
 
 

 يلا خط( العامة لحل معادلة تطور G'/Gتعميم إضافي لطريقة مفكوك )
 

Hasibun Naher 
a,b,*

,  Farah Aini Abdullah 
b
 

 
a
 Department of Mathematics and Natural Sciences, BRAC University,  

66 Mohakhali, Dhaka 1212, Bangladesh 
b
 School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia 

 
 

 الملخص:
( لإيجاد حلول موجية مسافرة جديدة.  بالإضافة G'/Gفي هذا البحث يتم تعميم إضافي آخر لطريقة مفكوك )

بارامترات.  تم تطبيق الطريقة يتم الاستعانة بمعادلة تفاضلية لا خطية كمعادلة مساعدة جديدة ذات عدة 
( لاستنتاج حلول عامة، والتي تؤول إلى حلول سابقة معروفة لقيم معينة لبعض ZKBBMلمعادلة )
 .البارامترات

 

 

 
 
 
 
 
 
 
 
 

 

 

 

H. Naher and F.A. Abdullah 

 



ORIGINAL ARTICLE

Further extension of the generalized and

improved (G0/G)-expansion method for nonlinear

evolution equation

Hasibun Naher
a,b,*, Farah Aini Abdullah

b

a Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
b School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

Received 1 October 2013; revised 15 May 2014; accepted 25 May 2014

Available online 21 June 2014

KEYWORDS

Further extension of the

generalized and improved

(G0/G)-expansion method;

Nonlinear ordinary

differential equation;

ZKBBM equation;

Travelling wave solutions

Abstract In this article, the generalized and improved (G0/G)-expansion method has been pro-

posed for further extension to generate many new travelling wave solutions. In addition, nonlinear

ordinary differential equation is implemented as auxiliary equation including many parameters

instead of linear ordinary differential equation. Moreover, the presentation of the travelling wave

solutions is quiet new. The effectiveness and reliability of the method are shown by its application

to the Zakharov–Kuznetsov–Benjamin–Bona–Mahony (ZKBBM) equation. Some of our generated

solutions turned into some known solutions, when parameters consider specific values and others

are new.
ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Nonlinear partial differential equations (PDEs) play a vital

role in the field of science and engineering, such as fluid
mechanics, plasma physics, solid state physics, chemical phys-
ics, quantum mechanics, optical fibres, electricity, geochemis-

try, meteorology and many others (Kaya, 2004; Wazwaz,
2005; Wang et al., 2006; Elhanbaly and Abdou, 2007; Bekir,
2008; Shang, 2010; Bekir and Uygun, 2012). Due to important

applications of nonlinear PDEs in real world problems, it is
required to generate their analytical solutions. With the help

of analytical solutions, if exist, the phenomena modelled can
be better understood by these nonlinear PDEs. In the past sev-
eral decades, many powerful methods have been developed by
a diverse group of researchers to construct exact solutions. For

example, the Cole–Hopf transformation method (Cole, 1951;
Hopf, 1950), the Hirota’s bilinear transformation method
(Hirota, 1971), the truncated Painleve expansion method

(Weiss et al., 1982), the Backlund transformation method
(Rogers and Shadwick, 1982), the Weirstrass elliptic function
method (Kudryashov, 1990), the inverse scattering method

(Ablowitz and Clarkson, 1991), the tanh method (Malfliet,
1992), the tanh–coth method (Wazwaz, 2007), the Riccati
equation method (Yan and Zhang, 2001; Naher and

Abdullah, 2012a,b; Naher et al., 2013b), the Jacobi elliptic
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function expansion method (Liu et al., 2001), the
F-expansion method (Wang and Li, 2005; Abdou, 2007), the
Exp-function method (He and Wu, 2006; Naher et al.,

2012a; Mohyud-Din et al., 2010; Ma and Zhu, 2012) and oth-
ers (Bagarti et al., 2012; Belgacem et al., 2013; Bibi and
Mohyud-Din, 2014; Dai and Zhu, 2013; Noor et al., 2013;

Zhu, 2013; Dai and Zhu, 2014; Dai et al., 2014; Zhu and
Pan, 2014). However, basically there is no unified method that
can be applied to handle all types of nonlinear evolution

equations (NLEEs).
Recently, Wang et al. (2008) presented a direct method and

called the (G0/G)-expansion method to generate travelling wave
solutions of some NLEEs. Many scientists effectively imple-

mented the (G0/G)-expansion method to solve various kinds
of nonlinear problems for obtaining travelling wave solutions
(Zayed and Gepreel, 2009; Feng et al., 2011; Naher et al.,

2011; Naher and Abdullah, 2012c; Bekir and Aksoy, 2012;
Alzaidy, 2013).

