.,

CPUFree). Dynamic attributes need to be re-advertised

whenever their states change. Thus, the cost of

advertising dynamic attributes is proportional to their

rate of change. A fixed or a dynamic threshold may be

used to reduce the number of advertisements. r is

referred to as a single-attribute resource when A = 1.

 Let Q be the set of queries issued by the

system. A multi-attribute, range query q Q is defined

as:

 ],[,...],,[],,[, 222111 iii ulaulaulamq  

 where, m 

specifies the required number of

resources and ai  [li, ui] specifies the desired range of

attribute values (li and ui are lower and upper bounds,

respectively). In practice, attributes specified in a query

may contain a mixture of points (i.e., li = ui) and ranges

(i.e., li < ui). The set of attributes specified in a query

(qA) may contain only a subset of the attributes that are

used to describe a resource (i.e., qA  A). For

example, q = (5, CPUFree  [50%, 100%], OS 

“Linux_2.5”). Unspecified attributes are considered as

“don’t care”s. q is referred to as a single-attribute

query if qA = 1.

 Analysis in [8, 10] shows that a Distributed Hash

Table (DHT) built on top of a ring-like overlay (e.g.,

Chord [12] and Mercury [5]) is relatively efficient and

scalable than other design choices for P2P-based multi-

attribute RD. Therefore, we consider a ring-like

overlay for indexing resources as shown in Fig. 1. Each

 Int. J. Com. Net. Tech. 2, No. 2, 47-57 (2014) H. Bandara, A. Jayasumana: Resource and Query Aware… 49

vi of a resource is indexed separately using a Locality

Preserving Hash (LPH) function(s) [3]. LPH functions

map close by attribute values to neighboring nodes in

the ring enabling range query resolution through a

series of successors (see Fig. 1). Different attributes

may be advertised to different rings [5], different

segments of the same ring [2, 4], or to a set of virtual

rings mapped to a physical ring [3]. Query q is first

split into a set of sub-queries where each sub-query

searches for one of the attributes specified in qA. Sub-

queries are then simultaneously forwarded to relevant

rings/segments and are resolved by forwarding to all

the nodes responsible for indexing the specified range

[li, ui]. Cost of resolving q can be given as:


 































Aqi i

ii
iq N

D

lu
hCost 1  

where, hi is the number of overlay hops to reach the

node that indexes li, which is typically O(log N) [12].

After reaching the first node, q will be forwarded to the

node responsible for indexing ui through a series of

successors. As in [3-4], we assume the range of

attribute values [li, ui] to be uniformly distributed

within the overlay. As the domain of attribute i (Di) is

mapped to N nodes, each node is responsible for

indexing Di/N fraction of the attribute space. Therefore,

a range query that searches for [li, ui] has to go through

(ui – li)n/Di nodes (i.e., range to search divided by

range per node). This approach has a lower resource

advertising cost but has a higher query cost due to

multiple sub-queries. Alternatively, if all the attribute

values are advertised to all the rings/segments, q needs

to be forwarded to only one of the rings/segments.

Moreover, q can be terminated as soon as m resources

are found. Query cost can be further reduced by

selecting the ring/segment corresponding to the most

selective attribute (i.e., attribute with the smallest (ui –

li)/Di) [3, 5]. However, cost of advertising resources is

high as each vi needs to be advertised to all the rings or

segments.

2.2 Related Work

 In [6, 8-9], we presented the characteristics of

both the static and dynamic resources as well as the

queries from four different real-world systems (namely

PlanetLab, SETI@home, EGI grid, and a distributed

campus computing facility). These and other recent

analysis in [7] invalidate some of the key assumptions

used by existing performance studies on RD solutions.

For example, [6-9] show that the attributes of both real-

world resources and queries are highly skewed and

correlated. Several attributes have only a few attribute

values, e.g., CPU architecture, CPUCores, and OS.

TABLE I. LIST OF SYMBOLS.

l

u

q

l’s successor

u’s successor

i

i - 1

i + 1

Figure 1. Range query resolution on a ring-like overlay.

Thus, size of their domain Di ≪ N. Moreover,

distribution of those attributes was extremely skewed,

e.g., 98% of the CPUs in SETI@home were ×86.

Attribute values have different marginal distributions

and change at different rates. For example, 32% of the

PlanetLab nodes significantly changed their dynamic

attribute values 100 times or more within a 24-hour

period (out of 288 samples taken at five-minute

intervals). 3% of the nodes changed their attribute

values over 200 times within the same period.

Furthermore, most queries are less specific where they

specify a few attributes (small qA), large number of

resources (large m), and large range of attribute values

(large (ui – li)). For example, 80% of the PlanetLab

queries specified only one or two attributes and 89% of

the queries specified CPUFree  [40%, 100%].

 These findings invalidate the commonly used

assumptions such as i.i.d. attributes, uniform/Zipf’s

distribution of all the attributes, Di ≫ N, and queries

requesting a large qA, small m, and small (ui – li) [2-5].

