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Abstract In this paper the optimal homotopy asymptotic method (OHAM) is employed to obtain
approximate analytical solution of nth order (n > 2) linear fuzzy initial value problems (FIVPs).
The convergence theorem of this method in fuzzy case is presented and proved. This method pro-
vides us with a convenient way to control the convergence of approximation series. The method is
tested on nth linear FIVPs and comparisons of the exact solution that were made with numerical

results showed the effectiveness and accuracy of this method.
© 2015 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many dynamical real life problems may be formulated as a
mathematical model. These problems can be formulated either
as a system of ordinary or partial differential equations. Fuzzy
differential equations are a useful tool to model a dynamical
system when information about its behavior is inadequate.
Fuzzy ordinary differential equations may arise in the mathe-
matical modeling of real world problems in which there is
some uncertainty or vagueness. Fuzzy initial value problems
(FIVPs) appear when the modeling of these problems was
imperfect and its nature is under uncertainty. Fuzzy initial
value problems arise in several areas of mathematics and
science including population models (Ahmad and De Baets,
2009; Omer and Omer, 2013), mathematical physics (EIl
Naschie, 2005) and medicine (Abbod et al., 2001; Barro and
Marin, 2002) and other applications (Sahu and Saha Ray,
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2015). Approximate-analytical methods such as the Adomian
Decomposition Method (ADM), Homotopy Perturbation
Method (HPM) and Variational Iteration Method (VIM) have
been used to solve fuzzy initial value problems involving ordi-
nary differential equations. Ghanbari (2009) utilized HPM to
solve first order linear fuzzy initial value problems. The ADM
was employed by Babolian et al. (2004) and Allahviranlo et al.
(2008) to solve first order linear and nonlinear fuzzy initial value
problems. Abbasbandy et al. (2011) used the VIM to solve linear
systems of first order fuzzy initial value problem.

OHAM is somewhat different from other approximate-
analytical methods in that it gives extremely good results for
even a large domain with minimal terms of the approximate
series solution. In OHAM, the control and adjust of the con-
vergence region are provided in a convenient way. Moreover,
OHAM is also parameter free and provides better accuracy
over the approximate analytical methods at the same order
of approximation.

OHAM was introduced recently by Marinca et al. (2008)
and applied for solving nonlinear problems without depending
on the small parameter (Herisanu et al., 2008; Marinca and
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Herisanu, 2008; Marinca et al., 2009). Mabood (2014) has pro-
vided a comparative study between OHAM and HPM for
strongly nonlinear equation. In this study, it was observed that
OHAM gives an accurate solution as compared to HPM.
Moreover, an advantage of OHAM is that it does not need
any initial guess or to identify the /i-curve like Homotopy
Analysis Method (HAM) and it is also parameter free.
Furthermore, the OHAM has built in convergence criteria
similar to HAM but with a greater degree of flexibility
(Igbal et al., 2010). The proposed method (OHAM) has also
been successfully applied on various engineering problems
(Alomari et al., 2013a,b; Anakira et al., 2013; Mabood et al.,
2013a,b; 2014a,b; Herisanu et al.,, 2015; Marinca and
Herisanu, 2014).

In this paper, our aim is to apply OHAM to nth order
(n = 2) FIVP directly without reducing it to a system. To
the best of our knowledge, this is the first attempt at solving
a high order FIVP using the OHAM with proof of the conver-
gence in fuzzy case. The outline of this paper is as follows. We
will start in Section 2 with some preliminary concepts about
fuzzy numbers. In Section 3 we reviewed the concept of
OHAM and formulated it to obtain a reliable approximate
solution to n'® order FIVPs. In Section 4, the convergence the-
orem of OHAM is presented and proved, In Section 5, we con-
sider numerical examples to show the capability of this method
and finally, in Section 6, we give the conclusions of this study.

2. Preliminaries

Definition 2.1 (Bodjanova, 2006). The r-level (or r-cut) set of a
fuzzy set A, labeled as A,, is the crisp set of all x € X such that
uz =rie.

