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The spline collocation method is a competent and highly effective mathematical tool for
constructing the approximate solutions of boundary value problems arising in science, engineering
and mathematical physics. In this paper, a quintic polynomial spline collocation method is
employed for a class of fractional boundary value problems (FBVPs). The FBVPs are expressed
in terms of Caputo’s fractional derivative in this approach. The consistency relations are derived
in order to compute the approximate solutions of FBVPs. Finally, numerical results are given,

which demonstrate the effectiveness of the numerical scheme.
© 2016 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The idea behind fractional derivatives (and integrals) is no
more new now. Fractional derivative gives a perfect aid to
characterize the memory and hereditary properties of various
processes and materials, therefore differential equations of
fractional order are being used in modeling of electrical and
mechanical properties of various real materials, rock’s
rheological properties, and in many other areas. The most of
the differential equations of fractional order do not have
analytical solutions, this is the main reason for finding new
numerical methods for the solutions of fractional differential
equations becomes a hot topic for the research community.
An extensive research has been carried out to obtain the
numerical schemes which are numerically stable for both linear
and nonlinear differential equations of fractional order.
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Many authors used the spline technique to establish the
accurate and efficient numerical schemes for the solution of
boundary value problems. For example, Siddiqi and Akram
constructed many numerical schemes with the help of different
spline functions such as polynomial splines and non-
polynomial splines for the solution of various BVPs (Siddiqi
et al., 2007; Siddiqi and Akram, 2008, 2007). Also, Akram
and Aslam (2016) established the Adomian decomposition
method (ADM) and the reproducing kernel method (RKM)
for the solution of fourth order three-point boundary value
problem. The theory of FBVPs has received considerable
interest in recent years. The interest towards the theory of
existence and uniqueness of solutions to FBVPs is apparent
from the recent publications (Ahmad and Nieto, 2009; Bai,
2010; Zhang, 2006). FBVPs occur in the explanation of many
physical stochastic-transport processes and in the inspection of
liquid filtration which arises in a strongly porous’s medium
(Taukenova and Shkhanukov-Lafishev, 2006). Also, boundary
value problems with integral boundary conditions establish a
very fascinating and predominant class of problems. Two,
three, four, multi point and nonlocal boundary value problems
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are the special cases of such problems. Cellular systems and
population dynamics are some phenomena in which boundary
conditions of integral type occur (Chen et al., 2010). Analysis
and representation of many physical systems demand solutions
of fractional boundary value problems. Recently, a great
amount of effort has been employed in attempting to find
stable and robust numerical and analytical methods in order
to solve FBVPs (Al-Rabtah et al., 2012; Akram and Tariq,
2015; Almeida and Bastos, 2015; Doha et al., 2011; Edwards
et al., 2002; Ford et al., 2014; Jin et al., 2015, 2016; Kumar
et al., 2015a,b; Nouri and Siavashani, 2014; Rehmana and
Khan, 2012; Secer et al., 2013; Seifollahi and Shamloo, 2013).

The fourth order boundary value problem explains an
elastic-bending-beams’s static deflection through a nonlinear
loading (Gupta, 1988). It also depicts a prototype-equation’s
steady state for phase transitions in systems of condensed
matter (Grinstein and Luther, 1976) and is helpful in under-
standing traveling waves in a suspension bridge (Lazer and
McKenna, 1990). In this paper, consider the following fourth
order boundary value problems for linear fractional differen-
tial equations:

O (x) + D*p(x)y(x) = g(x),
subject to

y@) = Ay =y(b) — Ay = y"(a) = B =)"(b) = B, =0, (2

X € [a,b], (1)

where A4;, B;, i=1,2 are real constants. The functions p(x)
and g(x) are continuous on the interval [a, 5] and D* denotes
fractional derivative in Caputo’s sense. In general, the analyt-
ical solution of Egs. (1) and (2) cannot be obtained for
arbitrary choices of p(x) and g(x). The problem Eq. (1) arise
in the plate deflection theory. When o« = 0, Eq. (1) is reduced
to the classical fourth order boundary value problem.