From (3) it can be seen that the cost of resolving real-

world queries approximate O(N) as m, (ui – li), and (ui

– li)/Di are relatively large. This is a problem in

collaborative P2P, grid, and cloud computing where N

Symbol Description

A Set of attributes used to characterize resources

Di Domain of attribute i

hi No of hops to reach the node indexing lower bound li

Ii,
 Resource index and capacity of a node

ki, kl, ku Key of node i, lower bound li, upper bound ui

 Set of keys corresponding to In and Out queries

li Lower bound specified in a range query
m Required no of resources specified in a query

N No of nodes in the overlay

qA Set of attributes specified in query q

Q Set/no of queries issues to the RD system

 Query capacity of a node/resource

 Out query threshold

R Set of resources in the system

ui Upper bound specified in a range query

vi Value of i-th attribute

50 Int. J. Com. Net. Tech. 2, No. 2, 47-57 (2014) H. Bandara, A. Jayasumana: Resource and Query Aware…

range from several thousands to millions of resources.

Furthermore, as Di ≪ N resources are mapped only to a

small subset of the DHT nodes. Consequently, a few

DHT nodes are involved in indexing resources and

answering majority of the queries while a larger

fraction of nodes do not either index resources or

answer queries [8, 10]. Therefore, existing solutions

are both inefficient and are prone to load balancing

issues under real workloads.

 Load on a DHT node can be defined in terms of

index size, advertise and query messages received, and

overlay messages forwarded. Index size is measured

using the number of resources or memory required to

store those resources. Advertise, query, and forward

loads are measured using the number of messages or

bandwidth consumed. Existing solutions assume all the

nodes should be added to the overlay as it helps to

balance the load by each node indexing approximately

R/N resources or answering Q/N queries. For example,

Chord proposed to balance the index size distribution

by having N log N virtual nodes in the overlay [13]

under the assumption that resources are uniformly

distributed and Di ≫ N. Godfrey et al. [13] extended

the concept of virtual nodes to balance the query load

by moving virtual nodes from highly loaded physical

nodes to lightly loaded ones. These solutions are not

suitable for real-world RD as the query cost is O(N log

N), resources and queries are skewed, and most of the

nodes will not index resources or answer queries as Di

≪ N. SWORD [4] proposed to expand Di by appending

a few random bits to the hash values of vi such that

identical resources will be mapped to different DHT

nodes. While this helps to distribute the index size, it

does not balance the query load, as queries have to

always start from the node corresponding to li. One

may argue that attributes such as bandwidth and disk

space have a much larger domain; hence, this problem

is unrealistic. However, it is not useful to advertise

resources at a very high resolution as it significantly

increases the advertising cost and users are not

interested in fine-grained queries [6, 8]. Moreover, as

the real-world systems tend to oscillate between idle

and busy periods [6, 17] their attribute values are not

uniformly distributed through Di. Therefore, it is not

useful to explicitly expand Di. Key transfer is another

approach where an overloaded node transfers part of its

index to its neighbor(s) [14-15]. This approach is

somewhat effective and has a lower overhead.

However, when range queries are less specific, series

of nodes tends to be overloaded. Therefore, a node may

not be able to transfer its load to its neighbors. When a

range of nodes is overloaded, it is proposed to migrate

nodes in unloaded regions of the overlay to overloaded

ones and then transfer keys [14-15]. This is possible

only if the key space is further divisible and distributed

statistics are collected to keep track of which nodes are

loaded and unloaded. In practice, it is possible to have

a very large number of identical resources (e.g., 98% of

×86 nodes in SETI). Similarly, a node may receive a

very large number of queries due to skewed

distributions (e.g., 89% of the queries specified

CPUFree  [40%, 100%]). Such large indexes and

query loads need to be split across multiple nodes using

replication and/or fragmentation. In [11], it proposed to

arrange resource attributes on a logical Range Search

Tree (RST) that is mapped to a DHT. Each node in the

RST is represented as a load-balancing matrix that is

expanded or contracted with the load. When the index

is too large, the number of columns in the matrix

(fragments) is expanded. The number of rows

(replicas) is expanded when the query load is too high.

All fragments and replicas are mapped to the DHT. A

dynamic hash function is proposed to determine which

fragment or replica to query. However, as the size of

load balancing-matrix changes hash function also

changes therefore needed to be informed to all the

nodes. Hence, this solution is more suitable for

relatively stable networks with immutable resources.

Moreover, locality of attribute values is lost when the

RST is mapped to the DHT consequently increasing

query cost to O(N log N). Therefore, existing load

balancing solutions do not work efficiently under real

workloads.

2.3 Problem Statement

 Future RD solutions will apply a fixed or dynamic

threshold while advertising resources, as it reduces the

cost of advertising and users do not specify very

specific queries. Applying such a threshold will lead an

even unbalanced distribution of index size as Di ≪ N.

