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___________________________________________________________________________________________________________ 

Abstract: Distributed, multi-attribute Resource Discovery (RD) is a fundamental requirement in collaborative Peer-to-Peer (P2P), 

grid, and cloud computing. We present an efficient and load balanced, P2P-based multi-attribute RD solution that consists of five 

heuristics, which can be executed independently and distributedly. First heuristic maintains a minimum number of nodes in a ring-

like overlay while pruning nodes that do not significantly contribute to the range query resolution. Removing nonproductive nodes 

reduces the cost (e.g., hops and latency) of advertising resources and resolving queries. Second and third heuristics dynamically 

balance the key and query load distribution by transferring some of the keys to its predecessor/successor and by adding new 

predecessors/successors to handle transferred keys when existing nodes are insufficient, respectively. Last two heuristics form 

cliques of nodes (that are placed orthogonal to the overlay ring) to dynamically balance the highly skewed key and query loads. By 

applying these heuristics in the presented order, a RD solution that better responds to real-world resource and query characteristics is 

developed. Its efficacy is demonstrated using a simulation-based analysis under a variety of single and multi-attribute resource and 

query distributions derived from real workloads. 
 

Keywords: Multi-attribute queries, load balancing, peer-to-peer, range queries, resource discovery 

__________________________________________________________________________________________________________ 

 
1. Introduction 

        Collaborative Peer-to-Peer (P2P) systems [1], 

grids, and cloud computing require the ability to 

discover and aggregate groups of heterogeneous, 

distributed, and dynamic resources as and when 

needed. These systems utilize a variety of resources 

such as processor cycles, storage capacity, network 

bandwidth, sensors, scientific algorithms, services, and 

data to not only consume a variety of contents but also 

to generate, modify, and manage those contents. P2P-

based distributed Resource Discovery (RD) is a natural 

fit for collaborative applications and further enhances 

their scalability and robustness. P2P-based RD has also 

been proposed for conventional applications such as 

grid, desktop grid, and cloud computing, as a timely 

aggregation of complex resources is becoming 

increasingly necessary due to the proliferation of 

parallel applications that utilize multiple and 

distributed resources. 

Many P2P-based solutions have been proposed to 

discover multi-attribute, dynamic, and distributed 

resources [1-5]. However, compared to single-attribute 

P2P systems such as file sharing, formal 

characterization of real world, multi-attribute resources 

and queries received attention only recently [6-8]. In 

the absence of data and understanding of the 

characteristics, designs and evaluations of existing 

solutions have relied on many simplifying assumptions 

such as independent and identically distributed (i.i.d.) 

attributes, large domains for attribute values (i.e., 

number of distinct attribute values D ≫ number of 

nodes N), uniform or Zipf’s distributions of all the 

resources/queries [2, 5], and queries with a large 

number of attributes and small range of attribute values 

[2-4]. However, in [6, 8-9], we observed that 

characteristics of real-world systems diverge drastically 

where attributes of resources are correlated and 

characterized by different marginal distributions. 

Moreover, resources and queries are highly skewed, 

domains of most attributes are much smaller (i.e., D ≪ 

N), and queries tend to request a small number of 

attributes and large range of attribute values. Analysis 

in [8, 10], using real-world data from [6] to evaluate 

seven fundamental design choices for P2P-based RD 

shows that existing solutions have a high resource 

advertise and query cost (approximating O(N)) as 

attribute values change frequently and queries are less 

specific. Moreover, they are prone to significant load 

balancing issues because D ≪ N and resources and 

queries are highly skewed. While many solutions are 
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proposed to balance the index size and query load in 

P2P systems [4-5, 11-13], they also rely on the 

aforementioned assumptions (see [8] for details). Such 

assumptions affect the designs, performance analysis, 

and applicability of solutions under real workloads. 

Therefore, more efficient and load balanced, RD 

solutions are needed to support real workloads. 

 

We present an efficient and load balanced, resource 

and query aware multi-attribute RD solution. The 

solution is based on five heuristics that can be executed 

independently and distributedly on a ring-like overlay. 

Ring-like overlay is selected as it turns out to be a 

relatively more efficient and scalable design choice 

compared to the other solutions [8, 10]. First heuristic 

maintains only a subset of the nodes in the overlay as D 

≪ N. It prunes nodes that do not significantly 

contribute to range query resolution while reducing the 

cost (e.g., hops and latency) of resolving queries. 

Heuristics two and three dynamically balance the query 

load and index/key distribution of nodes by transferring 

part of the keys to its neighbors and by adding new 

neighbors to handle transferred keys when existing 

nodes are insufficient, respectively. Last two heuristic, 

namely fragmentation and replication, form cliques of 

nodes to dynamically balance the skewed key and 

query loads associated with few popular resources. In 

contrast to the common practice of replicating along 

the overlay ring, cliques of fragments and replicas are 

placed orthogonal to the ring thereby maintaining 

lower query cost and better load distribution. Our key 

contributions are the development of a novel heuristic 

to prune nodes with lower contribution to the range 

query resolution, placing replicas and fragments 

orthogonal to the ring, and extending other four 

heuristics to support real workloads while overcoming 

their deficiencies. Moreover, by applying the five 

heuristics in the presented order, our solution can better 

respond to the complex characteristics of real-world 

resources and queries. Simulation-based analysis is 

used to evaluate the efficacy of the proposed solution 

under a variety of single and multi-attribute resource 

and query distributions derived from real workloads. 