The efficiency of the (G0/G)-expansion method has been

demonstrated through its extension and improvement. Such
as, Zayed (2009) proposed extended (G0/G)-expansion method,
where G(n) satisfies the Jacobi elliptic equation. Zhang et al.

(2010) improved the (G0/G)-expansion method. After that
many scientists applied the improved (G0/G)-expansion method
for generating many travelling wave solutions for nonlinear
PDEs, (Hamad et al., 2011; Naher and Abdullah, 2012d,e,f;

Naher et al., 2012b; Ye and Cai, 2011).
Lately, Guo and Zhou (2010) introduced the extended (G0/

G)-expansion method for the Whitham–Broer–Kaup-like

equation and couple Hirota–Satsuma KdV equations. Then,
Zayed and Al-Joudi (2010) implemented this method whilst
Zayed and El-Malky (2011) solved higher-dimensional evolu-

tion equations by using this method. Later on, Akbar et al.
(2012) proposed another extension of the (G0/G)-expansion
method to the KdV equation, the ZKBBM equation and the

strain wave equation in microstructured solids, called the gen-
eralized and improved (G0/G)-expansion method. Additional
parameter is added in the presentation of the solutions, but
the same second-order linear ordinary differential equation

has been used as auxiliary equation. Afterward, Naher et al.
(2013a) studied higher dimensional nonlinear PDE via this
method and so on. In a whilst, Liu et al. (2012) introduced

another approach of (G0/G) method which is also the improved
(G0/G)-expansion method.

Very recently, Naher and Abdullah (2013) presented a new

approach of the (G0/G)-expansion method and a new approach
of the generalized (G0/G)-expansion method. In this method,
nonlinear ODE has been executed as auxiliary equation. On
the other hand, the presentations of the travelling wave solu-

tions are quite different.
In the present work, we improve the (G0/G)-expansion

method called further extension of the generalized and

improved (G0/G)-expansion method. In the method, nonlinear
ODE is used as auxiliary equation with many parameters. It is
quite interesting to point out that, the sign of the parameters

can take the opportunity to motivate the types of travelling
wave solutions. For illustration and to depict the advantages
of the proposed method, the ZKBBM equation has been stud-

ied and generated abundant and more types of new travelling
wave solutions.

2. Description of new extension of the generalized and improved

(G0/G)-expansion method

Let us consider a general nonlinear PDE:

Fðu; ut; ux; ut t; uxtuxx; . . .Þ ¼ 0; ð1Þ

where u= u(x,t) is an unknown function, F is a polynomial in
u(x,t) and its partial derivatives in which the highest order par-

tial derivatives and nonlinear terms are involved. The main
steps of the method are as follows:

Step 1. We suppose that the combination of real variables x
and t by a complex variable u

uðx; tÞ ¼ uðuÞ; u ¼ x�W t; ð2Þ

where W is the speed of the travelling wave. Now

using Eqs. (2), (1) is converted into an ordinary dif-
ferential equation for u = u(u):

Qðu; u0; u00; u000; . . .Þ ¼ 0; ð3Þ

where the superscripts indicate the ordinary deriva-
tives with respect to u.

Step 2. According to the possibility, Eq. (3) can be inte-
grated term by term one or more times, yields

constant(s) of integration. The integral constant
may be zero, for simplicity.

Step 3. Suppose that the travelling wave solution of Eq. (3)

can be expressed as follows:

uðuÞ ¼
XN

j¼�N
ajðdþHÞj þ

XN

j¼1

bj

ðdþHÞj
; ð4Þ

where either a�N or aN or bN may be zero, but these

a�N,aN and bN cannot be zero at a time, aj ( j= 0, ±
1, ± 2, . . ., ± N),bj (j = 1,2, . . . ,N) and d are arbi-
trary constants to be determined later and H(u) is

HðuÞ ¼ ðG0=GÞ; ð5Þ

where G= G(u) satisfies the following nonlinear
ordinary differential equation (ODE)

AGG00 � BGG0 � CðG0Þ2 � EG2 ¼ 0; ð6Þ

where the primes denote derivatives with respect to u
and A,B,C, and E are real parameters.

