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Abstract The consistent tanh expansion (CTE) method is developed for the combined KdV–

mKdV equation. The combined KdV–mKdV equation is proved to be CTE solvable. New exact

interaction solutions such as soliton–cnoidal wave solutions, soliton–periodic wave solutions for

the combined KdV–mKdV equation are given out analytically and graphically.
� 2016 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As well known, how to find abundant more exact solutions for

nonlinear systems, especially interaction solutions, is one of
the most important aspects in the soliton theory. Many inte-
grable properties, such as the multi-soliton solutions, Darboux

transformation, symmetry reduction, Hirota bilinear form,
homogeneous balance method, etc, are studied extensively
after efforts of mathematicians and physicists. But for other

integrable systems, it is still very difficult to find the interaction
solutions among different types of excitations because there
are no universal formulae to construct all the possible interac-
tion wave solutions. However, according to the results of the

symmetry reduction with nonlocal symmetries, Lou proposed
the consistent tanh expansion method (CTE) recently (Lou,
2015), which is a more generalized but a much simpler method

to find new interaction solutions between a soliton and other
types of nonlinear excitations such as the soliton-resonant
solution, soliton–cnoidal waves and soliton–perodic waves.

Many new interaction solutions for nonlinear systems, for
instance, the Boussinesq equation, dispersive water wave equa-
tion, Boussinesq-Burgers equation, break soliton equation,

nonlinear Schrödinger equation and modified Kadomtsev-
Petviashvili equation, are discussed in detail (Alam and
Akbar, 2015; Bekir, 2009; Hu et al., 2012; Lou et al., 2014;
Ren, 2015).

In this paper, we focus on the combined KdV–mKdV equa-
tion, which is also known as the Gardner equation

ut þ 2auux � 3u2ux þ uxxx ¼ 0; ð1Þ
where a is a constant. Eq. (1) is widely used in various fields of
physics, such as solid-state physics, plasma physics, fluid phy-

sics and quantum field theory (Fu et al., 2004; Miura, 1997; Xu
et al., 2003). The solitary solutions, traveling wave solutions,
quasi-periodic solutions and symmetries for the combined

KdV–mKdV Eq. (1) have been studied by means of the
extended mapping method, extended tanh expansion method
and new Riccati equation expansion method (Bekir, 2009;
Huang and Zhang, 2006 Sirendaoerji, 2006; Zhao et al.,
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2006). The generalization form in (2+1)-dimensions of the

combined KdV–mKdV equation has been discussed in Dai
and Wang (2014), Geng and Cao (2001), Krishnan and Peng
(2006), Zhang and Lin (1995), and Zhou and Ma (2000).

The paper is organized as follows. In Section 2, the CTE
method will be defined briefly. New different interaction solu-
tions including soliton–cnoidal waves, soliton–periodic waves
solutions are obtained in Section 3. The detailed structures

of new interaction solutions among nonlinear excitations are
also given out graphically. The last section is devoted to sum-
mary and discussion.

2. Consistent tanh expansion for the combined KdV–mKdV

equation

For a given nonlinear evolution system,

Pðx; t; uÞ ¼ 0; x ¼ xðx1; x2; . . . ; xnÞ; u ¼ uðu1; u2; . . . ; unÞ;
ð2Þ

we aim to look for the possible truncated expansion solution

u ¼
Xn

j¼0

ujðx; tÞtanh jðwÞ; ð3Þ

where wðx; tÞ is a function to be determined, n should be deter-
mined from the leading order analysis of Eq. (2) and all the

expansion coefficients ujðx; tÞ will be determined by vanishing

the coefficients of different powers of tanhðwÞ after substitut-
ing Eq. (3) into Eq. (2). If the system of uj and w is consistent,

we call the nonlinear system (2) is CTE solvable. In order to

balance the nonlinear term u2ux and the dispersive term uxxx,

we have 3nþ 1 ¼ nþ 3 and it is easy to find n ¼ 1, which is
very similar to the leading order analysis of the Painlevé test
for the nonlinear differential equation. We can seek the follow-

ing truncated tanh expansion

u ¼ u0 þ u1 tanhðwÞ: ð4Þ
Substituting Eq. (4) into Eq. (1) yields

3u1wxðu21 � 2w2
xÞtanh4ðwÞ þ ð6u1wxwxx � 2au21wx � 3u21u1x

þ 6u0wxu
2
1 þ 6u1xw

2
xÞtanh3ðwÞ þ ½2au1u1x � 3u21ðu0x þ u1wxÞ

� u1wt þ 8u1w
3
x � 3u1xwxx � 2au0u1wx þ 3u20u1wx � u1wxxx

� 6u0u1u1x � 3u1xxwx�tanh2ðwÞ þ ½u1t þ u1xxx þ 2au0u1x

� 6u1wxwxx þ 2au21wx þ 2au1u0x � 6u0u1u0x � 6u0u
2
1wx

� 3u20u1x � 6u1xw
2
x� tanhðwÞ þ u0t þ u0xxx þ 3u1xxwx þ u1wxxx

þ 2au0u0x þ u1wt þ 2au0u1wx � 3u20u1wx � 2u1w
3
x � 3u20u0x

þ 3u1xwxx ¼ 0:

Then setting the coefficients of different powers of tanh jðwÞ
to zero and solving the undetermined functions u0; u1;w, we
have

u0 ¼ 2awx � 3
ffiffiffi
2

p
rwxx

6wx

; u1 ¼
ffiffiffi
2

p
rwx; r2 ¼ 1; ð5Þ

and

12w2
x � 6S� 6C� 2a2 ¼ 0; ð6Þ

ð12w2
x � 6S� 6CÞx þ

wxx

wx

ð12w2
x � 6S� 6C� 2a2Þ ¼ 0; ð7Þ
w2
xx

w2
x

þ 2w2
x �

wxxx

wx

� �
ð12w2

x � 6S� 6C� 2a2Þ

� ð12w2
x � 6S� 6C� 2a2Þxx

� wxx

wx

ð12w2
x � 6S� 6C� 2a2Þx ¼ 0; ð8Þ

where

S ¼ wxxx

wx

� 3

2

w2
xx

w2
x

; C ¼ wt

wx

;

are Möbius invariants. It is easy to see that the Eqs. (7) and (8)
are satisfied automatically because of (6) and we know that the
w-consistent condition is just Eq. (6). From Eqs. (7) and (8), we

can also have Eq. (6). Here we just consider the simplest Eq.
(6) about w as the consistent condition to avoid the compli-
cated calculation. In other words, if w is a solution of (6), then

u ¼ 2awx � 3
ffiffiffi
2

p
rwxx

6wx

þ
ffiffiffi
2

p
rwx tanhðwÞ; ð9Þ

is also a solution of the combined KdV–mKdV Eq. (1). So the

expression (9) can be regarded as a nonauto-Bäcklund trans-
formation of (1). Once the solution of (6) is known, then the
solution of (1) will be obtained directly from (9). Many more

interesting concrete interaction solutions will be studied in
detail in the next section.

3. New interaction solutions for combined KdV–mKdV equation

It has been pointed out that if the solution of w-equation (6) is
known, one can obtain the explicit solutions of Eq. (1) from

(9). However, it is difficult to find the general solution of (6)
because of its complexity. In order to obtain the interaction
solutions between solitons and cnoidal waves of Eq. (1), we

consider the function w in the form

w ¼ k1xþ x1tþWðXÞ; X ¼ k2xþ x2t: ð10Þ
Substituting (10) into Eq. (6), we can find that W1ðXÞ

satisfies

W2
1X ¼ 4W4

1 þ C3W
3
1 þ

C2

3
W2

1 þ
C1

3
W1 þ C0

3
; ð11Þ

with

WðXÞX ¼ W1ðXÞ;

C2 ¼ 6x2 þ 9C3k1k
2
2 þ 2a2k2 � 72k2k

2
1

k3
2

;

C1 ¼ 9C3k
2
1k

2
2 þ 3k2x1 þ 9k1x2 þ 4a2k1k2 � 96k31k2

k42
;

C0 ¼ k1ð2a2k1k2 � 36k31k2 þ 3k2x1 þ 3C3k
2
1k

2
2 þ 3k1x2Þ

k52
;

and C3 is an arbitrary constant. It is known that the general
solutions of Eq. (11) can be expressed in terms of Jacobi elliptic

functions. The concrete examples of the soliton–cnoidal wave
interaction solutions will be discussed in the following paper.