           Section 2 presents the problem formulation. 

Five heuristics and their application to single-attribute 

resources are presented in Section 3, and it is then 

extended to multi-attribute resources in Section 4. 

Sections 5 and 6 present the simulation setup and 

performance analysis, respectively. Concluding 

remarks are presented in Section 7. This is an extended 

version of the paper in [14]. The major extensions 

include the problem formulation, formal presentation 

of heuristics, and an extended performance analysis. 

 

 

 

2. Problem Formulation 

 

          We first present the resource and query model. 

Summary of resource and query characteristics 

observed from real-world systems and P2P load 

balancing solutions are presented next. Finally, the 

research problem is formulated. 

2.1 Resource and Query Model 

        Let R be the set of resources in the system and A 

be the set of attributes used to characterize those 

resources. Bold face symbols refer to a set and the 

corresponding italic symbol refers to its cardinality, 

e.g., R = |R|. List of symbols is given in Table I. A 

multi-attribute resource r  R is defined as follows: 

 ii vavavar  ,...,, 2211 

         Each attribute ai  A has a corresponding value vi 

 Di that belongs to a given domain Di. Di’s are 

typically bounded and may be continuous or discrete, 

or a set of categories/names. For example, r = 

(CPUSpeed = 2.1 GHz, CPUCores = 2, CPUFree = 

76%, OS = “Linux_2.6”). Attribute values are further 

classified as static (e.g., CPUSpeed) and dynamic (e.g., 

CPUFree). Dynamic attributes need to be re-advertised 

whenever their states change. Thus, the cost of 

advertising dynamic attributes is proportional to their 

rate of change. A fixed or a dynamic threshold may be 

used to reduce the number of advertisements. r is 

referred to as a single-attribute resource when A = 1. 

              Let Q be the set of queries issued by the 

system. A multi-attribute, range query q Q is defined 

as: 

 ],[,...],,[],,[, 222111 iii ulaulaulamq  

          where, m 

specifies the required number of 

resources and ai  [li, ui] specifies the desired range of 

attribute values (li and ui are lower and upper bounds, 

respectively). In practice, attributes specified in a query 

may contain a mixture of points (i.e., li = ui) and ranges 

(i.e., li < ui). The set of attributes specified in a query 

(qA) may contain only a subset of the attributes that are 

used to describe a resource (i.e., qA   A). For 

example, q = (5, CPUFree  [50%, 100%], OS  

“Linux_2.5”). Unspecified attributes are considered as 

“don’t care”s. q is referred to as a single-attribute 

query if qA = 1. 

        Analysis in [8, 10] shows that a Distributed Hash 

Table (DHT) built on top of a ring-like overlay (e.g., 

Chord [12] and Mercury [5]) is relatively efficient and 

scalable than other design choices for P2P-based multi-

attribute RD. Therefore, we consider a ring-like 

overlay for indexing resources as shown in Fig. 1. Each 
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vi of a resource is indexed separately using a Locality 

Preserving Hash (LPH) function(s) [3]. LPH functions 

map close by attribute values to neighboring nodes in 

the ring enabling range query resolution through a 

series of successors (see Fig. 1). Different attributes 

may be advertised to different rings [5], different 

segments of the same ring [2, 4], or to a set of virtual 

rings mapped to a physical ring [3]. Query q is first 

split into a set of sub-queries where each sub-query 

searches for one of the attributes specified in qA. Sub-

queries are then simultaneously forwarded to relevant 

rings/segments and are resolved by forwarding to all 

the nodes responsible for indexing the specified range 

[li, ui]. Cost of resolving q can be given as: 


 































Aqi i

ii
iq N

D

lu
hCost 1  

where, hi is the number of overlay hops to reach the 

node that indexes li, which is typically O(log N) [12]. 

After reaching the first node, q will be forwarded to the 

node responsible for indexing ui through a series of 

successors. As in [3-4], we assume the range of 

attribute values [li, ui] to be uniformly distributed 

within the overlay. As the domain of attribute i (Di) is 

mapped to N nodes, each node is responsible for 

indexing Di/N fraction of the attribute space. Therefore, 

a range query that searches for [li, ui] has to go through 

(ui – li)n/Di nodes (i.e., range to search divided by 

range per node). This approach has a lower resource 

advertising cost but has a higher query cost due to 

multiple sub-queries. Alternatively, if all the attribute 

values are advertised to all the rings/segments, q needs 

to be forwarded to only one of the rings/segments. 

Moreover, q can be terminated as soon as m resources 

are found. Query cost can be further reduced by 

selecting the ring/segment corresponding to the most 

selective attribute (i.e., attribute with the smallest (ui – 

li)/Di) [3, 5]. However, cost of advertising resources is 

high as each vi needs to be advertised to all the rings or 

segments. 

 

2.2 Related Work 

            In [6, 8-9], we presented the characteristics of 

both the static and dynamic resources as well as the 

queries from four different real-world systems (namely 

PlanetLab, SETI@home, EGI grid, and a distributed 

campus computing facility). These and other recent 

analysis in [7] invalidate some of the key assumptions 

used by existing performance studies on RD solutions. 