Conversely, this can be used to reduce the query cost,

as the number of nodes along the ring does not need to

exceed the largest Di. Then by adding fragments and

replicas orthogonal to the ring (contrary to the common

practice of adding along the ring), we can balance both

the index size and query load without increasing the

query cost.

 Consider a ring-like overlay with a set of N nodes

indexing R resources. Each r  R is willing to

contribute some index capacity
 and query capacity

 . These capacities are typically determined using

several factors such as the computing power, memory,

bandwidth, or energy of a resource, or amount of

resources that a user is willing to contribute to the P2P

system. We assume
 and

 are measured in

terms of number of resources and messages,

respectively. Our goal is to find a solution that

minimizes the query resolution latency on a ring-like

overlay while satisfying the node capacity constraints.

If we assume that the time required to resolve a query

within a DHT node is small compared to the network

 Int. J. Com. Net. Tech. 2, No. 2, 47-57 (2014) H. Bandara, A. Jayasumana: Resource and Query Aware… 51

latency and each overlay link has approximately the

same latency, then the problem can be restated as

minimizing the number of hops required to resolve a

query which is given in (3). Given that users determine

(ui – li) and qA, and Di is fixed, problem further reduces

to minimizing N as it is the only system-level

parameter (hi depends on N). Therefore, our goal is to

minimize N while satisfying the node capacity

constraints.

3. Handling Single-Attribute Resources

 Fig. 2 illustrates three consecutive nodes (i – 1, i,

i + 1) on the overlay ring shown in Fig. 1. Let ki be the

key of i-th node. Histograms indicate the number of

resources mapped to a given key. Let I
i
 be the set of

resources indexed at i. Five range queries q1 to q5 are

indicated as scatted lines. For example, q1 starts at node

i and ends at i + 1. While q4 starts at i – 1 and suppose

to end at i + 1, it terminates at i as the desired number

of resources are found. While a query q moves from

one node to another it appends matching resources to

the query. Let kl represents the key generated by

applying a LPH function to the lower bound li of a

range query. Similarly, let ku be the hash value of ui.

Query resolution starts at the successor node of kl (Fig.

1). For example, q1 and q2 can be considered as coming

directly into node i from the overlay network. Set of

such queries is defined as In queries (

) where q 

 when kl  (ki – 1, ki]. A query that is answered or

reaches ku goes out of the node, e.g., q2 to q4 goes out

from i. Set of such queries is defined as Out queries

(

), i.e., q 

 when ku  (ki – 1, ki] or q is

resolved by i. Some queries are forwarded from the

predecessor, e.g., q3 to q5 are forwarded from node i –

1 to i. Set of such queries is referred to as Forward

queries (

 –), i.e., q 

 – when [kl, ku]∩(ki – 1, ki]

≠ and kl ≤ ki – 1. Therefore, the query load on a node is

the sum of In and Forward queries received within a

given time interval t. Our objective is to maintain the

index size and query load on a node i within its bounds,

i.e., I
i
 ≤

 and

 –

 . We first discuss

the heuristics in the content of single-attribute range

queries and then in the following section they are

extended to support multi-attribute range queries.

3.1 Heuristic 1 – Prune

 Consider the query distribution illustrated in

Fig. 3(a), which is derived from range queries for

CPUSpeed, CPUFree, and DiskFree in PlanetLab.

Such a distribution arises when users specify a large (ui

– li) and m. Suppose this range is covered by four

nodes a, b, c, and d and queries start either at a or b

(mostly at b) and terminate at d. c is not answering any

queries (

 = 0) and merely forwards them to its

successor d (

 =

). This occurs when a node

does not index any resources or indexed resources are

insufficient to answer a given query. It is desirable to

remove c from the ring as it helps to reduce the number

of hops a query has to travel. If c indexes any

resources, they have to be moved to b or d before

leaving. A node i may pick its successor (i + 1) to

move keys when I
i
 + I

i+1
≤

 or may pick the

predecessor (i – 1) when I
i
 + I

i-1
≤

 -
. However,

removing c does not increase the query load on either b

or d. Moving index to the successor is preferred as it

reduces the changes to the overlay, e.g., d’s key will

not change when c moves its index while b’s key need

to be changed. Moreover, the query bandwidth

requirement of d also reduces (see [8] for proof).

 Let us now consider the query distribution in Fig

3(b). Such a distribution arises when intermediate

nodes are able to answer queries completely (e.g., q2

and q4 in Fig. 2) or ku is reached (e.g., q3). It is still

useful to remove nodes that do not answer a large

number of queries to further reduce the query cost. For

example, nodes a, b, and d are good candidates as they

do not answer many queries. Hence, we remove a node

from the ring when the number of Out queries is below

a given threshold

 (i.e., when

).