A ={xeXu;>r, relol1]}

Definition 2.2. Fuzzy numbers are a subset of the real numbers
set, and represent uncertain values. Fuzzy numbers are linked to
degrees of membership which state how true it is to say if some-
thing belongs or not to a determined set. A fuzzy number (Dubois
and Prade, 1982) pu is called a triangular fuzzy number if defined
by three numbers o < < y where the graph of u(x) is a triangle
with the base on the interval [o, 5] and vertex at x = f3, and its
membership function has the following form: (see Fig. 1)

, if x<a
=i a<x<p
plxia, o) =< 0
= if f<x<y
0, if x>y

ux)
1

0.5

>

Y X

0

Q
Fo~)) R

Figure 1  Triangular fuzzy number.

In this paper the class of all fuzzy subsets of R will be
denoted by E and satisfy the following properties (Dubois and
Prade, 1982; Mansouri and Ahmady, 2012):

1. u(¢) is normal, i.e. 34 € R with u(ty) = 1.

2. u(t)is convex fuzzy set, i.e. p(At+ (1 —A)s) = min{u(z),
u(s)} ve,s € R4 €[0,1].

3. p upper semi-continuous on R, and {r € R: pu(¢) > 0} is
compact.

E is called the space of fuzzy numbers and R is a proper
subset of E.

Define the r-level set x e R, [y, ={x\pulx) > r},
0<r<1 where [y, = {x\ u(x) >0} is compact which is a
closed bounded interval and denoted by [u], = (u(), a(z)). In
the parametric form, a fuzzy number is represented by an ordered
pair of functions (u(z), fi(¢)), which satisfies (Kaleva, 1987):

1. u(¢) is a bounded left continuous non-decreasing function

over [0, 1].

2. i(¢) is a bounded left continuous non-increasing function

over [0, 1].

3.u() < (), reo,1].

A crisp number r is simply represented by u) = u(r) =r,

relo,1].

Definition 2.3 (Seikkala, 1987). If E be the set of all fuzzy
numbers, we say that f(¢) is a fuzzy function if f: R — E.

Definition 2.4 (Fard, 2009). A mapping f: T — E for some
interval 7 C E is called a fuzzy function process and we denote
r-level set by:

[f(0)], = ), A7),

The r-level sets of a fuzzy number are much more effective
as representation forms of fuzzy set than the above. Fuzzy sets
can be defined by the families of their r-level sets based on the
resolution identity theorem.

teT, rel0,1]

Definition 2.5 (Kaleva, 1987). The fuzzy integral of fuzzy pro-
cess,‘f(t; r), f:lf(l; r)dt for a,b € T and r € [0, 1] is defined by:

/ ey = / e, / R |

Definition 2.6 (Zadeh, 1965). Each function f: X — Y induces
another function f: F(X) — F(Y) defined for each fuzzy
interval U in X by:

~ [ Sup,pi, U(x), if € range(f)
o ={; ity ¢ range()

This is called the Zadeh extension principle.

Definition 2.7 (Salahshour, 2011). Consider %, 7 € E. If there
exists Z€ E such that ¥=j+Z then % is called the
H-difference (Hukuhara difference) of x and y and is denoted
by z = XO7.
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Definition 2.8 (Zadeh, 2005). If f: I — E and Vo € I, where
I € [ty, T]. We say that / Hukuhara Differentiable at Vo, if there
exists an element [ﬂr € E such that for all 4 > 0 sufficiently
small (near to 0), exists /(v +h:r)ef i r), i)y — hir)
and the limits are taken in the metric (E,D)

lim f(yo + I r)@f(}’oi") — lim f(yoir)efi(lyo —h;r)

h—0+ h h—0+

The fuzzy set [f(y,)], is called the Hukuhara derivative of
7], at yo.

These limits are taken in the space (E, D) if ty or T, then we
consider the corresponding one-side derivation. Recall that
X0y = z € E are defined on r-level set, where [¥],0[7], = [Z],,
Vr € [0, 1]. By consideration of definition of the metric D all
the r-level sets [£(0)], are Hukuhara differentiable at y,, with
Hukuhara derivatives [f(y,)],, when f:— E is Hukuhara
differentiable at y, with Hukuhara derivative [f(y,)], and it
leads to that fis Hukuhara differentiable for all » € [0, 1] which
satisfies the above limits ie. if f is differentiable at

ty € [to + o, T] then all its r-levels [ (z)], are Hukuhara differ-
entiable at 7.