For example, [6-9] show that the attributes of both real-

world resources and queries are highly skewed and 

correlated. Several attributes have only a few attribute 

values, e.g., CPU architecture, CPUCores, and OS.  

TABLE I.       LIST OF SYMBOLS. 

 

 

l

u

q

l’s successor

u’s successor

i

i - 1

i + 1

 
 

Figure 1.  Range query resolution on a ring-like overlay. 

 

Thus, size of their domain Di ≪ N. Moreover, 

distribution of those attributes was extremely skewed, 

e.g., 98% of the CPUs in SETI@home were ×86. 

Attribute values have different marginal distributions 

and change at different rates. For example, 32% of the 

PlanetLab nodes significantly changed their dynamic 

attribute values 100 times or more within a 24-hour 

period (out of 288 samples taken at five-minute 

intervals). 3% of the nodes changed their attribute 

values over 200 times within the same period. 

Furthermore, most queries are less specific where they 

specify a few attributes (small qA), large number of 

resources (large m), and large range of attribute values 

(large (ui – li)). For example, 80% of the PlanetLab 

queries specified only one or two attributes and 89% of 

the queries specified CPUFree  [40%, 100%].  

        These findings invalidate the commonly used 

assumptions such as i.i.d. attributes, uniform/Zipf’s 

distribution of all the attributes, Di ≫ N, and queries 

requesting a large qA, small m, and small (ui – li) [2-5]. 

From (3) it can be seen that the cost of resolving real-

world queries approximate O(N) as m, (ui – li), and (ui 

– li)/Di are relatively large. This is a problem in 

collaborative P2P, grid, and cloud computing where N 

Symbol Description 

A Set of attributes used to characterize resources 

Di Domain of attribute i 

hi No of hops to reach the node indexing lower bound li 

Ii,     
  Resource index and capacity of a node 

ki, kl, ku Key of node i, lower bound li, upper bound ui 

   
      

 
  Set of keys corresponding to In and Out queries 

li Lower bound specified in a range query 
m Required no of resources specified in a query 

N No of nodes in the overlay 

qA Set of attributes specified in query q 

Q Set/no of queries issues to the RD system 

 
   

 
  Query capacity of a node/resource 

 
   

 
  Out query threshold 

R Set of resources in the system 

ui Upper bound specified in a range query 

vi Value of i-th attribute 
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range from several thousands to millions of resources. 

Furthermore, as Di ≪ N resources are mapped only to a 

small subset of the DHT nodes. Consequently, a few 

DHT nodes are involved in indexing resources and 

answering majority of the queries while a larger 

fraction of nodes do not either index resources or 

answer queries [8, 10]. Therefore, existing solutions 

are both inefficient and are prone to load balancing 

issues under real workloads. 

          Load on a DHT node can be defined in terms of 

index size, advertise and query messages received, and 

overlay messages forwarded. Index size is measured 

using the number of resources or memory required to 

store those resources. Advertise, query, and forward 

loads are measured using the number of messages or 

bandwidth consumed. Existing solutions assume all the 

nodes should be added to the overlay as it helps to 

balance the load by each node indexing approximately 

R/N resources or answering Q/N queries. For example, 

Chord proposed to balance the index size distribution 

by having N log N virtual nodes in the overlay [13] 

under the assumption that resources are uniformly 

distributed and Di ≫ N. Godfrey et al. [13] extended 

the concept of virtual nodes to balance the query load 

by moving virtual nodes from highly loaded physical 

nodes to lightly loaded ones. These solutions are not 

suitable for real-world RD as the query cost is O(N log 

N), resources and queries are skewed, and most of the 

nodes will not index resources or answer queries as Di 

≪ N. SWORD [4] proposed to expand Di by appending 

a few random bits to the hash values of vi such that 

identical resources will be mapped to different DHT 

nodes. While this helps to distribute the index size, it 

does not balance the query load, as queries have to 

always start from the node corresponding to li. One 

may argue that attributes such as bandwidth and disk 

space have a much larger domain; hence, this problem 

is unrealistic. However, it is not useful to advertise 

resources at a very high resolution as it significantly 

increases the advertising cost and users are not 

interested in fine-grained queries [6, 8]. Moreover, as 

the real-world systems tend to oscillate between idle 

and busy periods [6, 17] their attribute values are not 

uniformly distributed through Di. Therefore, it is not 

useful to explicitly expand Di. Key transfer is another 

approach where an overloaded node transfers part of its 

index to its neighbor(s) [14-15]. This approach is 

somewhat effective and has a lower overhead. 