However, we now need to be aware of both the index

size and query load transferred to a node’s

successor/predecessor to prevent them from being

overloaded. For example, if node i is removed, its

successor i + 1 will receive three additional queries q2,

q3, and q4 which are in

 .Thus, i + 1 can handle i-th

node’s load only when
1 ii II 1 i

CapI and

11   i
Cap

i
Out

i
Fwd

i
In QQQQ . If the index is moved to the

predecessor, i – 1 will receive q1 and q2 as its key will

change to ki. Therefore, keys can be moved to i – 1

only when
11   i

Cap
ii III and

121   i
Cap

i
In

i
Fwd

i
In QQQQ . By keeping track of

i
OutQ a

node can decide by itself whether

 or not.

However, if it indexes any resources, it needs to check

with the predecessor/successor before leaving. A node

will continue to remain in the ring, if its neighbors are

not willing to accept its index and query load. When a

node is removed from the ring, it will connect to one of

the nodes in the ring and use it as a proxy to issue

queries and advertise resources (similar to superpeer-

based P2P systems).

52 Int. J. Com. Net. Tech. 2, No. 2, 47-57 (2014) H. Bandara, A. Jayasumana: Resource and Query Aware…

ii – 1 i + 1

`

Qi

InQi-1

Fwd

Qi

Out

Qi

Fwd

q1q2
q3

q4

q5

keyski – 1 ki

Figure 2. Series of nodes on a ring-like overlay.

keys

N
o

 o
f

q
u

e
ri

e
s

(Q
In

+
 Q

F
w

d
)

a b c d

keys

N
o

 o
f

q
u

e
ri

e
s

(Q
In

+
 Q

F
w

d
)

a b c d

(a) (b)

Figure 3. Two example range query distributions. Scattered lines

indicate the range of keys handled by nodes.

3.2 Heuristic 2 – Key Transfer

 Suppose node c in Fig. 3(b) is overloaded, i.e., I
c

≥
 and/or c

Cap
b
Fwd

c
In QQQ  . c can reduce the load

by moving some of its keys to b or d (d is preferred as

it requires minimum changes to the overlay). For

example, one of the queries at i can be removed if key

ki (Fig. 2) is moved before the start of query q1. Two

queries can be removed, if it is moved even further

towards ki–1. Similarly, by reducing ki index size can be

also reduced. Let excess query load be

 =

 - +

 –

 and index size be
 = I

i
 –

 . As

 -

is fixed, only
i
InQ can be reduced. Therefore, it will be

useful for a node to transfer its query load to its success

only if
i
Excess

i
In QQ  . To decide which keys to transfer

to i + 1, we need to track kl specified in each query q 

 . Let
 be the set of kls collected from each q 

 (same key may appear multiple times). Then we

can find the largest key k 
 s.t. the reduced query

load

 = countIF(
 , “≥k”) ≥

 . countIF()

function counts the number of keys in
 that satisfies

the given condition, e.g., “≥k”. Similarly, index size

reduced at i should satisfy
i
ReduceI = countIF(I

i
, “≥k”) ≥

 . When ki is moved towards node i – 1 some of

the queries that are being currently answered by i will

be forwarded to i + 1. For example, when ki is moved

up to kl of q1, q2 and q3 will be forwarded to i + 1.

Thus, the successor’s query load will be increased by

 = countIF(
 , “≥k”). Where

 is the set

of keys that queries terminate at node i. The index size

of i + 1 will also increase by
 . Therefore, a subset

of the keys can be transferred to the successor only

when

 +

 +

 ≤

 and I
i+1

 +
 ≤

 . If successful, after transferring keys i-th node’s

key is set to ki = k – 1. If the successor is unable to

accept the load, the predecessor can be tried. However,

the process is reversed where load reduced on i is

determined by

 and load transferred to i – 1 is

determined by

 .

3.3 Heuristic 3 – Key Transfer to New Nodes

 In range query systems, it is possible for a range

of nodes to be overloaded. Therefore, transferring keys

to either the predecessor or successor may not be

possible. Given that a node is aware of In, Out, and

Forward loads, it can determine whether it would be

useful to add a new node between its current successor

or predecessor. Adding a successor is possible and

useful if

 ≥

 and there is enough key space

between i and i + 1 (i.e., k – ki-1 > 1, where k is

determined from heuristic two). Query load transferred

to the new successor is

 = countIF(
 , “≥ k”)

+

 and its index size is
 = countIF(I

i
, “≥k”).

New successor’s key knew = ki and new ki = k – 1.

Similarly, a predecessor can be added when

 ≥

 and k < ki. If the transferred load is too much for

one node (i.e.,

 >

 or
 >

), series

of successors/predecessors can be added. As heuristic

one removes unnecessary nodes, many nodes are not

part of the ring. One of these nodes can be added when

necessary by querying a special node that may keep

track of those nodes, randomly picked from the nodes

that are connected to a node on the ring, or found using

the RD system by issuing a query. Therefore, in

contrast to [15-16] our approach does not require an

explicit mechanism to track and locate loaded and

unloaded nodes in the overlay.