Definition 2.9 (Salahshour, 2011). Define the mapping
}7’ :1— E and y, €I, where I€ [ty,T]. We say that f is
Hukuhara differentiable 7 € E, if there exists an element
[ f(">],, € E such that for all /> 0 sufficiently small (near to 0),
exist /0D (v + h;r)of " V(ygir), and D (g oD
(¥o — h; ) and the limits are taken in the metric (E, D)

i L G+ ) (i)
h—0+ /’l

— lim f“’”(yo; ")@f(nfl)()ﬁ) — I ")
h—0+ h

exists and equal to ﬂ”) and for n =2 we have second order
Hukuhara derivative.

Theorem 2.1 Mansouri and Ahmady, 2012. Let f: [ty 4o, T] —
E be Hukuhara differentiable denoted by

7o), = [£0.S 0] =[£G

Then the boundary functions f*(#; r), f(¢; r) are differentiable
7o), = [0, Ren)], vre o]

Theorem 2.2 Xiaobin and Dequan, 2013. Let f: [to + o, T] —
E be Hukuhara differentiable denote by

7o), = [£@.00)] = [£@n.7 0]

When the boundary functions f'(¢;r),f(t;r) are differen-
tiable we can write for nth order fuzzy derivative

70, = [ @) .7 )], vre o]

3. Fuzzification and defuzzification of OHAM

The general structure of OHAM for solving crisp nth order
ordinary differential equations was described in Gupta and
Saha Ray (2014), Herisanu et al. (2015), Marinca and
Herisanu (2014). To solve the nth order FIVP, there is a need
to fuzzify and then defuzzify OHAM. Consider the following
general nth order FIVP

70 = f(1,5(0),5"(0), 7" (1), ... 5" (0) + (), 1€ [0, T]
)

subject to the initial conditions

(1) = Fo, ¥ (t0) = Fps -y (2t0) = Fg"™" 2

where y is a fuzzy function of the crisp variable twithfbeing a
fuzzy function of the crisp variable ¢, the fuzzy variable y
and the fuzzy Hukuhara-derivatives 7'(¢),7"(z),...7" "V (z).
Here y® is the fuzzy nth order Hukuhara-derivative and
P(to),7'(t0), ... 7"V (ty) are convex fuzzy numbers. We denote
the fuzzy function y by y = [y, y] for ¢ € [ty, T] and r € [0, 1]. It

means that the r-level set of j(7) can be defined as:

(0], = [p(57), 7(657)]

(1), = ¥/ (60), 5" ()], 5OV (),

(=D (1), 50D (1 r)}

Il
I'=

()], = [pt03 ), 3(1037)],
(W], = [ 05,5 (10|, [0 (1)
= [0, 5 (i)

where the

w(t;r), w(t;r)).
Since 5 (1) = f(£, 5(), 3'(1), 37" (1), ... 7"V (1)) + ().
Let

Y(t) = 5(0),5'(2),5"(1),... 5" V(1), such that

fuzzy inhomogeneous term is

()], =

V(t;r) = [V(t;7),Y(157)]
=[p(550),"(t57),- .y (), 3 (60), 3 (1), 30V (15)]

Also we can write

F )N, = e, 530). 0 73 7)] 3)

By using Zadeh extension principles as mentioned in Zadeh
(2005), we have

S, Y(6) = [, Y(557)), (2, Y(5;r)),], such that

[, Y(t0) = F(1,9(6:0), V(1) = F (1, Y(t;7))
f, Y1) = G(t,Y(1;1), Y(1;1)) = G(t, Y(5;)

Then we have

YO (6r) = F (L 30) + (s @
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FU(tr) =G, V(t5r)) + w(t57) Q)

where the membership function of F(z, Y(t;r)) + w(t;r) and
G(t,Y(t;r)) + (t;r) can be defined as

F(,(t5r)) +w(t;r) ()}

G(1,Y(t;r)) + w(t; ) (&, ji(r)) : plp € V()] }
for all r € [0, 1], Egs. (4) and (5) can be written as follows

= min{5" (1, 7(r)) - e €

= max{j"

L(y(t;r)) = w(tr) = F(6,Y(1;r)) = 0 (6)
0

B(y(t r), g}] ) 0 (7)

and for the upper bound we have

L,(3(5;7)) = w(t;7) = G(1, V(5;7)) = 0 (8)

(50 %3) =0 ©)

According to OHAM described in Marinca et al. (2008), Eq.
(1) can be written as follows:

(1= ) [La([05p)),) — w(t:1)]
= (i) [La(0(p)),) — wiir) - F(0@p), )| (10)