However, when range queries are less specific, series 

of nodes tends to be overloaded. Therefore, a node may 

not be able to transfer its load to its neighbors. When a 

range of nodes is overloaded, it is proposed to migrate 

nodes in unloaded regions of the overlay to overloaded 

ones and then transfer keys [14-15]. This is possible 

only if the key space is further divisible and distributed 

statistics are collected to keep track of which nodes are 

loaded and unloaded. In practice, it is possible to have 

a very large number of identical resources (e.g., 98% of 

×86 nodes in SETI). Similarly, a node may receive a 

very large number of queries due to skewed 

distributions (e.g., 89% of the queries specified 

CPUFree  [40%, 100%]). Such large indexes and 

query loads need to be split across multiple nodes using 

replication and/or fragmentation. In [11], it proposed to 

arrange resource attributes on a logical Range Search 

Tree (RST) that is mapped to a DHT. Each node in the 

RST is represented as a load-balancing matrix that is 

expanded or contracted with the load. When the index 

is too large, the number of columns in the matrix 

(fragments) is expanded. The number of rows 

(replicas) is expanded when the query load is too high. 

All fragments and replicas are mapped to the DHT. A 

dynamic hash function is proposed to determine which 

fragment or replica to query. However, as the size of 

load balancing-matrix changes hash function also 

changes therefore needed to be informed to all the 

nodes. Hence, this solution is more suitable for 

relatively stable networks with immutable resources. 

Moreover, locality of attribute values is lost when the 

RST is mapped to the DHT consequently increasing 

query cost to O(N log N). Therefore, existing load 

balancing solutions do not work efficiently under real 

workloads. 

 

2.3 Problem Statement 

        Future RD solutions will apply a fixed or dynamic 

threshold while advertising resources, as it reduces the 

cost of advertising and users do not specify very 

specific queries. Applying such a threshold will lead an 

even unbalanced distribution of index size as Di ≪ N. 

Conversely, this can be used to reduce the query cost, 

as the number of nodes along the ring does not need to 

exceed the largest Di. Then by adding fragments and 

replicas orthogonal to the ring (contrary to the common 

practice of adding along the ring), we can balance both 

the index size and query load without increasing the 

query cost. 

         Consider a ring-like overlay with a set of N nodes 

indexing R resources. Each r  R is willing to 

contribute some index capacity     
  and query capacity 

 
   

 . These capacities are typically determined using 

several factors such as the computing power, memory, 

bandwidth, or energy of a resource, or amount of 

resources that a user is willing to contribute to the P2P 

system. We assume     
  and  

   

  are measured in 

terms of number of resources and messages, 

respectively. Our goal is to find a solution that 

minimizes the query resolution latency on a ring-like 

overlay while satisfying the node capacity constraints. 

If we assume that the time required to resolve a query 

within a DHT node is small compared to the network 
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latency and each overlay link has approximately the 

same latency, then the problem can be restated as 

minimizing the number of hops required to resolve a 

query which is given in (3). Given that users determine 

(ui – li) and qA, and Di is fixed, problem further reduces 

to minimizing N as it is the only system-level 

parameter (hi depends on N). Therefore, our goal is to 

minimize N while satisfying the node capacity 

constraints. 

 

3. Handling Single-Attribute Resources 

          Fig. 2 illustrates three consecutive nodes (i – 1, i, 

i + 1) on the overlay ring shown in Fig. 1. Let ki be the 

key of i-th node. Histograms indicate the number of 

resources mapped to a given key. Let I
i
 be the set of 

resources indexed at i. Five range queries q1 to q5 are 

indicated as scatted lines. For example, q1 starts at node 

i and ends at i + 1. While q4 starts at i – 1 and suppose 

to end at i + 1, it terminates at i as the desired number 

of resources are found. While a query q moves from 

one node to another it appends matching resources to 

the query. Let kl represents the key generated by 

applying a LPH function to the lower bound li of a 

range query. Similarly, let ku be the hash value of ui. 

Query resolution starts at the successor node of kl (Fig. 

1). For example, q1 and q2 can be considered as coming 

directly into node i from the overlay network. Set of 

such queries is defined as In queries ( 
  

 ) where q  

 
  

   when kl  (ki – 1, ki]. A query that is answered or 

reaches ku goes out of the node, e.g., q2 to q4 goes out 

from i. Set of such queries is defined as Out queries 

( 
   

 ), i.e., q   
   

   when ku  (ki – 1, ki] or q is 

resolved by i. Some queries are forwarded from the 

predecessor, e.g., q3 to q5 are forwarded from node i – 

1 to i. Set of such queries is referred to as Forward 

queries ( 
   

  –  ), i.e., q   
   

  –   when [kl, ku]∩(ki – 1, ki] 

≠ and kl ≤ ki – 1. Therefore, the query load on a node is 

the sum of In and Forward queries received within a 

given time interval t. Our objective is to maintain the 

index size and query load on a node i within its bounds, 

i.e., I
i
 ≤     

   and  
  

     
   

  –     
   

  . We first discuss 

the heuristics in the content of single-attribute range 

queries and then in the following section they are 

extended to support multi-attribute range queries. 

 

3.1 Heuristic 1 – Prune 

           Consider the query distribution illustrated in 

Fig. 3(a), which is derived from range queries for 

CPUSpeed, CPUFree, and DiskFree in PlanetLab. 