3.4 Heuristic 4 – Replicate Index on New Nodes

 While second and third heuristics are effective

in distributing some of load with minor overhead and

modifications to the ring, they rely on the assumption

that key space is divisible. However, due to skewed

resource and query distributions key space is not

perfectly divisible, and number of identical copies of a

resource or queries for a given range can easily surpass

the capacity of even the most resourceful node. Such

cases can be detected using I
i
,

 , and
 . Query

load can be spread across multiple nodes by replicating

resources as shown in Fig. 4. Such a collection of

nodes is called a clique. Then a range query needs to

visit only one of the replicas along the path

consequently splitting the load. To spread the load

across multiple nodes, predecessor(s) need to be

informed about the existence of multiple nodes. While

 Int. J. Com. Net. Tech. 2, No. 2, 47-57 (2014) H. Bandara, A. Jayasumana: Resource and Query Aware… 53

forwarding queries, predecessor(s) may pick a

successor using round robin or random load balancing

policies. When a resource is advertised, it needs to be

informed to all the replicas. In practice, a node can

handle relatively large number of queries as most query

messages will fit into a single packet and require a

sequential search on the resource index. Therefore, a

few replicas will be sufficient to handle the most

popular key. A clique may be fully connected to reduce

the cost of replication (Fig. 4).

Clique with

replicas

Clique with

fragments & replicas

Clique with

fragments

Replica

Fragment

Figure 4. Fragments and replicas placed authogonal to the overlay

ring.

3.5 Heuristic 5 –Fragment Index on New Nodes

 Heuristic four can be applied only if the number

of identical resources is within a node’s index capacity.

If the number of identical resources is very large,

resource index needs to be fragmented across multiple

nodes, where each node keeps track of a subset of the

resources. Fragments are also placed orthogonal to the

ring (Fig. 4). However, if resources in one fragment are

insufficient to resolve a query other fragments need to

be searched before going to the successor. Most queries

are unlikely to be forwarded to other fragments, as

resource indexes tend to be relatively large in practice,

e.g., only 1 MB is required to index over 10,000

resources each with 20 attributes (assuming 32-bits per

vi).

 Heuristics are triggered based on the local

statistics collected by a node hence have a lower

overhead and can be executed independently and

distributedly. It is desirable to deploy all the heuristics

within a node as each heuristic addresses a specific

concern. Moreover, by applying them in the presented

order, an efficient and scalable RD solution can be

developed. For example, a node that is not pruned by

the first heuristic may have a large query load and/or

index size. Hence, it is desirable to evaluate rest of the

heuristics. Second heuristic tries to balance the load by

moving the keys with minimum disruption to the ring.

Third heuristic is useful when nodes on the ring are not

sufficient to handle the load. However, there is some

cost in adding a new node to the overlay.

Fragmentation and replication handle cases of extreme

loads but introduce even more changes to the overlay.

Thus, by applying the heuristics in the presented order

query performance can be improved while reducing the

cost of overlay maintenance and key movement.

Histograms can be used to keep track of I
i
,

 , and

 and they will consume only a small amount of

memory as the expected number of distinct attribute

values is relatively small.

 and

 may be

calculated from the histograms or separate counters

may be used. Another two counters are required to

keep track of

 - and

 . Therefore, heuristics are

triggered based on the local statistics and communicate

with the neighbors only when a node is overloaded.

Heuristics may be evaluated and executed periodically

or when counters reach the capacities of a node. A

clique may include both the fragments and replicas (see

Fig. 4). If the existence of fragments and replicas are

informed to predecessors,

 can be equally

distributed across nodes on a clique. Therefore,

notification messages can be sent to potential

predecessors similar to that in Chord [12]. However, in

practice only the close by predecessors need to be

informed as they forward most of the overlay

messages. We do not anticipate a large increase in

overlay routing entries as cliques are small. While

heuristics two is presented in [15] and three is

presented in [15-16], we utilize them more efficiently

in our solution by being aware of the capacities of

nodes and eliminating the need to collect distributed

statistics. Placing replicas and fragments orthogonal to

the ring has a lower overhead than [11], as our

approach does not require the hash function to be

changed with the load and informing it to all nodes in

the system.

4. Handing Multi-Attribute Resources
Five heuristics are directly applicable for multiple rings

[5] or partitioned ring [2, 4] based solutions as they

maintain separate resource indexes for each attribute

type. When multiple virtual rings corresponding to

different attributes are mapped to the same address

space as in [3], a node may have to index the same

resource multiple times under different attributes. In

such cases, the index may be compressed by removing

duplicates entries of the same resource. Therefore,

moving a key may not really move an indexed resource

as others keys used to index the resource may be still

within the range of the node. This problem can be

overcome by modifying the countIF() function to take

into account the multiple keys used to index the same

resource.