In this study, Caputo’s fractional derivative is used. This
operator is widely applied in modeling of the material’s
mechanical properties, modeling of the viscoelastic behavior,
signal processing, diffusion problems, bioengineering and
mathematical finance models etc. Also in this study, we focus
on providing a numerical scheme, based on quintic polynomial
spline collocation method, to solve fourth order boundary
value problems for linear fractional differential equations.

Quintic polynomial spline scheme is commonly used in
order to solve differential equations. If the solutions of FBVPs
are needed at various locations in the given region then the
spline solutions guarantee to give the information of spline
interpolation between mesh points. Also the strong advantage
of this scheme is to provide smooth continuous approximations
to exact solutions at every point of the range of integration.

The paper is organized as follows: some preliminaries of
fractional calculus are given in Section 2. In Section 3, quintic
polynomial spline method is developed for the solution of frac-
tional differential equation. The matrix form of the proposed
scheme is discussed in Section 4. In Section 5, numerical results
are given to compare and illustrate the efficiency of the method.

2. Preliminaries

There are several definitions to the generalization of the notion
of fractional differentiation. Riemann-Liouville and Caputo’s

are most common definitions. But Caputo’s approach is suit-
able for real world physical problems because it defines integer
order initial conditions for fractional differential equations.
The Riemann- Liouville left and right fractional integral of
order o > 0 is defined as

Ioy(x) = ﬁ /ax (x— )" 'y(s)ds, x>0

and

B =g [ =9 s,

respectively. Also, Caputo’s fractional derivative of order « is
defined as

Diy(x) = 1" D"y (x),

where D" is ordinary differential operator.

If >0, m—1<a<m, 6>—-1, meN, 2, ue¢R and
»(x) is continuous function, then the following results hold:

D*C=0, C is constant

D*(2y(x) + pq(x)) = AD"y(x) + uD*q(x)

F(é + ]) O+

X’ = — >
x 1“(6+1+oc)¥

Theorem 1. Let 0 < o < 1 and assume that f and g are analytic
on (a—hya+h). Then

(x—a)”
I'(l—a)

N kzwl (Z) (I*~g(x)) DA A().

Dilfel(x) = g(@)(f(x) = fla)) + (Dag(x))f(x)

For more properties of fractional derivatives, we refer to
(Diethelm, 2010; Kilbas et al., 2006; Lakshmikantham and
Vatsala, 2008; Ortigueira and Machado, 2015; Ortigueira
and Trujillo, 2012; Podlubny, 1999).

3. Quintic spline functions

Let x; =ih (i=0,1,...,n, h="¢ n>0) be grid points of
the uniform partition of [a,b] into the subintervals [x;_, x;].
Let y(x) be the exact solution of Eq. (1) and S; be an approx-
imation to y; = y(x;) obtained by the spline function T(x)
passing through the points (x;, S;) and (x;+, S;+1). Consider
that each quintic polynomial spline segment 7;(x) has the
following form:

Ti(x) = ai(x — xi1)” + bi(x — xi 1) 4 ei(x — xi0)°

+di(x_xi—l)2 +el(x —xi.1) + (3)
i=1,2,...,n, along with the requirement that T;(x) € C*[a, b]
and
S(x) = Ti(x) Vx [xi1,x], i=1,2,...,n. 4)

In order to develop the consistency relations between the
values of spline and its derivatives at knots, let
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Ti(xi1) = Sio1, Ti(x;) =S, For i = 1, the consistency relation can be taken, as

2 2) W
Tﬁ)(xifl):Ml;l’ T( ( ) M, —2S0+551—452+S3 /’ZM0+120(101F1+8F2+F3)
T(xi 1) =Fry, T(x)=F (11)

It is to be noticed that the spline can be written in terms of S;s
and any three derivatives at the boundaries of each subinter-
val. To define spline in terms of S;s, M;s, and F;s, the coeffi-
cients introduced in Eq. (3) are calculated, as

1 1
a; = 120h(F le) bi*ﬁFi—h
1 h
Cf*@(Mi_Mi—l)_%(FiJ"ZE—IL
d=im e =Lis—s) h(M—i—ZM )
i — 2 i—-1,6i — h i i—1 6 i i—1
3
(7F +8E ]) f}:S,',].