Firstly, we assume the function w in the form

w ¼ k0xþ x0tþ c1Efðsnðk1xþ x1t;mÞ;mÞ; ð12Þ
where Ef is the first incomplete elliptic integral and sn is the

usual Jacobi elliptic sine function. Substituting (12) into Eq.
(6) and setting the coefficients of different powers of Jacobi



Fig. 2 Second type of soliton–cnoidal wave interaction solution

of u given by (9), (12), (14) and (16).
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elliptic functions into zero, we will have two constant solu-

tions. The first case is

x0 ¼ k0ð48k20k1 � 2a2k1 � 3x1Þ
3k1

; c1 ¼ k0
k1

; ð13Þ

with k0; k1;m;x1; a being arbitrary constants. The second case

is

x0 ¼ k0ð6k20 þ 18k21c
2
1 � a2Þ

3
; x1 ¼ 2c21k

3
1 þ 6k20k1 �

1

3
a2k1;

ð14Þ
where c1; k0; k1;m; a are five arbitrary constants. Then substi-
tuting (12) with Eqs. (13) or (14) into Eq. (9) respectively, we
will obtain different types of the soliton–cnoidal wave interac-
tion solutions for the combined KdV–mKdV Eq. (1). We omit

the complicated expression of the soliton–cnoidal wave inter-
action solutions and only the structure is shown in Fig.1 by
selecting the arbitrary constants as

a ¼ �1; x1 ¼ �3; k0 ¼ �0:5; k1 ¼ 2; m ¼ 0:98; r ¼ 1:

ð15Þ
When the arbitrary constants are fixed as

c1 ¼ 0:5; a ¼ 1; k0 ¼ �1; k1 ¼ 2; m ¼ 0:98; r ¼ 1;

ð16Þ
we can obtain new soliton–cnoidal wave interaction solution
for combined KdV–mKdV Eq. (1) given by (9), (12), (14)
and (16) and the detailed structure is given in Fig. 2.

Secondly, in order to find more interesting soliton–cnoidal

wave interaction solution, we also can restrict the function w as

w ¼ k2xþ x2tþ c2Ep½snðk3xþ x3t;mÞ; n;m�; ð17Þ
where the function Ep is the third incomplete elliptic integral

and m is the module of the Jacobi elliptic sine function. After
Fig. 1 First type of soliton–cnoidal wave interaction solution of

u given by (9), (12), (13) and (15).
substituting (17) into the consistent condition (6), we can
arrive at the relations of constants

k2 ¼ � k3ðc22 � nþ 1Þ
c2

; m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� nÞðc22 � nþ 1Þ

p
1� n

; ð18Þ

x2 ¼ 1

3c32
½ð18n� 12Þk23 þ a2�c42 � ðn� 1Þ½18k23ðn� 1Þ þ a2�c22
�

þ 6ðn� 1Þ3k23
�
þ 2nk23c

3
2

1� n
; ð19Þ

x3 ¼ 2nk33c
2
2

n� 1
� k3
3c22

ð12k23ð2n� 1Þ þ a2Þc22 � 18k23ðn� 1Þ2
h i

; ð20Þ

with k3; c2; n; a being arbitrary constants. Substituting Eqs.
(17)–(20) into Eq. (9) and selecting the arbitrary constants as

c2 ¼ 0:5; n ¼ 0:5; k3 ¼ 2; a ¼ 1; r ¼ 1; ð21Þ

we will have another interesting soliton–cnoidal wave interac-
tion solution of the combined KdV–mKdV equation which is
displayed in Fig. 3.

Lastly, it is known that the single soliton and periodic wave
solutions expressed by hyperbolic functions and Jacobi elliptic
functions have been studied in Zhao et al. (2006), Sirendaoerji

(2006),Huang and Zhang (2006), Zhu (2014) by means of the
extended tanh expansion method and Jacobi elliptic function
expansion. It is clear that trivial solution of the consistent con-
dition (6)

w ¼ kxþ 2k3 � 1

3
a3k

� �
t;

leads to the single soliton for the combined KdV–mKdV equa-

tion. So we can obtain not only the usual soliton solution but
also many new soliton–cnoidal wave interaction solutions in
Figs. 1–3 for nonlinear integrable systems from the CTE
method.



Fig. 3 Third type of soliton–cnoidal wave interaction solution of

u given by (9) and (17)–(21).
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4. Conclusion and discussion

In conclusion, we use a very simple CTE method to study the

combined KdV–mKdV equation and it is proved to be CTE
solvable. Many new exact interaction excitations such as the
soliton–cnoidal wave interaction solutions, the soliton–peri-

odic solutions are constructed directly from the CTE method
by selecting different solutions to the consistent condition.
These new interaction wave solutions are presented analyti-
cally and graphically with the proper constant selections. In

general, for a CTE solvable system, we can obtain new differ-
ent types of soliton–cnoidal wave solutions, which help us to
learn the nonlinear system much better. The more interaction

excitations from CTE method about other integrable systems,
especially for the coupled integrable systems, such as the inte-
grable coupled KdV system and the coupled integrable disper-

sionless system, will be worthy of study further.
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