54 Int. J. Com. Net. Tech. 2, No. 2, 47-57 (2014) H. Bandara, A. Jayasumana: Resource and Query Aware…

TABLE II. WORKLOADS USED IN SIMULATIONS.

Workload Resources Queries

File
sharing

 00,000 copies of 0,000 distinct files, ~Zipf’s(0.7) [8]
Case 1 – ~Zipf’s(0.5), Case 2 – ~Zipf’s(.0). Query arrival

~exponential(2 min).

CPU

speed

CPU speed of 100,000 randomly sampled nodes from

SETI@home. Can be approximated by ~N(2.36, 0.28).

Pulse-like queries derived from PlanetLab. Use empirical

CDF to generate ranges of attribute values. Query arrival
~exponential(2 min).

CPU free

Case 1 – A synthetic dataset of 100,000 CPU free values derived

using linearly-interpolated empirical CDF from PlanetLab.
Case 2 – Case 1 dataset inverted as x(t) = 100% – x(t0) at 600 sec

Pulse-like queries derived from PlanetLab. Use empirical

CDF to generate range of attribute values. Query arrival
~exponential(2 min).

PlanetLab
527 PlanetLab node trace with 12 static & 12 dynamic attributes.

Also consider 250, 750, 1000 node traces generated using [9].

PlanetLab – Synthetic trace generated using empirical CDF

derived from qA, popularity of attributes, [li, ui], and m [9].
~exponential(10 sec).

Figure 5. Query load distribution of file sharing workloads after steady

state.
Figure 6. Average hop count required to resolve queries after steady

state.

5. Simulation Setup
 A discrete event simulator is developed to

demonstrate the effectiveness of the proposed

heuristics. See [8] for the source code. Chord is used as

the underlying overlay as it supports keeping multiple

fingers to successors. For multi-attribute resources, we

assume multiple virtual rings are mapped to the same

address space and queries are issued only to the most

selective attribute [3]. Four single and multi-attribute

workloads are derived using real data from P2P file

sharing, PlanetLab, and SETI@home and described in

Table II. It is known that both the number of queries

for a file and copies of a file follow a Zipf’s-like

distribution [18]. Hence, with the first workload we

demonstrate the applicability of heuristic under skewed

resources and point queries.
 = 500 entries,

 =

10 queries/second, and

 0.

 . Rest of the

workloads assume

 = 50 queries/second as range

queries tend to visit many nodes consequently

increasing the query load on a node. CPUSpeed dataset

can be approximated by a Gaussian distribution.

CPUFree dataset is skewed and most nodes were idle.

A node trace from PlanetLab is used as the multi-

attribute dataset. As the dataset is relatively small for

this workload
 = 100. We start the network with

R/
 nodes as the network needs to have at least this

many nodes. Predecessors select fragments or replicas

using round robin scheduling. Heuristics are evaluated

every 30 seconds. To prevent the heuristics from

responding to minor variations in index size and query

load, Exponentially Weight Moving Average (EWMA)

of counter values are used to trigger a heuristic. Results

are based on ten samples with different random seeds.

6. Performance Analysis

 We first analyze the single-attribute workloads in

detailed and then present the results for multi-attribute

workload. As our solution will be better than any

solution that adds all the nodes to the overlay (as N is

reduced), we compare our results with a Chord overlay

with the same number of nodes. We also compare

results with second heuristic (Heu 2) as it can be

readily implemented on top of Chord. Heuristics three

to five are not directly comparable, as they need

specific mechanisms such as special nodes to track

loads and dynamic hash functions. For the file sharing

workload, during the steady state all three solutions had

approximately the same average hop count of 5.7. Fig.

5 shows the distribution of query load. It can be seen

that when all five heuristics (Heu 1-5) are combined

the P2P system was able to stay within the allocated

query capacity (indicated by a vertical scattered line).

While Heu 2 did marginally better than having only the

Chord ring, one of the nodes still had to handle the

query load for the most popular file. Similarly, it was

also observed that all five heuristics were able to

 Int. J. Com. Net. Tech. 2, No. 2, 47-57 (2014) H. Bandara, A. Jayasumana: Resource and Query Aware… 55

balance the index size. When Zipf’s parameter α = 1.0,

301 nodes were added to the network to handle the

highly skewed query load and moderately skewed

replicas of files. 265 nodes were added when α = 0.5

(moderately skewed). Among the 301 nodes, 257 of

them were placed along the ring and the rest were

placed orthogonal to the ring. However, reduction in

query cost was not noticeable as cost of point queries is

log N. Hence, our solution is able to achieve

comparable performance for point queries while

balancing both the index and query load.

Figure 7. Index size and query load distribution of free CPU

workload after steady state. m = 20.

Figure 8. Variation in Gini coefficient of index size distribution of

CPU free workload with time. m = 20.