360

Applying the first and third derivative continuities at the
knots, i.e. 77 (x;) = T%,,(x;), p = 1 and 3, the following useful
relations are obtained, as

6
My +4M;+ My = — (S — 28+ Siz1)
h
2
+ 55 (TFie + 16F; + TFiy), (5)
2
Mg —2M;+ M = E(FHI +4F + Fi_y). (6)

Using Egs. (5) and (6), the following consistency relation in

terms of the fourth derivative of spline F; and S,
i=1,2,...,n,is derived, as
Siy2 —4Si1 + 68 — 481 + Si
4

=120 (Fiya 4+ 26F | + 66F; + 26F,_| + F;_1)

i=23...,n—2, (7)
where

=[-D}, p(x)T(x) + g(x)]] - (8)

Since the system (7) gives (n — 3) linear algebraic equations in
the (n—1) unknowns (S;, i=1,2,...,n— 1), therefore two
more equations (end conditions) are required. The two end
conditions can be obtained using Taylor series and the method
of undetermined coefficients. Two end equations are

— 280+ 581 —45,+ S5
h4
and
Sn—3 - 4Sn—2 + SSn—] - 2Sn
/’14
—I*M, + ]20( w3 + 20F,_» + 65F, | + 18F),). (10)

Suppose that Fj is linearly approximated between F) and F; as,
Fy =2F, — F, and also F, is linearly approximated between
F,_yand F,_, as, F, =2F,_ — F,_».

For i = 2, the consistency relation can be written, as
4

So — 4S8 + 65, —45;+ Sy = 20 (28F) + 65F, + 26F; + Fy).
(12)
For i = n — 2, the consistency relation can be taken, as
Sn - 4Snfl + 6Sn72 - 4S",3 + S,,,4
4
120( n— 4+26Fn 3+65E1 2+28E1 1) (13)
For i = n — 1, the consistency relation can be written, as
Sn—3 - 4Sn—2 + 5Sn—l - 2Sn
7
—th + 120( w3+ 8F,_2 + 101F, ). (14)

Lemma 1. Let y € Ca,b] then the local truncation errors
ti, i=1,2,...,n—1 associated with the Eqs. (11), (12), (7),
(13) and (14) are

l1730h6y((’)(x1)+0(h7)7 i=1,
1B (x) + O(K), i=2
=19 YO (x)+0h"), i=3,4,...,n-3,
WRoyO (x,1) + O(h'), i=n-2,
BhyO(x, )+ O, i=n—1.
Proof. In order to obtain the local truncation errors
ti, i=1,2,....,n—1, firstly rewrite Eqgs. (11), (12), (7), (13)

and (14) in the following form, as

4}’7+}3+h Mﬂfi[lol)ﬁ +8)7 F[‘)}

t==2yy+5y — 120

t =y — 4y, + 6y, —4ys + 3, — 1 % [28y 46558 +268" + "],
L= y,‘+2 =4y + 6y, — 4y + i
l,,,z =Vn— 4yn71 + 6}/1772 - 4yn73 +yn74
4
~ 130 M 26y, 4+ 65y, 428y

and
b1 = Yooz — 4y11 2 + 5yn—l - 2yn + th

* (iv (iv) (iv)

120 n— 3+8yn 2+101y }

The terms y,, v, W\, v, WV, etc are expanded about
the point x; using Taylor’s series and the expressions for
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t;, i =1, can be obtained. The expressions for #;, i = 2, can be
derived by expanding the terms yy, y,, 3", y,, »", etc
about the point x, using Taylor’s series. Also, the expressions
for #, i=3,4,...,n—3 can be obtained by expanding
Vivas Visas Vi 3" etc around the point x; using Taylor series
and the expression for ¢;, i =3,4,...,n— 3, can be obtained.
The terms y,, , 1, ¥4, Vuas ¥'"h. etc are expanded about
the point x, , using Taylor’s series and the expressions for
t;, i=n—2, can be obtained. Finally the expressions for
t;, i=n—1, can be derived as expanding about the point
Xp—1- |

In order to obtain the values of F;, the following equation is
obtained using Egs. (4), (8) and Theorem 1.