Such a distribution arises when users specify a large (ui 

– li) and m. Suppose this range is covered by four 

nodes a, b, c, and d and queries start either at a or b 

(mostly at b) and terminate at d. c is not answering any 

queries ( 
   

 = 0) and merely forwards them to its 

successor d ( 
   

 =  
   

 ). This occurs when a node 

does not index any resources or indexed resources are 

insufficient to answer a given query. It is desirable to 

remove c from the ring as it helps to reduce the number 

of hops a query has to travel. If c indexes any 

resources, they have to be moved to b or d before 

leaving. A node i may pick its successor (i + 1) to 

move keys when I
i
 + I

i+1 
≤     

    or may pick the 

predecessor (i – 1) when I
i
 + I

i-1 
≤     

 - 
. However, 

removing c does not increase the query load on either b 

or d. Moving index to the successor is preferred as it 

reduces the changes to the overlay, e.g., d’s key will 

not change when c moves its index while b’s key need 

to be changed. Moreover, the query bandwidth 

requirement of d also reduces (see [8] for proof). 

           Let us now consider the query distribution in Fig 

3(b). Such a distribution arises when intermediate 

nodes are able to answer queries completely (e.g., q2 

and q4 in Fig. 2) or ku is reached (e.g., q3). It is still 

useful to remove nodes that do not answer a large 

number of queries to further reduce the query cost. For 

example, nodes a, b, and d are good candidates as they 

do not answer many queries. Hence, we remove a node 

from the ring when the number of Out queries is below 

a given threshold  
   

  (i.e., when  
   

   
   

 ). 

However, we now need to be aware of both the index 

size and query load transferred to a node’s 

successor/predecessor to prevent them from being 

overloaded. For example, if node i is removed, its 

successor i + 1 will receive three additional queries q2, 

q3, and q4 which are in  
   

 .Thus, i + 1 can handle i-th 

node’s load only when 
1 ii II 1 i

CapI  and

11   i
Cap

i
Out

i
Fwd

i
In QQQQ . If the index is moved to the 

predecessor, i – 1 will receive q1 and q2 as its key will 

change to ki. Therefore, keys can be moved to i – 1 

only when 
11   i

Cap
ii III  and 

121   i
Cap

i
In

i
Fwd

i
In QQQQ . By keeping track of 

i
OutQ  a 

node can decide by itself whether  
   

   
   

  or not. 

However, if it indexes any resources, it needs to check 

with the predecessor/successor before leaving. A node 

will continue to remain in the ring, if its neighbors are 

not willing to accept its index and query load. When a 

node is removed from the ring, it will connect to one of 

the nodes in the ring and use it as a proxy to issue 

queries and advertise resources (similar to superpeer-

based P2P systems). 
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Figure 2.  Series of nodes on a ring-like overlay. 
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Figure 3.  Two example range query distributions. Scattered lines 

indicate the range of keys handled by nodes. 

3.2 Heuristic 2 – Key Transfer 

          Suppose node c in Fig. 3(b) is overloaded, i.e., I
c
 

≥     
   and/or c

Cap
b
Fwd

c
In QQQ  . c can reduce the load 

by moving some of its keys to b or d (d is preferred as 

it requires minimum changes to the overlay). For 

example, one of the queries at i can be removed if key 

ki (Fig. 2) is moved before the start of query q1. Two 

queries can be removed, if it is moved even further 

towards ki–1. Similarly, by reducing ki index size can be 

also reduced. Let excess query load be  
      

  =  
   

 -  + 

 
  

  –  
   

 and index size be        
  = I

i
 –     

 . As  
   

 -  

is fixed, only 
i
InQ can be reduced. Therefore, it will be 

useful for a node to transfer its query load to its success 

only if 
i
Excess

i
In QQ  . To decide which keys to transfer 

to i + 1, we need to track kl specified in each query q  

 
  

 . Let    
  be the set of kls collected from each q  

 
  

  (same key may appear multiple times). Then we 

can find the largest key k     
  s.t. the reduced query 

load  
      

  = countIF(   
 , “≥k”) ≥  

      

 . countIF() 

function counts the number of keys in    
  that satisfies 

the given condition, e.g., “≥k”. Similarly, index size 

reduced at i should satisfy 
i
ReduceI = countIF(I

i
, “≥k”) ≥ 

       
 . When ki is moved towards node i – 1 some of 

the queries that are being currently answered by i will 

be forwarded to i + 1. For example, when ki is moved 

up to kl of q1, q2 and q3 will be forwarded to i + 1. 

Thus, the successor’s query load will be increased by 

 
        

   = countIF(    
 , “≥k”). Where     

  is the set 

of keys that queries terminate at node i. The index size 

of i + 1 will also increase by        
 . Therefore, a subset 

of the keys can be transferred to the successor only 

when  
  

   +  
   

   +  
        

    ≤  
   

    and I
i+1

 +          
   ≤ 

    
   . If successful, after transferring keys i-th node’s 

key is set to ki = k – 1. If the successor is unable to 

accept the load, the predecessor can be tried. However, 

the process is reversed where load reduced on i is 

determined by  
   

  and load transferred to i – 1 is 

determined by  
  

 . 

3.3 Heuristic 3 – Key Transfer to New Nodes 

          In range query systems, it is possible for a range 

of nodes to be overloaded. Therefore, transferring keys 

to either the predecessor or successor may not be 

possible. Given that a node is aware of In, Out, and 

Forward loads, it can determine whether it would be 

useful to add a new node between its current successor 

or predecessor. Adding a successor is possible and 

useful if  
  

  ≥  
      

 and there is enough key space 

between i and i + 1 (i.e., k – ki-1 > 1, where k is 

determined from heuristic two). Query load transferred 

to the new successor is  
        

    = countIF(    
 , “≥ k”) 

+  
   

  and its index size is          
    = countIF(I

i
, “≥k”). 