= H(p: 1) [2,(0(:p)],) = #(5:) = G(10(5: ), (1)
B([@o;p)],.,am(g;””") - (12)
where £, = 0;,,” U Wg',,” L are the linear operators of

Egs. (10) and (11) respectively, p € [0,1] is an embedding
parameter, and H(p; r) is a nonzero auxiliary fuzzy function,
for p#0 and H(p;r) = 0, [0(z; p)], is an unknown fuzzy func-
tion, respectively. When p = 0 and p = 1, we get:
[0(:0)], = yo(t;7),  [0(151)], = y(t57)
[0(;0)], = 3o(t;7),  [0(1;1)], = y(z57)

Thus, as p increases from 0 to 1, the solution [@(t;p)],, varies
from yo(#;r) to y(t;r), where y(z;r) is obtained from Eq. (1)
for p = 0 we have:

L) + 500 =0, B ) =0 (19

(13)

Choose auxiliary function 7:l(p; r) for Egs. (3) and (4) in the
form:

H(p;r) = Ci(r)p + G(r)

Zc
Zc

where C;(r), C5(r), ... are the constants that become function
of r to be determined depending on the value of r for all.

(15)

H(p;r) = Ci(r)p+ Ca(r

Expanding [@(z; p, Ci(r))]. about p, we obtain the approximate
solution series:

606, = 5otsr) + > L5te, Gl (16

Now substitute Eq. (14) into (4) and (5), and equating the
coefficients of like powers of p, the following linear equations
are obtained. The zeroth order problem is given by (12), and
the first and second order problems are given as follows.

First order problem:

< ’ 17
i a7

B(yl(t r), a[g;],) =0 (18)

Second order problem

L(y2(6:7)) = L1 (157)) = G (‘)f (ﬁ (t'r))

L(32(t:1) = La(31(557) =52(‘)go(ﬁ ()
C 6r)) + G (o(657), 31 (7))
(19)

550,202k ) —o (20)

The general nth order formula with respect to 7,(¢;r) is given
by:

+‘ C,(l‘) Zn(yn ,(t r))+g71 i<§:yf(t r :|
G
550,20k ) <o )

where }'(ZJ" it r)) and Q(Zj;olf,(t; r)) are the coefficient

p" of in the expansion of f[@(z;p)],, and g[@(z;p)],, about the

embedding parameter p

]-'( [@(t;p,icf(r)>

g(@(%iﬁ(r)) ) Go(Fo (1;7) +ZQM(ZLV >

) Ao zr>>+zn,<zu )

n=1 i=0

(23)

The convergence of the series (10) depends upon the auxiliary
fuzzy constants Cy(r), C5(r), ..., then at p = 1, we obtain:

y,‘ <l, ié,(}"))

results

( Zc )y +Zn: (24)

i=1

r

Substituting (24)
residual:

into (21) in the following
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@(ai@(r);r) L, <l (r,igm;r» —w(r) (; (z,ié«
t,if‘( )
5)

1

F );,‘)
ﬁ([.i@;(l‘);r) =L, <}7* ([.i@;(l‘)‘,l‘)) 71@(1;)‘)76( *( 7 i r);r>

@
If R =0, then j, yields the exact solution but mostly for
nonlinear problems which does not happen in general. To

determine the auxiliary fuzzy constants of é,-(r), i=1,2...n,

we choose 7, and T such that optimum values of C;(r) for
the convergent solution of the desired problem is obtained.

To find the optimal values of C;(r) for each r-level set here,
we apply the least squares method (Mabood et al., 2013a) as
follows:

S([,id(r);r) = [TRz (l,ié,-(r);r> dt (26)

where R is the residual,

{ [R], = Lu([p.],) = w(t;r) = F([3.],) @)
[R], = Lu([y.],) = w(t;r) = G([.],)
and

a8 98 98 (28)

aC\(r)  9Cx(r)  9C,(r)
where #, and T being the end points of Eq. (1) to locate the
desired C,-(r) (i = 1,2,...,n). The convergence of the nth
approximate solution depends upon unknown constants
Ci(r). With these constants known, the approximate solution
(of order n) is well-determined. Thus after substituting the
determined constants C;(r) in Eq. (24) the approximate solu-
tion of Eq. (1) can be written in the following form

n—1

7 (z,zn:é,-(r);r> = Zy,-(z; r) (29)

It has been proved that Eq. (1) has a unique fuzzy solution
in each case of r-level set for all r € [0,1] (Mansouri and
Ahmady, 2012).