Step 4. To determine the positive integer N, taking the

homogeneous balance between the highest order
nonlinear terms and the highest order derivatives
appearing in Eq. (3).

Step 5. Substituting Eqs. (4) and (6) including Eq. (5) into
Eq. (3) with the value of N obtained in Step 4 we
obtain polynomials in (d +H)N(N = 0, ± 1, ±
2, . . .) and (d+ H)�N(N= 1,2,3, . . .). Then, we col-

lect each coefficient of the resulted polynomials to
zero, yields a set of algebraic equations for
aj(j= 0, ± 1, ± 2, . . . , ± N),bj (j= 1,2, . . . ,N),d

and W.
Step 6. Suppose that the value of the constants aj

(j= 0, ± 1, ± 2, . . . , ± N),bj(j= 1,2, . . . ,N),d and

W can be found by solving the algebraic equations
which are obtained in step 5. Since the general
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solution of Eq. (6) is well known to us, substituting

the values of constants into Eq. (4), we can obtain
more general type and many new travelling wave
solutions of the nonlinear partial differential Eq. (1).

Using the general solution of Eq. (6), we have the following
solutions of Eq. (5):

Family 1. When B „ 0,W = A � C and X = B2 +

4E(A � C) > 0,

HðuÞ ¼ G0

G

� �

¼ B

2W
þ

ffiffiffiffi
X
p

2W

C1 sinh
ffiffiffi
X
p

2W u
� �

þ C2 cosh
ffiffiffi
X
p

2W u
� �

C1 cosh
ffiffiffi
X
p

2W u
� �

þ C2 sinh
ffiffiffi
X
p

2W u
� � ð7Þ

Family 2. When B „ 0,W = A � C and X = B2 +

4E(A � C) < 0,

HðuÞ ¼ G0

G

� �
¼ B

2W
þ

ffiffiffiffiffiffiffiffi
�X
p

2W

�C1 sin
ffiffiffiffiffi
�X
p

2W u
� �

þ C2 cos
ffiffiffiffiffi
�X
p

2W u
� �

C1 cos
ffiffiffiffiffi
�X
p

2W u
� �

þ C2 sin
ffiffiffiffiffi
�X
p

2W u
� �

ð8Þ

Family 3. When B „ 0,W = A � C and X = B2 +

4E(A � C) = 0,

HðuÞ ¼ G0

G

� �
¼ B

2W
þ C2

C1 þ C2u
ð9Þ

Family 4. When B = 0,W = A � C and D = WE > 0,

HðuÞ ¼ G0

G

� �
¼

ffiffiffiffi
D
p

W

C1 sinh
ffiffiffi
D
p

W u
� �

þ C2 cosh
ffiffiffi
D
p

W u
� �

C1 cosh
ffiffiffi
D
p

W u
� �

þ C2 sinh
ffiffiffi
D
p

W u
� � ð10Þ

Family 5. When B = 0,W = A � C and D = WE < 0,

HðuÞ ¼ G0

G

� �
¼

ffiffiffiffiffiffiffi
�D
p

W

�C1 sin
ffiffiffiffiffi
�D
p

W u
� �

þ C2 cos
ffiffiffiffiffi
�D
p

W u
� �

C1 cos
ffiffiffiffiffi
�D
p

W u
� �

þ C2 sin
ffiffiffiffiffi
�D
p

W u
� �

ð11Þ

3. Application of the method

In this section, the ZKBBM equation has been investigated by
applying the proposed method to construct a rich class of new

travelling wave solutions.

3.1. The ZKBBM equation

Let us consider the ZKBBM equation

ut þ ux � 2auux � buxxt ¼ 0: ð12Þ

Now, we use the wave transformation u = x +W t into the
Eq. (12), which yields:

1þWð Þu0 � 2auu0 � bVu000 ¼ 0: ð13Þ

Eq. (13) is integrable, therefore, integrating with respect to u
once yields:

Kþ ð1þWÞu� au2 � bVu00 ¼ 0; ð14Þ

where K is an integral constant which is to be determined.

Taking homogeneous balance between u2 and u00 in Eq.
(14), we obtain N = 2.

