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Abstract The present paper purports to deal with the problem of triply diffusive convection in

Triply diffusive convection;
Porous medium;
Darcy-Brinkman model;
Concentration Rayleigh
number

sparsely distributed porous medium using the Darcy-Brinkman model. Bounds are derived for
the modulus of the complex growth rate p of an arbitrary oscillatory perturbation of growing ampli-
tude, neutral or unstable for this configuration of relevance in oceanography, geophysics as well as
in many engineering applications. These bounds are obtained by deriving the integral estimates for
the various physical quantities by exploiting the coupling between them in the governing equations;
and are important especially when at least one boundary is rigid so that exact solutions in the closed
form are not obtainable. It is further proved that the result obtain herein is uniformly valid for any
combination of rigid and dynamically free boundaries.
© 2015 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Research on convective fluid motion in porous media under
the simultaneous action of a uniform vertical temperature gra-
dient and a gravitationally opposite uniform vertical concen-
tration gradient (known as double diffusive convection) has
been an area of great activity due to its importance in the pred-
ication of ground water movement in aquifers, in assessing the
effectiveness of fibrous materials, in engineering geology and in
nuclear engineering. Double diffusive convection is now well
known. For a broad view of the subject one may refer to
Vafai (2005), Nield and Bezan (2006), Murray and Chen
(1989), Chamkha et al. (2002), Umavathi et al. (2005),
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Zeeshan and Ellahi (2013), Ellahi et al. (2013, 2015), Rashidi
et al. (2014, 2015), Hassan and Rashidi (2014), Zeeshan
et al. (2014).

Although the double-diffusive convection in porous and
nonporous medium is still an active research domain
(Swamy, 2014; Choudhary et al., 2016; Khan and Sultan,
2015; Nield et al., 2015; Slim, 2014; Yang et al., 2015; Babu
et al., 2014; Chamkha and Al-Naser, 2001; Magyari and
Chamkha, 2008; Chamkha et al., 2010; Ellahi et al., 2012;
Sheikholeslami et al., 2014a.b; Sheikholeslami and Ellahi,
2015), there are many physical configurations in which more
than two diffusing components are present. For example
Degens et al. (1973) reported that the saline waters of geother-
mally heated Lake Kivu are strongly stratified by temperature
and salinity which is the sum of comparable concentrations of
many salts, while the sea-water contains many salts in concen-
trations slightly less than the sodium chloride concentration.

The subject of systems having more than two components
in porous and nonporous medium has attracted many
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researchers (Griffiths, 1979a; Poulikakos, 1985; Rudraiah and
Vortmeyer, 1982; Lopez et al., 1990; Tracey, 1998; Prakash
et al, 2015a,b; Ryzhkov and Shevtsova, 2009; Rionero,
2013; Zhao et al., 2014) due to its importance in the study of
geothermally heated lakes, earth core, solidification of molten
alloys, underground water flow, acid rain effects, natural phe-
nomena such as contaminant transport, warming of strato-
sphere and magmas and their laboratory models and sea
water etc. Some fundamental differences between the double
and triply diffusive convection are noticed by these research-
ers. Among these differences one is that if the gradients of
two of the stratifying agencies are held fixed, then three critical
values of the Rayleigh number of the third agency are some-
times required to specify the linear stability criteria (in double
diffusive convection only one critical Rayleigh number is
required). Another is that the onset of convection may occur
via a quassi periodic bifurcation from the motionless basic
state.