4. OHAM convergence in fuzzy environments

In this section, we introduce the convergence of the solution
of the nth order FIVP (1) by OHAM in Section 3.
According to Theorem 2 in Gupta and Saha Ray (2014), we
define the following theorem.

Theorem 4.1. Let the solution components yo(;r), yi(#7r),
P2(t;7), ... be defined as given in Eq. (14) and Egs. (17)-(22).
The series solution 27;01 Ji(t;r) as defined in Eq. (29)
converges if there exist 0 <o <1 such that p. (7)<
ayi(t;r) Yi = iy for some iy € N.

Proof. According to Section 2 the defuzzification of Eq. (27)
for all r € [0, 1] is given by

n—1 1—

Zfz‘(ﬁ r) = {221‘(072%(1)} = it r), 3ilt;7)] (30)

i=0 i

r

As mentioned in Section 2 all fuzzy sets are subsets of R and
the r-level sets are crisp sets, and then we can define the

oo

sequence {S’,,,(t; N} = [{§m(t; ) oo 4 S (15 r)}i;o] as

follows.

For the lower bound of Eq. (30) we have
So(t;7) = yo(t571)
Si(6r) = yo(t57) + pi(857)

Sy(t;r) = yo(t57) + pi(t;7) + y2(157)

Su(tyr) = yo(t7) + yi(t50) + pa(t57) + - yu(857)
And for the upper bound of Eq. (30) we have

So(t;7) = yo(t; 1)

Si(tyr) = Fo(t;r) + 3 (1)

Sa(t;0) = Jo(ty7) + 1 (t:0) + 7ot 7)

Su(t;r) = yo(t;7) + 31 (67) + 1o (t57) + -+ Iu(t57)

According to Gupta and Saha Ray (2014) we have to show
that {S,,(r;r)},_, is a Cauchy sequence in the Hilbert space R.
We start with the lower bound of Eq. (20). Consider

1Sne1(57) = Su(ts)ll = [y (1) < 0

i)

2
<o

Xm—l(l; V)H << O.m—io—l‘

yi (50|
Now for each r € [0,1], nme Nand m = n > i
1Sn(£7) = Su(6 1)1 = [[(Sn(£57) = S (7))

+ (§m—1(t; }’) - §m—2(t; l‘)) +- (§n+l([; l’) - §n(t; V))H
<|8u(tsr) = Sua (1) + [[Sm-1 (£7) = Spa(t5 )| + -+

S (57) = S,(15)l| < o

Vi (t;7) )

+ O_m—io—l ‘

XiO(l; r)H + -+ G.n—io+lzio(l; }’)
1= gmn )
= (5 ) e

This  implies im0 ||Su(t;7) — S,(£;7)]| =0 (since
0 < ¢ < 1). Therefore, {S,,(t;r)},._, is a Cauchy sequence in
the Hilbert space R.

Similarly for the upper bound of Eq. (30) we consider

HSerl(t; ") - Sm([; I')H = H)7m+l([; r)” < GHij(Z; I") |
< GZanH(t; I‘)H < -

S
g O_m—io—l Hj)io(l; r)H

Now for each r € [0,1], nm e Nand m > n > i,
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[|Sin(t57) = Su(t; l‘)H V() =4 (1) —4p(r) +4r—4, 1>0 (31)
= H(Si”(t;r) ( )) ( m—l(t;r)7Sm—2(t;r))+“' y(O) :(24»’4747},)7 y/(O) — (3+2r,9*21’)
+ (Sn+l(t ( H
<|[Su(t;7) = S (67 H |8 (657) = Sua ()| 4+ V0]

S (157) — 50 I
< +Gmﬂ'g||yiﬂ(z; },)H + o_mfinfl Hf,‘u([; r)H + .-

m—n

) 1 - )
ro sl = (525 ) e

This implies lim,,, , .|| S, (£;7) — S, (;7)|| =0 (since 0 < g < 1).
Therefore, {S,,(t;7)}.._, is a Cauchy sequence in the Hilbert
space R. Thus {S,,(1;r)}
Hilbert space R

yitsr),3i(t;7)

mo 1s a Cauchy sequence in the
and hence the series solution

= Z;:Ol ¥i(t;r) converges for each r-level set. [
5. Numerical examples

Example 1. Consider the second-order fuzzy linear differential
equation (Xiaobin and Dequan, 2013)

The exact solution of Eq. (31) was given in Xiaobin and
Dequan (2013). According to Section 3 we can construct fifth
order OHAM series as follows.