Therefore, the solution of Eq. (14) is of the form:

vðuÞ ¼ a0 þ a1ðdþHÞ þ a2ðdþHÞ2 þ ða�1 þ b1ÞðdþHÞ�1

þ ða�2 þ b2ÞðdþHÞ�2; ð15Þ

where a�2,a�1,a0,a1,a2,b1,b2 and d are constants to be
determined.

Substituting Eq. (15) together with Eqs. (5) and (6) into Eq.
(14), the left-hand side is converted into polynomials in
(d + H)N(N= 0, ± 1, ± 2, . . .) and (d+ H)�N

(N = 1,2,3, . . .). We collect each coefficient of these resulted

polynomials to zero, yields a set of simultaneous algebraic
equations (for simplicity, which are not presented) for
a�2,a�1,a0,a1,a2,b1,b2,d, K and W. Solving these algebraic

equations with the help of algebraic software Maple, we obtain
the following.

Case 1:

a�2¼�b2; a�1¼�b1;

a0¼
A2þWðA2�bB2Þ�4bWWf3dðBþdWÞ�2Eg

2aA2
; d¼ d;

a1¼
6bWfWðBþ2dWÞg

aA2
; a2¼

�6bWW2

aA2
; W¼W;

K¼fbWð4DþB2Þg2�fA2ð1þWÞg2

4aA4
;

ð16Þ

where W = A � C, D = WE, b1, b2, A, B, C and E are free
parameters.
Case 2:

a�2 ¼
�6bWfd2Wðd2Wþ 2ðdB� EÞÞ þ ðdB� EÞ2g

aA2
� b2;

a1 ¼ 0; a2 ¼ 0;

a�1 ¼
6bWfdð2d2W2 þWð3dB� 2EÞÞ þ BðdB� EÞg

aA2
� b1;

d ¼ d; W ¼W;

a0 ¼
A2 þWðA2 � bB2Þ � 4bWWf3dðBþ dWÞ � 2Eg

2aA2
;

K ¼ fbWð4Dþ B2Þg2 � fA2ð1þWÞg2

4aA4
;

ð17Þ

where W = A � C, D = WE, b1, b2, A, B, C and E are free
parameters.

Case 3:
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a�2 ¼
�3bWf8Dð2Dþ B2Þ þ B4g

8aA2W2
� b2;

a�1 ¼ �b1; a0 ¼
2bWð4Dþ B2Þ þ A2ð1þWÞ

2aA2
; a1 ¼ 0;

a2 ¼
�6bWW2

aA2
; d ¼ �B

2W
;

K ¼ 128b2W2Dð2Dþ B2Þ þ ð4bB2WÞ2 � fA2ð1þWÞg2

4aA4
;

W ¼W; ð18Þ

where W = A � C, D = WE, b1, b2, A, B, C and E are free
parameters.

Case 4:

a�2 ¼
�3bWf8Dð2Dþ B2Þ þ B4g

8aA2W2
� b2; a�1 ¼ �b1;

a0 ¼
2bWð4Dþ B2Þ þ A2ð1þWÞ

2aA2
;

a1 ¼ 0; a2 ¼ 0; d ¼ �B
2W

;

K ¼ fbWð4Dþ B2Þg2 � fA2ð1þWÞg2

4aA4
; W ¼W;

ð19Þ

where W = A � C,D = WE,b1,b2,A,B,C and E are free

parameters.

For Case 1: substituting Eq. (16) into Eq. (15), along with
Eq. (7) and simplifying, yields the following travelling wave

solutions (if C1 = 0 but C2 „ 0; C2 = 0 but C1 „ 0)
respectively:

v11ðx; tÞ¼
1þW

2a
�bB2W

2aA2
þ bW

aA2
4Dþ3

2
B2�Xcoth2

ffiffiffiffi
X
p

2W
u

 ! !( )
;

v12ðx; tÞ¼
1þW

2a
�bB2W

2aA2
þ bW

aA2
4Dþ3

2
B2�Xtanh2

ffiffiffiffi
X
p

2W
u

 ! !( )
;

substituting Eq. (16) into Eq. (15), along with Eq. (8) and sim-

plifying, our exact solutions become (if C1 = 0 but C2 „ 0;
C2 = 0 but C1 „ 0) respectively:

v13ðx; tÞ¼
1þW

2a
�bB2W

2aA2
þ bW

aA2
4EWþ3

2
B2þXcot2

ffiffiffiffiffiffiffiffi
�X
p

2W
u

 ! !( )
;

v14ðx; tÞ¼
1þW

2a
�bB2W

2aA2
þ bW

aA2
4Dþ3

2
B2þXtan2

ffiffiffiffiffiffiffiffi
�X
p

2W
u

 ! !( )
;

substituting Eq. (16) into Eq. (15), together with Eq. (9) and
simplifying, our obtained solution becomes:

v15ðx; tÞ¼
1þW

2a
�bB2W

2aA2
þ bW

aA2
4Dþ3

2
B2� 2WC2

C1þC2u

� �2
 ! !