D% p(x)y(x) = D%, p(x)Ti(x)

(Xfxi—l

:ﬁmmxpm )

02, T+ Y- (§) U TW)DL o)
(15)

Substitute the spline function for the values of a;, b;, ¢;, d; and
e; and x = x;, the Eq. (15) can be written as

(1 + ) Fi + i Fiog + o Fiy 4 pyFipy +11Si2 + 1,814
+ 138 + 1y Sic = g, (16)

where the values of y;, u;, i =1,2,3,4, are given in Appendix
A. Also,

g = g(x;).

One more equation is needed to complete the system. This end
condition is obtained by computing the values of the constants
in Eq. (3) at end with the help of Taylor series,

Fi+ By + ppFa +my0So + 0081+ 0182 + 0My = gy, (17)

where the values of u;, t2,%10» M1, M2 and 0 are given in
Appendix A.

4. Quintic spline solution

The spline solution of boundary value problem (1) is deter-
mined, using Egs. (11), (12), (7), (13), (14), (16) and (17). Con-

sidering S =[Sy, S>,.- .,S,,,l]T and F=[F,F,,... ,F,H]T7 S;
satisfies the following matrix equation
CS = h'DF, (18)
where C, D are (n— 1) x (n — 1) matrices and

5 -4 1

-4 6 -4 1

101 8 1
28 65 26 1
| 1 26 66 26 1
D:m .
I 26 66 26 1
1 26 65 28
1 8 101

The Eqgs. (16) and (17) in matrix form can be written, as
NS+ MF =G, (19)

where N, M are matrices of order (n — 1) x (n— 1) and

M Mo
M N3 Ny
m M N3 M
N= . )
m M M3 M
m M N
My +1 Hyp
Py N
Hy My w1l py
M=
w3l Hy

MMy =My 2t s+l

Moreover G = (g;) is (n — 1) dimensional column vector such
that

— 0M
G = 81 05
g, i=23,...n—1.

i=1,

The Eq. (19) can be written, as
F=M"'G-M'NS. (20)
From Egs. (18) and (20), it can be written, as

(C+h*'DM'N)S = h*DM™'G. (21)
5. Convergence of the method
Let Y= (y) and E = (¢) = Y-S be an (n-1)-dimensional

column vectors.
In order to get a bound on ||E||,, consider

(C+h'DM'N)Y=h*'DM'G + T. (22)
where the vector T is defined, as
13 113 -1 -1 113 13
TS (22,0 222 @ Z1e T2 210 e 12 6 )
<180y1 36072 " 1270 1 36072 180
Moreover,
Tl = esh°Zs,  Zo = max e ]y (x), (23)

where ¢3 is a constant and also independent of /.
From Egs. (21) and (22),

(C+h'DM'N)E=T. (24)
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From Eq. (24), E can be expressed, as where
_ h4—0( | pah4—a
E=(I+Kc'DM'N) ' C'T. 25 L =P (3180 — 2616
(I+h ) @5 |72r6—n ™| ~720r6=n" *
For the sake of simplicity, consider the case where p(x) is a + 6360% — 48c%). (28)

constant function. Then Eq. (8) becomes . . .
In this case, at « = 1, maximum value of Eq. (28) is

Fi= [7PD:, 1 T(X) + g(x)”x:x," pg(h47a — < 3
72006 —a) | SPT5
Lemma 2 (Siddiqi and Akram, 2008). If Z is a matrix of order

X In order to satisfy the Lemma 3, the parameter p must satisfy
nand ||Z|| <1, then (I+ Z)™ exists and

the following condition:

. 1 P < 15
I1+Z) < —. max 73
and
Lemma 3. The infinite norm of M~" satisfies the inequality
Vi f i quanty L < 7200°(6 — o)
7200(6 — ) * = 7200(6 — o) — porh* (3180 — 26160+ 63602 — 48%7)

—1
1Ml <

7201°(6 — o) — pah* (3180 — 26160+ 63602 — 4803)
(26) Lemma 4. The matrix (C+ h*DM™'N) in Eq. (24) is nonsingu-

lar, provided that:
‘ pah**(3180—26160+63602 —4843)

provided tha 0T (6 ) < 1.
7200(6 — 0)E((b — a)’ + 8h*)Ah ™ o
Proof. The matrix M can be written, as (7200(6 — o) — K*™*Ay) 7
M=1+ _7257;‘?:“ ; i, where 7y = px(3180 — 26160 + 63622 — 484%), i = 1
- _ 2 3 4 _ (h-a?
o (240 — 2880 + 1130* — 180 + o*) and & = B0
where matrix M is
My >
2 * _ *
ol j,uz i Ha Table 1 Maximum absolute errors.
Ky ) Ky g
, n a=0.1 a=0.2 =073
10 8.3236E — 004 9.0723E — 004 9.8179E — 004
o n 20 4.2843E — 004 5.0369E — 004 5.8857E — 004
« 40 2.1281E — 004 2.7132E — 004 3.4350E — 004
Bt = e 20t
where
wyy =4(=931 4 (764 4+ 13(—14 + a)a)),
; 141°(6 — o)
1T e —
* 0.01
. 2(,2 + OC)F(6 _ O() 0%%%;&%@:—%@;%4,%%%‘\’ 1
= I'4—oa) ’ -0.01} m"‘#g,\ i
%
The matrix M~! can be expressed, as —0.02¢ Y d
4o -1 -0.03} "\,,\ /4
B poh —~ % /
M'=(1+—2"— M ~0.04} ¥ 4
( 20T (6 =) ) ’ o0t e
-0.05[ \ .,./ 1
Using the Lemma 2, if * Exact \ ¥
-0.06} a=0 \\ / 1
A —~ —k—a=0.1 % al
6—a) s -0.08} a=03 g™ .
then ~0.09 ‘ ‘ ‘ ‘
o] 0.2 0.4 0.6 0.8 1
_ 1
M, <

T i Figure 1 Exact and approximate solutions of Example 1 with
- Hnor(()ﬂ) H30 different values of a.
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Table 2 Maximum absolute errors and order of convergence (O. C.) for Example 2.

n o=0.1 a=0.2 a=0.3
Error O.C. Error 0O.C. Error O.C.
10 8.44E — 002 7.61E — 002 6.68E — 002
20 2.37E — 002 1.8324 2.19E — 002 1.7970 2.01E — 002 1.7318
40 6.90E — 003 1.7802 6.90E — 003 1.6663 6.80E — 003 1.5636
0.1

—*— Exact

0.08 —k—a=01

0.06

0.04

0.02

1 1 1 1 _001 1 1 1 1
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

Figure 2 Exact and approximate solutions of Example 2 with different values of o.

Then Proof. From Lemma 2,
(] IEll = maxicicnleil
IEll. < Ty = O(I). (29) < 1€ 1T

L= CM PN 1M IV

~ — — b
L= CM PN 1M IV

(30)
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provided that A*|C7'| D] M IN|l, < 1. From

Siddiqi and Akram (2008),

1 8’
e =——b—a)(1+ .
1€ = gy 0 =) ( (ba)3>

Also,

D]l =1 and [|N||,,
KT 2 3, 4
= Fg (40— 2882+ 1302 — 182 4 o)

By substituting the values of ||C7'|_, ||D|l., |M~']. and
|IN||, in Eq. (30) and using Eq. (23), it can be written as

W3 ZoE(T20T(6— o)) — K20 ) (b —a)® +8K°) ~0().