The presence of more than two components in a fluid, each
influencing the density and having different diffusive proper-
ties, can lead to convective instabilities, often well before a
fluid system would become statically unstable. It is now well
established that (Griffiths, 1979a,b; Terrones, 1993) the small
concentration of a third component with a smaller mass diffu-
sivity can have a significant effect upon the nature of instabil-
ity; and ‘diffusive convection’ (oscillatory modes) and direct
‘salt finger’ modes (steady convection) may simultaneously
exist under a wide range of conditions, even if the over-all
density stratification is gravitationally stable. Thus, since
instability in triply diffusive configuration may occur in the
form of oscillatory motions, the problem of deriving the upper
limits for the linear growth rate of an arbitrary neutral or
unstable oscillatory disturbance of growing amplitude in triply
diffusive convection has its own importance in fluid dynamics,
especially when at least one of the boundaries is rigid so that
exact solutions in the closed form are not derivable as was pos-
sible for the cases treated by Griffiths (1979a), Poulikakos
(1985) and Rudraiah and Vortmeyer (1982). Banerjee et al.
(1981) formulated a novel way of combining the governing
equations and the boundary conditions for double diffusive
convection problem so that a semicircle theorem is derivable
and which in turn yields the desired bounds. Their method
has been used to derive the desired bounds for triply diffusive
convection in porous medium. Further the result for double
diffusive convection in porous medium also follows as a
consequence.

In the present paper we have studied triply diffusive convec-
tion in a sparsely distributed porous medium by using Darcy-
Brinkman model. Darcy flow model is relevant only to densely
packed, low permeability porous medium. Darcy’s law cannot
account for the no-slip boundary condition at the interface of a
porous medium and a solid boundary (Kaviany, 1995). Also,
experiments conducted with several combinations of solids
and fluids covering wide ranges of governing parameters indi-
cate that most of the experimental data do not agree with the
theoretical predictions based on the Darcy flow model. The
Brinkman (1947) extension of the Darcy’s law gets around
the obstacle by adding a viscous like term to the equations.
Givler and Altobelli (1994) have demonstrated that for high
permeability porous media the effective viscosity is about ten
times the fluid viscosity. Therefore, the effect of viscosities
on the stability analysis is of practical interest.

2. Mathematical formulation

A viscous finitely heat conducting Boussinesq fluid layer, satu-
rating a porous medium, of infinite horizontal extension is
statically confined between two horizontal boundaries
z =0 and z = 4 which are respectively maintained at uniform
temperatures 7, and 7(< T;) and uniform concentrations
S0, S20 and S|; (< 510)7521 (< Szo) (as shown in Flg l) It
is assumed that the saturating fluid and the porous layer are
incompressible and that the porous medium is a constant
porosity medium. It is further assumed that the cross-
diffusion effects of the stratifying agencies can be neglected.
The Brinkman extended Darcy model has been used to inves-
tigate the triple diffusive convection in porous medium.

The basic hydrodynamic equations that govern the problem
are given by Vafai (2005).

Equation of continuity
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Figure 1  Physical configuration.
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Equation of state

p=po[l +o(To—T) — o1 (S1o — S1) — 02(S20 — S2)], (8)
where 0p = —p,o(T — Ty), 9)
0p" = pyor (S1 — Sho), (10)
0p" = pooa(S2 — Sw), (11)

where u,v,w are the components of velocity in the x,y,
z-directions respectively, and 5_0 is the modified hydrodynamic
pressure. Further ¢, p, T, Sy, Sy, €, ki, 1, v,x,x; and x, are,
respectively, the time, the density, the temperature, the concen-
tration of first component, the concentration of second compo-
nent, the porosity of the porous medium, the permeability of
the porous medium, the effective viscosity, the kinematic vis-
cosity, the thermal diffusivity, mass diffusivity of first compo-
nent and the mass diffusivity of second component; o, o; and
oy are respectively the coefficients of volume expansion due
to temperature variation, concentration variation of first com-
ponent and concentration variation of second component.
Here E=c¢+ (1 — e) ”‘C‘ is a constant and E, and E, is also

a constant analogous to E but corresponding to concentration
rather than heat, where p,, C; and p,), C; stand for density and
heat capacity of the solid (porous matrix) material and fluid
respectively. The suffix ‘0’ denotes the values of the various
parameters at some suitably chosen reference temperature 7y
and concentration S