;

similarly, substituting Eq. (16) into Eq. (15), along with Eq.

(10) and simplifying, we obtain the following travelling wave
solutions (if C1 = 0 but C2 „ 0; C2 = 0 but C1 „ 0)
respectively:

v16ðx; tÞ¼
1þW

2a
�bB2W

2aA2
þ2bW

aA2
2Dþ3

ffiffiffiffi
D
p

Bcoth

ffiffiffiffi
D
p

W
u

 !
�

ffiffiffiffi
D
p

coth2

ffiffiffiffi
D
p

W
u

 ! !( )
;

v17ðx; tÞ¼
1þW

2a
�bB2W

2aA2
þ2bW

aA2
2Dþ3

ffiffiffiffi
D
p

Btanh

ffiffiffiffi
D
p

W
u

 !
�

ffiffiffiffi
D
p

tanh2

ffiffiffiffi
D
p

W
u

 ! !( )
;

substituting Eq. (16) into Eq. (15), together with Eq. (11) and
simplifying, our obtained exact solutions become (if C1 = 0
but C2 „ 0; C2 = 0 but C1 „ 0) respectively:

v18ðx; tÞ¼
1þW

2a
�bB2W

2aA2
þ2bW

aA2
2Dþ3

ffiffiffiffi
D
p

iBcot

ffiffiffiffiffiffiffi
�D
p

W
u

 !
þ

ffiffiffiffi
D
p

cot2
ffiffiffiffiffiffiffi
�D
p

W
u

 ! !( )
;

v19ðx; tÞ¼
1þW

2a
�bB2W

2aA2
þ2bW

aA2
2Dþ3

ffiffiffiffi
D
p

iB tan

ffiffiffiffiffiffiffi
�D
p

W
u

 !
þ

ffiffiffiffi
D
p

tan2

ffiffiffiffiffiffiffi
�D
p

W
u

 ! !( )
;

where u = x + W t.

For Case 2: similarly, substituting Eq. (17) into Eq. (15),
along with Eqs. (7)–(11) and simplifying, our travelling
wave solutions become (if C1 = 0 but C2 „ 0; C2 = 0 but

C1 „ 0, for 1st two solutions, again these conditions for
v23 and v24, also same conditions could be applied for solu-
tions v26 and v27, moreover, mentioned conditions are
implemented to solutions v28 and v29) respectively:

v21ðx; tÞ¼ a0þa�1 dþ B

2W
þ

ffiffiffiffi
X
p

2W
coth

ffiffiffiffi
X
p

2W
u

 ! !�1

þa�2 dþ B

2W
þ

ffiffiffiffi
X
p

2W
coth

ffiffiffiffi
X
p

2W
u

 ! !�2
;

v22ðx; tÞ¼ a0þa�1 dþ B

2W
þ

ffiffiffiffi
X
p

2W
tanh

ffiffiffiffi
X
p

2W
u

 ! !�1

þa�2 dþ B

2W
þ

ffiffiffiffi
X
p

2W
tanh

ffiffiffiffi
X
p

2W
u

 ! !�2
;

v23ðx; tÞ¼ a0þa�1 dþ B

2W
þ

ffiffiffiffiffiffiffiffi
�X
p

2W
cot

ffiffiffiffiffiffiffiffi
�X
p

2W
u

 ! !�1

þa�2 dþ B

2W
þ

ffiffiffiffiffiffiffiffi
�X
p

2W
cot

ffiffiffiffiffiffiffiffi
�X
p

2W
u

 ! !�2
;