 Fig. 6 compares the query cost under CPUSpeed

and CPUFree workloads with increasing m. Heu 1-5

reduced the query cost of CPUSpeed dataset by 37%

and CPUFree dataset by 23% compared to a Chord. A

linear increase in the query cost of CPUSpeed dataset

is observed as the vi’s are spread around following a

Gaussian distribution. However, the rate of increase in

Heu 1-5 is lower compared to other two solutions. As

the CPUFree dataset is highly skewed, a large number

of free resources can be found by visiting few nodes.

Hence, query cost does not increase noticeably with

increasing m. Fig. 7 shows the load distribution for

CPUFree dataset. It can be seen that 99% and 91% of

the nodes were able to stay within the allocated query

and index capacity using Heu 1-5, respectively. The

largest index in Heu 1-5 had 556 entries while the other

two solutions had 23,733 entries each. Similar trends

were also observed for CPUSpeed workload. Heuristics

are triggered when EWMA of a counter exceeds a

given threshold. However, the weighting factor β used

to calculate EWMA determines how fast the system

gets stabilized and its cost. Fig. 8 illustrates the

inequality among index sizes of nodes measured using

the Gini coefficient [15] (lower the better). When β =

0.1 system is biased towards long-term trends hence

retain the system in a stabilized state. Whereas large β

values quickly respond to short-term trends. However,

large β values are not suitable as they have a higher

cost as keys are constantly being moved and overlay is

updated, e.g., 1.6% more messages related to load

balancing were generated when β = 0.5 compared when

β = 0.1. It is known that production systems experience

sudden changes in availability of resources [8, 17].

Therefore, we invert the CPUFree values of resources

at 600 s (as explained in Table II) to measure the

responsiveness of Heu 1-5 for such rapid changes.

Query distribution was not changed, as it is not known

whether user queries change in response to such rapid

changes in resources. Fig. 8 shows that the system goes

back to the original state within ~240 s when β = 0.3.

Thus, Heu 1-5 are also adaptable to rapid changes in

attribute values. β = 0.3 generated 7% less messages

related to load balancing compared to when β = 0.1 (by

900 s). Therefore, we use β = 0.3 for rest of the

performance analysis as it has a balanced load

distribution, lower response time, and lower cost.

Fig. 9 illustrates the query cost with increasing number

of PlanetLab nodes. As the number of nodes in the

system increases, both R and Q increase (because the

query rate of each node is fixed). Moreover, as A

increases, the same resource is mapped to many

overlay keys hence resources are spread over a large

address space. Hence, more hops are required to

resolve queries. Furthermore, queries for different

attributes are issued to different ranges in the address

space. Therefore, to balance the load more nodes are

added to different address ranges in the ring.

Consequently, query cost increases, as is it proportional

to the number of nodes along the ring. Alternatively,

though Chord and Heu 2 have the same number of

nodes in the ring, they are uniformly spread around the

ring consequently reducing the number of nodes that an

average query needs to go through. This is the reason

that the cost of resolving multi-attribute resources

using Heu 1-5 is higher than Chord and Heu 2 with a

similar number of nodes. However, worst-case path

length of Chord and Heu 2 is higher than Heu 1-5 (see

56 Int. J. Com. Net. Tech. 2, No. 2, 47-57 (2014) H. Bandara, A. Jayasumana: Resource and Query Aware…

Fig. 9(b)), as all the nodes are placed along the ring

compared to the fourth and fifth heuristics which place

some of the nodes orthogonal to the ring. Fig. 10

illustrates that Heu 1-5 can effectively balance the load

under multiple attributes as well. Therefore, proposed

heuristics enable discovery of real-world resources

with lower overhead while balancing the index size and

query load. Moreover, they rely on local statistics,

communication among clique members and

predecessors/successors, and do not require dynamic

hash functions.

Figure 9. Query cost for PlanetLab workload at steady state: (a)

Average query cost; (b) Maximum query cost.

Figure 10. Index size and query load distribution of PlanetLab

dataset. R = 1,000.

7. Summary and Future Work

Five heuristics for efficient P2P-based multi-attribute

resource discovery is presented. Heuristics rely on

local statistics to capture the complex characteristics of

real-world resources and queries and try to retain only

the nodes that answer queries in the overlay. Resource

index is transferred among existing and new nodes to

maintain the index size and query load of a node within

its capacity. Simulation-based analysis demonstrates

their ability to reduce the query cost, balance the load,

and adapt to rapid changes in attribute values. We are

currently extending the solution to also balance the

load due to frequent advertising of dynamic resources

and messages forwarded by overlay nodes.

Acknowledgment

This research is supported in part by the Engineering

Research Center program of the National Science

Foun-dation under award number 0313747.