New successor’s key knew = ki and new ki = k – 1. 

Similarly, a predecessor can be added when  
   

  ≥ 

 
      

  and k < ki. If the transferred load is too much for 

one node (i.e.,  
        

    >  
   

   or          
    >     

   ), series 

of successors/predecessors can be added. As heuristic 

one removes unnecessary nodes, many nodes are not 

part of the ring. One of these nodes can be added when 

necessary by querying a special node that may keep 

track of those nodes, randomly picked from the nodes 

that are connected to a node on the ring, or found using 

the RD system by issuing a query. Therefore, in 

contrast to [15-16] our approach does not require an 

explicit mechanism to track and locate loaded and 

unloaded nodes in the overlay. 

3.4 Heuristic 4 – Replicate Index on New Nodes 

           While second and third heuristics are effective 

in distributing some of load with minor overhead and 

modifications to the ring, they rely on the assumption 

that key space is divisible. However, due to skewed 

resource and query distributions key space is not 

perfectly divisible, and number of identical copies of a 

resource or queries for a given range can easily surpass 

the capacity of even the most resourceful node. Such 

cases can be detected using I
i
,    

 , and     
 . Query 

load can be spread across multiple nodes by replicating 

resources as shown in Fig. 4. Such a collection of 

nodes is called a clique. Then a range query needs to 

visit only one of the replicas along the path 

consequently splitting the load. To spread the load 

across multiple nodes, predecessor(s) need to be 

informed about the existence of multiple nodes. While 
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forwarding queries, predecessor(s) may pick a 

successor using round robin or random load balancing 

policies. When a resource is advertised, it needs to be 

informed to all the replicas. In practice, a node can 

handle relatively large number of queries as most query 

messages will fit into a single packet and require a 

sequential search on the resource index. Therefore, a 

few replicas will be sufficient to handle the most 

popular key. A clique may be fully connected to reduce 

the cost of replication (Fig. 4). 

 

 

Clique with 

replicas

Clique with 

fragments & replicas

Clique with 

fragments

Replica

Fragment

 
Figure 4.  Fragments and replicas placed authogonal to the overlay 

ring. 

 

3.5 Heuristic 5 –Fragment Index on New Nodes 

            Heuristic four can be applied only if the number 

of identical resources is within a node’s index capacity. 

If the number of identical resources is very large, 

resource index needs to be fragmented across multiple 

nodes, where each node keeps track of a subset of the 

resources. Fragments are also placed orthogonal to the 

ring (Fig. 4). However, if resources in one fragment are 

insufficient to resolve a query other fragments need to 

be searched before going to the successor. Most queries 

are unlikely to be forwarded to other fragments, as 

resource indexes tend to be relatively large in practice, 

e.g., only 1 MB is required to index over 10,000 

resources each with 20 attributes (assuming 32-bits per 

vi). 

           Heuristics are triggered based on the local 

statistics collected by a node hence have a lower 

overhead and can be executed independently and 

distributedly. It is desirable to deploy all the heuristics 

within a node as each heuristic addresses a specific 

concern. Moreover, by applying them in the presented 

order, an efficient and scalable RD solution can be 

developed. For example, a node that is not pruned by 

the first heuristic may have a large query load and/or 

index size. Hence, it is desirable to evaluate rest of the 

heuristics. Second heuristic tries to balance the load by 

moving the keys with minimum disruption to the ring. 

Third heuristic is useful when nodes on the ring are not 

sufficient to handle the load. However, there is some 

cost in adding a new node to the overlay. 

Fragmentation and replication handle cases of extreme 

loads but introduce even more changes to the overlay. 

Thus, by applying the heuristics in the presented order 

query performance can be improved while reducing the 

cost of overlay maintenance and key movement. 

Histograms can be used to keep track of I
i
,    

 , and 

    
  and they will consume only a small amount of 

memory as the expected number of distinct attribute 

values is relatively small.  
  

  and  
   

  may be 

calculated from the histograms or separate counters 

may be used. Another two counters are required to 

keep track of  
   

 -  and  
   

 . Therefore, heuristics are 

triggered based on the local statistics and communicate 

with the neighbors only when a node is overloaded. 

Heuristics may be evaluated and executed periodically 

or when counters reach the capacities of a node. A 

clique may include both the fragments and replicas (see 

Fig. 4). If the existence of fragments and replicas are 

informed to predecessors,  
  

  can be equally 

distributed across nodes on a clique. Therefore, 

notification messages can be sent to potential 

predecessors similar to that in Chord [12]. However, in 

practice only the close by predecessors need to be 

informed as they forward most of the overlay 

messages. We do not anticipate a large increase in 

overlay routing entries as cliques are small. While 

heuristics two is presented in [15] and three is 

presented in [15-16], we utilize them more efficiently 

in our solution by being aware of the capacities of 

nodes and eliminating the need to collect distributed 

statistics. Placing replicas and fragments orthogonal to 

the ring has a lower overhead than [11], as our 

approach does not require the hash function to be 

changed with the load and informing it to all nodes in 

the system. 