v24ðx; tÞ¼ a0þa�1 dþ B

2W
�

ffiffiffiffiffiffiffiffi
�X
p

2W
tan

ffiffiffiffiffiffiffiffi
�X
p

2W
u

 ! !�1

þa�2 dþ B

2W
�

ffiffiffiffiffiffiffiffi
�X
p

2W
tan

ffiffiffiffiffiffiffiffi
�X
p

2W
u

 ! !�2
;

v25ðx; tÞ¼ a0þa�1 dþ B

2W
þ C2

C1þC2u

� ��1

þa�2 dþ B

2W
þ C2

C1þC2u

� ��2
;

v26ðx; tÞ¼ a0þa�1 dþ
ffiffiffiffi
D
p

W
coth

ffiffiffiffi
D
p

W
u

 ! !�1

þa�2 dþ
ffiffiffiffi
D
p

W
coth

ffiffiffiffi
D
p

W
u

 ! !�2
;

v27ðx; tÞ¼ a0þa�1 dþ
ffiffiffiffi
D
p

W
tanh

ffiffiffiffi
D
p

W
u

 ! !�1

þa�2 dþ
ffiffiffiffi
D
p

W
tanh

ffiffiffiffi
D
p

W
u

 ! !�2
;
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v28ðx; tÞ¼ a0þa�1 dþ
ffiffiffiffiffiffiffi
�D
p

W
cot

ffiffiffiffiffiffiffi
�D
p

W
u

 ! !�1

þa�2 dþ
ffiffiffiffiffiffiffi
�D
p

W
cot

ffiffiffiffiffiffiffi
�D
p

W
u

 ! !�2
;

v29ðx; tÞ¼ a0þa�1 d�
ffiffiffiffiffiffiffi
�D
p

W
tan

ffiffiffiffiffiffiffi
�D
p

W
u

 ! !�1

þa�2 d�
ffiffiffiffiffiffiffi
�D
p

W
tan

ffiffiffiffiffiffiffi
�D
p

W
u

 ! !�2
;

where u = x +W t.
For Case 3: similarly, substituting Eq. (18) into Eq. (15),

together with Eqs. (7)–(11) and simplifying, our obtained
travelling wave solutions become (if C1 = 0 but C2 „ 0;
C2 = 0 but C1 „ 0, for 1st two solutions, again these condi-

tions for v33 and v34, also same conditions could be applied
for solutions v36 and v37, moreover, mentioned conditions
are implemented to solutions v38 and v39) respectively:

v31ðx; tÞ ¼ a0 þ
a2X

4W2
coth2

ffiffiffiffi
X
p

2W
u

 !
þ 4W2U

X
tanh2

ffiffiffiffi
X
p

2W
u

 !
;

where a0 ¼ 2bWð4DþB2ÞþA2ð1þWÞ
2aA2 , U ¼ �3bWf8Dð2DþB2ÞþB4g

8aA2W2 and u =
x +W t.

v32ðx; tÞ ¼ a0 þ
a2X

4W2
tanh2

ffiffiffiffi
X
p

2W
u

 !
þ 4W2U

X
coth2

ffiffiffiffi
X
p

2W
u

 !
;

v33ðx; tÞ ¼ a0 �
Xa2

4W2
cot2

ffiffiffiffiffiffiffiffi
�X
p

2W
u

 !
� 4W2U

X
tan2

ffiffiffiffiffiffiffiffi
�X
p

2W
u

 !
;

v34ðx; tÞ ¼ a0 �
Xa2

4W2
tan2

ffiffiffiffiffiffiffiffi
�X
p

2W
u

 !
� 4W2U

X
cot2

ffiffiffiffiffiffiffiffi
�X
p

2W
u

 !
;

v35ðx; tÞ ¼ a0 þ a2

C2

C1 þ C2u

� �2

þ U
C2

C1 þ C2u

� ��2

v36ðx; tÞ ¼ a0 þ a2

ffiffiffiffi
D
p

W
coth

ffiffiffiffi
D
p

W
u

 !
� B

2W

 !2

þ U

ffiffiffiffi
D
p

W
coth

ffiffiffiffi
D
p

W
u

 !
� B

2W

 !�2
;

v37ðx; tÞ ¼ a0 þ a2

ffiffiffiffi
D
p

W
tanh

ffiffiffiffi
D
p

W
u

 !
� B

2W

 !2

þ U

ffiffiffiffi
D
p

W
tanh

ffiffiffiffi
D
p

W
u

 !
� B

2W

 !�2
;