The basic state is assumed to be quiescent state and is given
by

(u,v,w) = (0,0 0) p=p(z), T=T(z),
S = 81(2), $:(2),  p=p(2). (12)

Thus the initial stationary state solutions are given by

v 2
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where P, represents the pressure at the lower boundary
z=0, =20 is the maintained uniform adverse tempera-

(,v,w) = (0,0,0),

ture gradient, f; =515 and B, = 52-52 are the non-adverse
concentration gradients. To study the stability of the system,
we perturb all the variables in the form
(a,v,w) = (04+u',04+V,0+w'),
p="Po—gp, [7+(“ﬁ7“1ﬁ1 Ik } +oP,
T=T,—pz+0,
S =8w-pBiz+¢)
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(14)

p=po[l +o(To — (S0 — Sz + )],

where o, vV, W, 0/, ¢, ¢, and 5P are the perturbed variables
and assumed to be small.

Substituting Eq. (14) into Egs. (1)-(7), we obtain the fol-
lowing linearized perturbation equations
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and Eza‘ZS — B’ = 12 V2. (21)

The normal mode expansion of the dependent variables «//,
v, w', 0, ¢, ¢, and 6P is assumed in the form

F(x,p,z,t) = F'(z) expli(kyx + kyy) + nt], (22)

where k = (k% + k?) is the wave number of perturbation, k,

and k, being real constants and #» is a constant which can be
complex in general.

For functions with these dependences on x,y and ¢, we
have
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Eliminating " and v’ from Eqgs. (25) and (26) by multiply-
ing Eq. (25) by ik, and (26) by ik, respectively, adding the
resulting equations and using Eq. (24) and then eliminating
JP" between this resulting equation and Eq. (27), we obtain
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we can reduce Eqs. (31)-(34) to the following non-dimensional
form (omitting the asterisks for simplicity in writing):

A(D* — a2)2w —(p+DHYD* —d)w

= R0 — Rid*¢, — Ryd* s, (36)
(D* — & — Eap)0 = —w, (37)
E
(DZ_aZ_ 10‘[’) 1:_K7 (38)
T1
E )
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T2 T2

Eqgs. (36)-(39) are to be solved by using the following
boundary conditions:

w=0=¢, =¢,=Dw=0atz=0and at z =1 (40)
(both the boundaries are rigid)
orw=0=¢, =¢,=D’w=0atz=0and at z =1 (1)

(both the boundaries are free)

orw=0=¢, =¢,=Dw=0atz=0,

(lower boundary is rigid) #2)
andw=0=¢, =p,=D*w=0atz=1,

(upper boundary is free)

orw=0=¢, =¢,=D*w=0atz=0, (lower boundary is free) } 43)

andw=0=¢,=¢,=Dw=0atz=1, (upper boundary is rigid)

where z is the real independent such that 0 <z < 1, D is the
differentiation w.r.t. z, ° is square of the wave number,
o > 0 the Prandtl number, 7, > 0 and 7, > 0 are the Lewis
numbers for two concentration components respectively,
D, > 0 is the Darcy number, R > 0 is the Rayleigh number,
Ry >0 and R, > 0 are the two concentration Rayleigh num-

bers, p = p, + ip; is the complex growth rate where p, and p;
are the real constants, w is the vertical velocity, 0 is the temper-
ature, ¢, and ¢, are the respective concentrations of the two
components, E; > 0 and E, > 0 are constants. It may further
be noted that Egs. (36)-(43) describe an eigenvalue problem
for p and govern triply diffusive convection in a porous med-
ium for any combination of dynamically free and rigid
boundaries.