References
[1] H. M. N. D. Bandara and A. P. Jayasumana,

“Collaborative applications over peer-to-peer
systems – Challenges and solutions,” Peer-to-Peer
Networking and Applications, vol. 6, no. 3, pp.
257–276, 2012.

[2] H. Shen, A. Apon, and C. Xu, “LORM:
Supporting low-overhead P2P-based range-query
and multi-attribute resource management in grids,”
Proc. 13

th
 Int’l Conf. on Parallel and Distributed

Systems, pp. 1–8, 2007.

[3] M. Cai et al., “MAAN: A multi-attribute
addressable network for grid information
services,” J. Grid Comput., pp. 3-14 2004.

[4] J. Albrecht et al., “Design and implementation
tradeoffs for wide-area resource discovery,” ACM
Trans. Internet Technology, vol. 8, no. 4, pp. 113-
124, 2008.

[5] A. R. Bharambe, M. Agrawal, and S. Seshan,
“Mercury: Supporting scalable multi-attribute
range queries,” Proc. ACM SIGCOMM, pp. 353-
366, 2004.

[6] H. M. N. D. Bandara and A. P. Jayasumana,
“Characteristics of multi-attribute
resources/queries and implications on P2P
resource discovery,” Proc. 9

th
 ACS/IEEE Int’l

Conf. on Computer Systems and Applications, pp.
173-180, 2011.

[7] E. M. Heien, D. Kondo, and D. P. Anderson, “A
correlated resource models of Internet end hosts,”
IEEE Trans. Parallel and Distrib. Syst., vol. 23, no.
6, pp. 977–984, 2012.

[8] H. M. N. D. Bandara, “Enhancing collaborative
peer-to-peer systems using resource aggregation
and caching: A multi-attribute resource and query
aware approach,” PhD Dissertation, Colorado
State Univ., Fall 2012.
http://hdl.handle.net/10217/78733

[9] H. M. N. D. Bandara and A. P. Jayasumana, “On
characteristics and modeling of P2P resources with
correlated static and dynamic attributes,” Proc.
IEEE GLOBECOM, pp. 1-6, 2011.

 Int. J. Com. Net. Tech. 2, No. 2, 47-57 (2014) H. Bandara, A. Jayasumana: Resource and Query Aware… 57

[10] H. M. N. D. Bandara and A. P. Jayasumana,
“Evaluation of P2P resource discovery
architectures using real-life multi-attribute
resource and query characteristics,” Proc. IEEE
CCNC, pp. 634-639, 2012.

[11] J. Gao and P. Steenkiste, “An adaptive protocol for
efficient support of range queries in DHT-based
systems,” Proc. 2

th
 IEEE Int’l Conf. on Network

Protocols, pp. 239 –250, 2004.

[12] I. Stoica et al., “Chord: a scalable peer-to-peer
lookup service for Internet applications,” Proc.
ACM SIGCOMM, pp. 149-160, 2001.

[13] B. Godfrey, K. Lakshminarayanan, S. Surana, R.
Karp, and I. Stoica, “Load balancing in dynamic
structured P2P systems,” Proc. IEEE INFOCOM,
pp. 2253–2262, 2004.

[14] H. M. N. D. Bandara and A. P. Jayasumana,
“Resource and query aware, peer-to-peer-based
multi-attribute resource discovery,” Proc. 37

th

IEEE LCN ‘ 2, pp. 276-279, 2012.

[15] I. Konstantinou, D. Tsoumakos, and N. Koziris,
“Fast and cost-effective online load-balancing in
distributed range-queriable systems,”IEEE Trans.
Parallel and Distrib. Syst., vol. 22, no. 8, pp.
1350 – 1364, 2011.

[16] Q. H. Vu, B. C. Ooi, M. Rinard, and K.-L. Tan,
“Histogram-based global load balancing in
structured peer-to-peer systems,” IEEE Trans.
Knowledge and Data Engineering, vol. 21, no. 4,
pp. 595–608, 2009.

[17] A. Iosup and D. Epema, “Grid computing
workloads: Bags of tasks, workflows, pilots, and
others,” IEEE Internet Comput., vol. 99, pp. 9-
26, 2010.

[18] S. B. Handurukande et al., “Peer sharing behaviour
in the eDonkey network, and implications for the
design of server-less file sharing systems,” Proc.
ACM European Conf. on Computer Systems,
2006.

	2. Problem Formulation
	2.1 Resource and Query Model
	2.2 Related Work
	2.3 Problem Statement

	3. Handling Single-Attribute Resources
	3.1 Heuristic 1 – Prune
	3.2 Heuristic 2 – Key Transfer
	3.3 Heuristic 3 – Key Transfer to New Nodes
	3.4 Heuristic 4 – Replicate Index on New Nodes
	3.5 Heuristic 5 –Fragment Index on New Nodes

	4. Handing Multi-Attribute Resources
	5. Simulation Setup
	6. Performance Analysis
	7. Summary and Future Work
	Acknowledgment
	References