v38ðx; tÞ ¼ a0 þ a2

ffiffiffiffiffiffiffi
�D
p

W
coth

ffiffiffiffiffiffiffi
�D
p

W
u

 !
� B

2W

 !2

þ U

ffiffiffiffiffiffiffi
�D
p

W
coth

ffiffiffiffiffiffiffi
�D
p

W
u

 !
� B

2W

 !�2
;

v39ðx; tÞ ¼ a0 þ a2

ffiffiffiffiffiffiffi
�D
p

W
tanh

ffiffiffiffiffiffiffi
�D
p

W
u

 !
þ B

2W

 !2

þ U

ffiffiffiffiffiffiffi
�D
p

W
tanh

ffiffiffiffiffiffiffi
�D
p

W
u

 !
þ B

2W

 !�2
:

where u = x +W t.

For case 4: similarly, substituting Eq. (19) into Eq. (15),
along with Eqs. (7)–(11) and simplifying, the wave solutions
become (if C1 = 0 but C2 „ 0; C2 = 0 but C1 „ 0, for 1st two

solutions, same conditions for v43 and v44, also these condi-

tions for solutions v46 and v47, in addition, mentioned con-
ditions are executed to solutions v48 and v49) respectively:

v41ðx; tÞ ¼ a0 þ
4a�2W

2

X
tanh2

ffiffiffiffi
X
p

2W
u

 !
;

v42ðx; tÞ ¼ a0 þ
4a�2W

2

X
coth2

ffiffiffiffi
X
p

2W
u

 !
;

v43ðx; tÞ ¼ a0 �
4a�2W

2

X
tan2

ffiffiffiffi
X
p

2W
u

 !
;

v44ðx; tÞ ¼ a0 �
4a�2W

2

X
cot2

ffiffiffiffi
X
p

2W
u

 !
;

v45ðx; tÞ ¼ a0 þ a�2
C2

C1 þ C2u

� ��2
;

v46ðx; tÞ ¼ a0 þ a�2
�B
2W
þ

ffiffiffiffi
D
p

W
coth

ffiffiffiffi
D
p

W
u

 ! !�2
;

v47ðx; tÞ ¼ a0 þ a�2
�B
2W
þ

ffiffiffiffi
D
p

W
tanh

ffiffiffiffi
D
p

W
u

 ! !�2
;

v48ðx; tÞ ¼ a0 þ a�2
�B
2W
þ

ffiffiffiffiffiffiffi
�D
p

W
cot

ffiffiffiffiffiffiffi
�D
p

W
u

 ! !�2
;

v49ðx; tÞ ¼ a0 þ a�2
�B
2W
þ

ffiffiffiffiffiffiffi
�D
p

W
tan

ffiffiffiffiffiffiffi
�D
p

W
u

 ! !�2
;

where u = x +W t.

4. Discussions

The advantages and reliability of the proposed method over the

basic (G0/G)-expansion method, the improved (G0/G)-expan-
sion method, the generalized and improved (G0/G)-expansion
method, new approach of the (G0/G)-expansion method and

new approach of the generalized (G0/G)-expansion method
have been described in the following.

Advantages: It is important to point out that, the significant

advantages of further extension of the generalized and
improved (G0/G)-expansion method over the above mentioned
methods are that, the proposed method provides more general
and a rich structure of new travelling wave solutions including

many parameters. Furthermore, if parameters replace by par-
ticular values, some of our solutions coincide with the pub-
lished results, which validates our newly generated solutions

and other solutions are not reported in the previous literature.
Validity: The presentation of the solutions compared with

the form of the presentations of Wang et al. (2008), Zhang

et al. (2010), Akbar et al. (2012) and Naher and Abdullah
(2013)) is as follows:

(i) if A = 1,B takes �k, C= 0 and E takes �l, in Eq. (6),

the nonlinear ODE (6) coincides with linear ODE Eq.
(2.5) of Wang et al. (2008), Eq. (4) of Zhang et al.
(2010), Eq. (2.5) of Akbar et al. (2012),