3. Mathematical analysis

Now we prove the following theorem:

Theorem. If R>0, R} >0, R, >0, p, = 0,p, #0, then a
necessary condition for the existence of nontrivial solution
(w, 0, b, ¢,,p) of Egs. (36)-(39) together with either of the
boundary conditions (40)—(43) is that

R R
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Proof. Multiplying Eq. (36) by w* (the superscript * hence-
forth denotes complex conjugation) on both sides and
integrating over vertical range of z, we obtain

1

1
A/ wH(D? — az)zwdz —(p+ D;l)/ w*(D? — a*)wdz
0 0

1 1 1
= Ra2/ w*0dz — RlaZ/ w'p,dz — Rzaz/ W p,dz.
0 0 0
(44)

Making use of Egs. (37)-(39) and the fact, that
w(0) =0 = w(l), we can write
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Integrating various terms of Eq. (48) by parts for an appro-
priate number of times and making use of either of the bound-
ary conditions (40)—(43), it follows that

1
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Equating imaginary parts of both sides of Eq. (49), and
canceling p,(#0) throughout, we have
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Now, multiplying Eq. (38) by its complex conjugate and
integrating the resulting equation for a suitable number of
times and using the boundary condition on ¢, namely,
¢,(0) =0 = ¢,(1), we obtain

1
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Since p, > 0, it follows from Eq. (51), that
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In the same manner,
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Utilizing inequalities (52) and (53) in Eq. (50), we have
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Eyalp|’ Eszlp\
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Jo
which clearly implies that
: R R
P < et Ee (55)

This proves the theorem. [

The above theorem states, from the physical point of view,
that ‘the complex growth rate (p,, p;) of an arbitrary neutral or
unstable oscillatory perturbation of growing amplitude, in a
triply diffusive fluid layer saturating a porous medium with
one of the components as heat with diffusivity x, must lie
inside a semicircle in the right- half of the (p,, p;)-plane whose

center is the origin and radius equals /21 R‘ L+ ?2“, where R; and

R, are the Rayleigh numbers for the two concentration com-
ponents with diffusivities x; and x, (with no loss of generality,
K > K1 > K3), 0 1S the Prandtl number, E; and E, are constants.
It is further proved that this result is uniformly valid for any
combination of rigid and/or free boundaries.

4. Special case

The following result may be obtained from the above theorem
as a special case.
For thermohaline convection in

(R >0,R, =0), |p| < ,/Ew

5. Conclusions

porous medium

Linear stability theory is used to investigate triple diffusive
convection in porous medium. The Darcy-Brinkman model
has been used which is more compatible for the flow through
high porosity medium. Upper bounds for the linear growth
rate of an arbitrary neutral or unstable oscillatory perturba-
tion of growing amplitude are obtained. Further, the result
for double diffusive convection in porous medium is also
obtained as a consequence.
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Nomenclature
d depth of the fluid layer Greek symbols
D, Darcy number o coefficient of thermal expansion
E=c+(l—¢) ﬁo—g heat capacity ratio B uniform temperature gradient
E a constant analogous to E corresponding to first o coefficient of mass expansion for first concentra-
concentration component tion component
E, a constant analogous to E corresponding to o coefficient of mass expansion for second
second concentration component concentration component
a thermal Prandtl number b uniform concentration gradient for first concentra-
R Rayleigh number tion component
R thermohaline Rayleigh number for first concentra- b uniform concentration gradient for second
tion component concentration component
R, thermohaline Rayleigh number for second concen- € porosity of the porous medium
tration component 0 density
Sto concentration of the first component at the lower U, effective viscosity
boundary u dynamic viscosity
S concentration of the first component at the upper T Lewis number
boundary T Lewis number for first concentration component
Sho concentration of the second component at the low- T Lewis number for second concentration compo-
er boundary nent
So1 concentration of the second component at the y kinematic viscosity
upper boundary thermal diffusivity
To temperature at the lower boundary K1 mass diffusivity for first concentration component
T, temperature at the upper boundary K2 mass diffusivity for second concentration compo-
ki permeability of the porous medium nent
P pressure A == viscosity ratio
u,v,w velocity components along x,y,z-directions
respectively
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