£l < pR . YOV
(720T°(6— o) —h**724) = 7200 (6 — ) E((b—a)” +8h7) A2
(31)

where Zs = max,<.<;|y°(x)]. O

Theorem 2. Let y(x) be the exact solution of the FBVP Eq. (1)
with boundary condition Eq. (2) and y;, i=0,1,2,...,n—1,
satisfy the discrete BVP Eq. (22). Moreover, if e; = y; — S;, then

£l = O(K).

6. Numerical results

In this section, to check the accuracy, efficiency and validity of
the method, some examples of suggested method are given.

Example 1. Consider the following FBVP:

63
with

»(0)=0, »(1)=0,

»'(0)=0, »'(1)=8.

The exact solution of this problem is x> — x*. The present
scheme is applied with different values of o and results are
shown in Table 1 and Fig. 1.

Furthermore in the limit, as o goes to zero, the method pro-
vides a solution for the integer order system. From numerical

results, it is observed that suggested scheme is of O(/%).

Example 2. Consider the following FBVP:

y(4)(x)+D°‘xy(x) :g(x)v X € [07 1}7
with

Y0 =0, ¥(1)=0,

V'(0)=0, (1) =26(c—1).

The exact solution of this problem is x®** — x¥=*, The present
scheme is applied with different values of o and results are
shown in Table 2 and Fig. 2.

7. Conclusion

Collocation method is established for the approximate solu-
tion of fractional differential equation along with boundary
conditions, using quintic spline. The suggested method also
utilizes the properties of fractional derivatives in order to solve
this problem. This numerical scheme is computationally capti-
vating. Descriptive examples show applications of this prob-

Y(x) +0.05D%y(x) = g(x), x€[0,1], lem. It is proved that the method is of O(h*).
Appendix A
T 2K (=2 + o)a W (=44 a)a(361 + o(—226 +250))
D* T - S N—n(x: . - -
8 PT s = 7S 00) =) + (o) (Tt P e ’
204 (=778 4+ (605 + (=137 4 102))) . (=5+0)* (=4 +a)h* *a
+ Fi+ Fin
720T(6 — o) 720T°(6 — o)
—240(—24 o) (=54 o) (—4+a)oh™” =360/ (12 + (=9 + o)) (—5+ o) (—4 + )
—+ Si—2 + Si—l
720T°(6 — o) 7200°(6 — o)
L7206+ (=64 0)a) (=5 +a)(~4+a) S_+7120(75+oc)2(74+a)ah7“s_
r(6—0a) ' 7207 (6 — o) o
00 o h4+/c—o< h4+k—1 h4+k—1
Fr_ F—F_ ) +—=———"—S;
+;<k) (r(5+k—a) ek ) g S

N (6(K*™*(Fi_y = 37Fi_, = 23F; — F1) — 120(Sj_2 — 3Si_1 + 3S; — Si11)))

7200 (4 + k — o)
(6(h* ™ *(Fi_y +4F_, + F) — 120(S;_, — 28,1 + 5}))) 1

7201 (3 +k — o)

Xi-

—120(28;2 43811 — 65+ S,-+1))) DY p(x).

T T20T(2+k—a) (B0 2 4+ 258 + 208+ Fi)



64 G. Akram, H. Tariq

2h4—1( 2 + O( h4+k o h4+k o h4+k o
'ul :7 Y X +Z - ch,',lp(x)lx:xﬂ
7207 (4 — or) 1200(4+k—a) 1200(3+k—a) 360T(2+k—a)
T (—44a)a(361 +o<(7226+25a +Z AN A 1/ A A
fa= 7200(6—2) Lo T(5thk—u) T(6+k—o) 1200(4+k—a) 300(3+k—a)

5h4+k—oc .
B — e
e K- oc)) P

B 200 (=778 + (605 4+ 0(—137+1001)) N i o ) A 23tk - ke . ke
= 7207 (6 — ) e v [(6+k—o) 120T(4+k—o) 1200(3+k—c) 360 (2+k—a)
XD{((, ]p(x)‘.\’:xﬂ
(—5+a)’ (—4+a)h* X (o A ptke .
- , _ D
a 7200°(6 — ) p(x)|":"”+; k 6F(4+k—oc)+7201"(2+k—a) P emr
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