(ii) if a�1 = 0, a�1 = � b1, b1 = 0,a�2 = 0, a�2 = �b2,
b2 = 0 and d= 0 in Eq. (15), then presentation of fur-
ther extension of the generalized and improved (G0/G)-

expansion method turns into the basic (G0/G)-expansion
method, introduced by Wang et al. (2008),
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(iii) if b1 = 0, b2 = 0 and d = 0 in Eq. (15), our solution

form matched with Eq. (9) (Zhang et al., 2010),
(iv) if b1 = 0 and b2 = 0 in Eq. (15), the presented solution

form come out the generalized and improved (G0/G)-

expansion method which was proposed by Akbar et al.
(2012),

(v) if a�1 = 0, a�2 = 0 and d = 0 in Eq. (15), the solution
form of travelling wave solutions turns into new

approach of (G0/G)-expansion method, presented by
Naher and Abdullah (2013),

(vi) if a�1 = 0 and a�2 = 0 in Eq. (15), new presentation of

the solutions come out new approach of generalized
(G0/G)-expansion method, which was firstly proposed
by Naher and Abdullah (2013).

The obtained solutions also compared with the published
results of Zhang et al. (2010) and Akbar et al. (2012) are as
follows:

(i) if A= 1, B = �k, C = 0, E = �l, b1 = 0, b2 = 0,
d= 0, W = V and K= C in Eq. (17), the present case

2 is identical with the case 1 [Eq. (10)] (Zhang et al., 2010),
(ii) if A= 1, B = �k, C = 0, E = �l, b1 = 0, b2 = 0,

d= 0,W = V and K= C in Eq. (16), our obtained case

1 coincided with the case 2 [Eq. (11)] (Zhang et al., 2010),
(iii) if A= 1, B = �k, C = 0, E = �l, b1 = 0, b2 = 0,

W = V and K = C in Eq. (17), our obtained case 2 coin-

cided with the case 1 [Eq. (3.21)] (Akbar et al., 2012),
(iv) if A= 1, B = �k, C = 0, E = �l, b1 = 0, b2 = 0,

W = V and K = C in Eq. (16), our obtained case 1 coin-
cided with the case 2 [Eq. (3.21)] (Akbar et al., 2012),

(v) if A= 1, B = �k, C= 0,E = �l, b1 = 0, b2 = 0,
W = V and K = C in Eq. (18), our obtained case 3 coin-
cided with the case 3 [Eq. (3.23)] (Akbar et al., 2012).

By using cases 1 and 2, Zhang et al. (2010) obtained solu-
tions u11 � u13 and solutions u21 � u23. After considering par-

ticular values for parameters, our solutions v11 � v15 and
v21 � v25 are identical with the solutions obtained by Zhang
et al. (2010). On the other hand, if we do not follow above
restrictions (i) and (ii), solutions v11 � v15 and v21 � v25 are dis-

similar with Zhang et al. (2010). Moreover, solutions v16 -
� v19,v26 � v29,v31 � v39 and v41 � v49 have been generated
in this work, which were not constructed by Zhang et al. (2010).

Also, Akbar et al. (2012) generated solutions v11 � v15,
v21 � v25 and v31 � v35 by using case 1 to case 3. Newly gen-
erated solutions v11 � v15,v21 � v25 and v31 � v35 are coin-

cided with solutions of Akbar et al. (2012), if our parameters
take specific values. Without following above conditions
(iii)–(v), our solutions v11 � v15,v21 � v25 and v31 � v35 are

not same (Akbar et al., 2012). In addition, we obtained solu-
tions v16 � v19,v26 � v29,v36 � v39 and v41 � v49, which had
not been reported by Akbar et al. (2012).

Therefore, we may state that the basic (G0/G)-expansion

method; the improved (G0/G)-expansion method; the general-
ized and improved (G0/G)-expansion method; new approach
of (G0/G)-expansion method; and new approach of generalized

(G0/G)-expansion method are a particular case of our proposed
method. It is also noticed that, further extension of the gener-
alized and improved (G0/G)-expansion method is more effec-

tive and trustworthy for generating abundant new travelling
wave solutions.

5. Conclusions

In this article, further extension of the generalized and
improved (G0/G)-expansion method has been applied effec-

tively to the ZKBBM equation. New auxiliary equation is used
involving many arbitrary parameters; additional parameter is
also executed in the method. The parameters can take any real

values and nonlinear ordinary differential equation can pro-
duce many solutions. Each solution has rich physical struc-
tures. Obtained solutions show that the proposed method is
more effective, concise and straightforward than the earliest

methods and can be applied for many nonlinear PDEs in
mathematical physics and engineering sciences.
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