 

4. Handing Multi-Attribute Resources 
Five heuristics are directly applicable for multiple rings 

[5] or partitioned ring [2, 4] based solutions as they 

maintain separate resource indexes for each attribute 

type. When multiple virtual rings corresponding to 

different attributes are mapped to the same address 

space as in [3], a node may have to index the same 

resource multiple times under different attributes. In 

such cases, the index may be compressed by removing 

duplicates entries of the same resource. Therefore, 

moving a key may not really move an indexed resource 

as others keys used to index the resource may be still 

within the range of the node. This problem can be 

overcome by modifying the countIF() function to take 

into account the multiple keys used to index the same 

resource. 
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TABLE II. WORKLOADS USED IN SIMULATIONS. 

Workload Resources Queries 

File 
sharing 

 00,000 copies of  0,000 distinct files, ~Zipf’s(0.7) [ 8] 
Case 1 – ~Zipf’s(0.5), Case 2 – ~Zipf’s( .0). Query arrival 

~exponential(2 min). 

CPU 

speed 

CPU speed of 100,000 randomly sampled nodes from 

SETI@home. Can be approximated by ~N(2.36, 0.28). 

Pulse-like queries derived from PlanetLab. Use empirical 

CDF to generate ranges of attribute values. Query arrival 
~exponential(2 min). 

CPU free 

Case 1 – A synthetic dataset of 100,000 CPU free values derived 

using linearly-interpolated empirical CDF from PlanetLab. 
Case 2 – Case 1 dataset inverted as x(t) = 100% – x(t0) at 600 sec 

Pulse-like queries derived from PlanetLab. Use empirical 

CDF to generate range of attribute values. Query arrival 
~exponential(2 min). 

PlanetLab 
527 PlanetLab node trace with 12 static & 12 dynamic attributes. 

Also consider 250, 750, 1000 node traces generated using [9]. 

PlanetLab – Synthetic trace generated using empirical CDF 

derived from qA, popularity of attributes, [li, ui], and m [9]. 
~exponential(10 sec). 

 

 

 

 

Figure 5.  Query load distribution of file sharing workloads after steady 

state. 
Figure 6. Average hop count required to resolve queries after steady 

state. 

 

 

5. Simulation Setup 
        A discrete event simulator is developed to 

demonstrate the effectiveness of the proposed 

heuristics. See [8] for the source code. Chord is used as 

the underlying overlay as it supports keeping multiple 

fingers to successors. For multi-attribute resources, we 

assume multiple virtual rings are mapped to the same 

address space and queries are issued only to the most 

selective attribute [3]. Four single and multi-attribute 

workloads are derived using real data from P2P file 

sharing, PlanetLab, and SETI@home and described in 

Table II. It is known that both the number of queries 

for a file and copies of a file follow a Zipf’s-like 

distribution [18]. Hence, with the first workload we 

demonstrate the applicability of heuristic under skewed 

resources and point queries.     
  = 500 entries,  

   

  = 

10 queries/second, and  
   

   0.  
   

 . Rest of the 

workloads assume  
   

  = 50 queries/second as range 

queries tend to visit many nodes consequently 

increasing the query load on a node. CPUSpeed dataset 

can be approximated by a Gaussian distribution. 

CPUFree dataset is skewed and most nodes were idle. 

A node trace from PlanetLab is used as the multi-

attribute dataset. As the dataset is relatively small for 

this workload     
  = 100. We start the network with 

R/    
  nodes as the network needs to have at least this 

many nodes. Predecessors select fragments or replicas 

using round robin scheduling. Heuristics are evaluated 

every 30 seconds. To prevent the heuristics from 

responding to minor variations in index size and query 

load, Exponentially Weight Moving Average (EWMA) 

of counter values are used to trigger a heuristic. Results 

are based on ten samples with different random seeds. 

6. Performance Analysis 

         We first analyze the single-attribute workloads in 

detailed and then present the results for multi-attribute 

workload. As our solution will be better than any 

solution that adds all the nodes to the overlay (as N is 

reduced), we compare our results with a Chord overlay 

with the same number of nodes. We also compare 

results with second heuristic (Heu 2) as it can be 

readily implemented on top of Chord. Heuristics three 

to five are not directly comparable, as they need 

specific mechanisms such as special nodes to track 

loads and dynamic hash functions. For the file sharing 

workload, during the steady state all three solutions had 

approximately the same average hop count of 5.7. Fig. 

5 shows the distribution of query load. It can be seen 

that when all five heuristics (Heu 1-5) are combined 

the P2P system was able to stay within the allocated 

query capacity (indicated by a vertical scattered line). 

While Heu 2 did marginally better than having only the 

Chord ring, one of the nodes still had to handle the 

query load for the most popular file. Similarly, it was 

also observed that all five heuristics were able to 
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balance the index size. When Zipf’s parameter α = 1.0, 

301 nodes were added to the network to handle the 

highly skewed query load and moderately skewed 

replicas of files. 265 nodes were added when α = 0.5 

(moderately skewed). Among the 301 nodes, 257 of 

them were placed along the ring and the rest were 

placed orthogonal to the ring. However, reduction in 

query cost was not noticeable as cost of point queries is 

log N. Hence, our solution is able to achieve 

comparable performance for point queries while 

balancing both the index and query load. 