Zeroth order problem:

B {j»”(rr) =4r—4
B 0;r) =24 r,4 —r]y(0;1r) =

<Z}” ) > z:: ((iﬂ'(ﬁﬁp’) —4(125;;;(,;,”)17,-)

(i > +(4— 4z)> (33)

3 +2r,9 — 2/] (32)

Firstfifth order problems

7i(0;7) =0, 7(0;r) =

Table 1 Optimal values of Zf:,g-(r) given by 5-order of OHAM for Eq. (31).

r Ci(r) G(r) Cs(r) Cy(r) Cs(r)

0 —1.04098 0.00047659 —0.000013094 3.5393 x 107 ~7.19469 x 107
0.2 —1.04134 0.00049515 —0.000014174 4.19711 x 1077 —2.53879 x 10~%
0.4 —1.04087 0.00047063 —0.000012759 3.38551 x 1077 —5.52697 x 107°
0.6 —1.04125 0.00063290 —0.00040490 1.41883 x 1077 —5.33321 x 107°
0.8 —1.041203 0.00048767 —0.000013721 3.82523 x 1077 —5.43775 x 1078
1 —1.041131 0.00048390 —0.000013505 3.73537 x 107 —7.88364 x 107°

Table 2 Optimal values of Zleé,-(r) given by 5-order of OHAM for Eq. (31).

r C(r) Co(r) Cs(r) Ca(r) Cs(r)

0 —1.04094 0.00047412 —0.000012945 3.46279 x 1077 —6.89188 x 10~
0.2 —1.04067 0.00046043 —0.000012170 3.09365 x 1077 —5.60042 x 107°
0.4 —1.04035 0.00044264 —0.000011113 2.56184 x 1077 —3.58411 x 10~°
0.6 —1.04030 0.00043985 —0.000010951 2.48296 x 10~ —3.30018 x 10~°
0.8 —1.04144 0.00049992 —0.000014419 4.14407 x 107 —1.39664 x 1078
1 —1.04100 0.00047708 —0.000013115 3.54585 x 1077 —7.19558 x 10~°

Table 3 Comparison of the result accuracy of 5-order OHAM at ¢ = 0.1 and the method (Xiaobin and Dequan, 2013) at ¢ = 0.001 for
the lower and the upper solution of Eq. (31) for all r € [0, 1].

r

[Error], Xiaobin and Dequan (2013)

E(0.1;7) OHAM

[Error], Xiaobin and Dequan (2013)

E(0.1;r) OHAM

0 0.00099871222831 5.77315 x 107'° 0.00101009737569 7.99360 x 10~'%
0.2 0.00119975860278 7.11068 x 10710 0.00080905100122 5.15143 x 10714
0.4 0.00140080497724 275814 x 107! 0.00060800462676 497379 x 10~ 14
0.6 0.00160185135171 3.11132 x 1071° 0.00040695825230 5.68434 x 10714
0.8 0.00180289772617 141117 x 107° 0.00020591187783 3.94784 x 10710
1 0.00200394410063 3.99680 x 10~!° 0.00000486550337 3.55271 x 10~1%
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where r € [0,1] and i = 1, 2, 3, 4, 5. Using mathematica pack-
age to find the solutions for the lower and the upper bounds
for the problems (30) and (31), we obtain

o5 (e300
+ s (I,Zéi(r)§r> (34)

By using the least square method that was mentioned in
Section 3, we can compute the optimal values of C, (r),
Cs(r), C5(r), C4(r) and Cs(r) as shown in 7 = 0.1 the following
tables below (see Tables 1-3).

Now we can tabulate the absolute errors [E], and [E], of
the approximate solutions y(0.1;r) and 7(0.1;r) obtained by
S-order OHAM series solution compared with undetermined
fuzzy coefficients method in (Xiaobin and Dequan, 2013) for
all r € [0, 1] as follows.

We can conclude from the above table the accuracy of the
approximate solution of Eq. (31) solved by 5-order OHAM for
all r €[0,1] when = 0.1 is better than undetermined fuzzy
coefficients method (Seikkala, 1987) when ¢ = 0.001. The next
figure shows the 5-order OHAM approximate solution y(z;r)
compared with the exact solution y(#;r) for all r € [0, 1] at:
t = 0.1: (see Fig. 2).