 

 
Figure 7. Index size and query load distribution of free CPU 

workload after steady state. m = 20. 

 

 
Figure 8. Variation in Gini coefficient of index size distribution of 

CPU free workload with time. m = 20. 

 

           Fig. 6 compares the query cost under CPUSpeed 

and CPUFree workloads with increasing m. Heu 1-5 

reduced the query cost of CPUSpeed dataset by 37% 

and CPUFree dataset by 23% compared to a Chord. A 

linear increase in the query cost of CPUSpeed dataset 

is observed as the vi’s are spread around following a 

Gaussian distribution. However, the rate of increase in 

Heu 1-5 is lower compared to other two solutions. As 

the CPUFree dataset is highly skewed, a large number 

of free resources can be found by visiting few nodes. 

Hence, query cost does not increase noticeably with 

increasing m. Fig. 7 shows the load distribution for 

CPUFree dataset. It can be seen that 99% and 91% of 

the nodes were able to stay within the allocated query 

and index capacity using Heu 1-5, respectively. The 

largest index in Heu 1-5 had 556 entries while the other 

two solutions had 23,733 entries each. Similar trends 

were also observed for CPUSpeed workload. Heuristics 

are triggered when EWMA of a counter exceeds a 

given threshold. However, the weighting factor β used 

to calculate EWMA determines how fast the system 

gets stabilized and its cost. Fig. 8 illustrates the 

inequality among index sizes of nodes measured using 

the Gini coefficient [15] (lower the better). When β = 

0.1 system is biased towards long-term trends hence 

retain the system in a stabilized state. Whereas large β 

values quickly respond to short-term trends. However, 

large β values are not suitable as they have a higher 

cost as keys are constantly being moved and overlay is 

updated, e.g., 1.6% more messages related to load 

balancing were generated when β = 0.5 compared when 

β = 0.1. It is known that production systems experience 

sudden changes in availability of resources [8, 17]. 

Therefore, we invert the CPUFree values of resources 

at 600 s (as explained in Table II) to measure the 

responsiveness of Heu 1-5 for such rapid changes. 

Query distribution was not changed, as it is not known 

whether user queries change in response to such rapid 

changes in resources. Fig. 8 shows that the system goes 

back to the original state within ~240 s when β = 0.3. 

Thus, Heu 1-5 are also adaptable to rapid changes in 

attribute values. β = 0.3 generated 7% less messages 

related to load balancing compared to when β = 0.1 (by 

900 s). Therefore, we use β = 0.3 for rest of the 

performance analysis as it has a balanced load 

distribution, lower response time, and lower cost. 

 

Fig. 9 illustrates the query cost with increasing number 

of PlanetLab nodes. As the number of nodes in the 

system increases, both R and Q increase (because the 

query rate of each node is fixed). Moreover, as A 

increases, the same resource is mapped to many 

overlay keys hence resources are spread over a large 

address space. Hence, more hops are required to 

resolve queries. Furthermore, queries for different 

attributes are issued to different ranges in the address 

space. Therefore, to balance the load more nodes are 

added to different address ranges in the ring. 

Consequently, query cost increases, as is it proportional 

to the number of nodes along the ring. Alternatively, 

though Chord and Heu 2 have the same number of 

nodes in the ring, they are uniformly spread around the 

ring consequently reducing the number of nodes that an 

average query needs to go through. This is the reason 

that the cost of resolving multi-attribute resources 

using Heu 1-5 is higher than Chord and Heu 2 with a 

similar number of nodes. However, worst-case path 

length of Chord and Heu 2 is higher than Heu 1-5 (see 
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Fig. 9(b)), as all the nodes are placed along the ring 

compared to the fourth and fifth heuristics which place 

some of the nodes orthogonal to the ring. Fig. 10 

illustrates that Heu 1-5 can effectively balance the load 

under multiple attributes as well. Therefore, proposed 

heuristics enable discovery of real-world resources 

with lower overhead while balancing the index size and 

query load. Moreover, they rely on local statistics, 

communication among clique members and 

predecessors/successors, and do not require dynamic 

hash functions. 

 

 

 
Figure 9. Query cost for PlanetLab workload at steady state: (a) 

Average query cost; (b) Maximum query cost. 

 

 

 

Figure 10. Index size and query load distribution of PlanetLab 

dataset. R = 1,000. 

 

7. Summary and Future Work 

Five heuristics for efficient P2P-based multi-attribute 

resource discovery is presented. Heuristics rely on 

local statistics to capture the complex characteristics of 

real-world resources and queries and try to retain only 

the nodes that answer queries in the overlay. Resource 

index is transferred among existing and new nodes to 

maintain the index size and query load of a node within 

its capacity. Simulation-based analysis demonstrates 

their ability to reduce the query cost, balance the load, 

and adapt to rapid changes in attribute values. We are 

currently extending the solution to also balance the 

load due to frequent advertising of dynamic resources 

and messages forwarded by overlay nodes. 
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