Example 2. Consider the fourth order linear FIVP with

triangular  fuzzy initial conditions (Khodadad and
Moghadam, 2006)
(@) = 7"(1) +3"(1) + 7'(0) + 230(1), 1 €[0,1] (35)

7(0) = [o.s\ﬁ 03,02V —r+ o.z]

7'(0) = [0.4¢" — 0.3,0.4¢" " — 0.3]
Exact & OHAM Solutions
LOF 7T T T T Py Py T T T L
Fxact X
08 - X X 1
GIAM ()
D 06| X X i
>
2
dooal ® ® J
2 X X
00 4 L 1 L PR — 1 L PR PR n 1 PR n n ] PR i -
25 30 35 40 45 50
Y(0.1:0)&50.1;1)
Figure 2 Approximate 5-order OHAM and the exact solution of

Eq. (31) at ¢z = 0.1.

77(0) = [e’, ez”'}

7(0) =
The exact solution of the Eq. (35) was given in Khodadad and
Moghadam (2006). Applying OHAM in Section 3 on Eq. (35)
we obtain:

Zero order problem

r+2,4—r], Vrelo1]

3 =0 (36)
2o(0;7) = |-——10.3,02vV1 —r+0.2|,

15(0;r) = [0.4¢" — 0.3,0.4¢*" — 0.3]

Yo(Osr) = [e" ], () =[r+2,4 1]

First to sixth order problem

{<1p> (2”@(,;,))}
() () ()
(zpy, ) (zpyu)} &

7i(0;7) =0, #(0;r) =0, #(0;r)=0,

where r € [0,1] and i = 1, 2, 3, 4, 5, 6.

Using mathematica package to find the solutions for the
lower and the upper bounds for the problems (36) and (35), we
obtain (see Fig. 3)

7(0;r)=0

6
Fo(t;0) = Fo(tr) + Y (1, Ci(r);r) (38)
i=1
By using the least square method that was mentioned in
Section 3, we can compute the optimal values of C,(r) as
shown in the following tables below (see Table 4).

Exact & OHAM solutions

10 [ T T * T ]

I OHAM X
= A e = Exact =+ ]
sl * * ]

B |

L o * o ]
02 * * 1
00 b, . . . . . . 2

1 2 3 4 5 6 7 8

HLn&F(Lr)

Figure 3  Approximate 6-order OHAM and exact solutions of
Eq. 35)at = L.
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Table 4 Comparison of the result accuracy solved by 6-order of OHAM and the exact solution at # = 1 for the lower and the upper

solution of Eq. (35) for all r € [0, 1].

r Gi(r) E(1;r) OHAM Ci(r) Gi(r)

0 —1.103529525572901 1.54824 x 1078 —1.103736577943245 —1.103736577943245
0.2 —1.103744444421023 2.11509 x 1078 —1.1037575787033083 —1.1037575787033083
0.4 —1.103792071040843 2.57572 x 1078 —1.1037732976880386 —1.1037732976880386
0.6 —1.1038080533565133 3.06465 x 10~% —1.103794588365459 —1.103794588365459
0.8 —1.10381293474532 3.60336 x 10~% —1.1038103704152256 —1.1038103704152256
1 —1.1038081037895575 4.21204 x 1078 —1.1038081037895575 —1.1038081037895575

6. Conclusions

In this paper, we studied and applied the optimal homotopy
asymptotic method in finding solution of high order fuzzy ini-
tial value problems involving linear ordinary differential equa-
tions. To the best of our knowledge, this is the first attempt for
solving the high order FIVPs with OHAM. The method has
been formulated to obtain an approximate solution of general
high order FIVP. The convergence theorem of OHAM for
solving FIVPs has been presented and proved. In OHAM,
the control and adjustment of the convergence of the series
solution using the convergence control parameters are
achieved in a simple way in a numerical example including sec-
ond order linear and fourth order fuzzy initial value problems
showing the capability and efficiency of the OHAM. We
obtained accurate results by using even low order approxima-
tion. Moreover, this technique converges to the exact solution
and requires less computational work directly without reduc-
ing to first order system. The numerical results obtained by
OHAM satisfy the fuzzy number properties by taking the con-
vex fuzzy number shape. Moreover the procedure of OHAM
has advantages over some existing analytical approximation
methods.
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