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Abstract Anewmathematical model of the equations of two-temperaturemagneto-thermoelasticity

theory for a perfect conducting solid has been constructed in the context of a new consideration of heat

conduction with a time-fractional derivative of order a (0 < a 6 1) and a time-fractional integral of

order t (0 < t 6 2). This model is applied to one-dimensional problem for a perfect conducting half-

space of elastic solid with heat source distribution in the presence of a constantmagnetic field. Laplace

transforms and state-space techniques will be used to obtain the general solution for any set of

boundary conditions. A numerical method is employed for the inversion of the Laplace transforms.

According to the numerical results and their graphs, conclusions about the new theory are given. Some

comparisons are shown in figures to estimate the effects of the fractional order parameters and the

temperature discrepancy on all the studied fields.
ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

The classical uncoupled theory of thermoelasticity predicts two
phenomena not compatible with physical observations. First,

the equation of heat conduction of this theory does not contain
any elastic terms; second, the heat equation is of a parabolic
type, predicting infinite speeds of propagation for heat waves.

Biot (1956) introduced the theory of coupled thermoelastic-
ity to overcome the first shortcoming. The governing equations
for this theory are coupled, eliminating the first paradox of the
classical theory. However, both theories share the second

shortcoming since the heat equation for the coupled theory
is of a mixed parabolic–hyperbolic type.

The mathematical aspects of Lord–Shulman (1967) theory

are explained and illustrated in detail in the work of
Ignaczak and Ostoja-starzeweski (2009). Joseph and Preziosi
(1990) state that the Cattaneo (1958) heat conduction law is
the most obvious and simple generalization of the Fourier

law that gives rise to a finite propagation speed.
Within the theoretical contributions to the subject are the

proofs of uniqueness theorems under different conditions by

Ignaczak (1979), Chandrasekharaiah (1984), Sherief (1987)
and Ezzat and El-Karamany (2002). The fundamental solu-
tions for generalized thermoelasticity problem were obtained

Ezzat (2004).
The two-temperature thermoelasticity theory (2TT) and the

classical theory of thermoelasticity (CTE) suffer from the
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so-called ‘‘paradox of heat conduction,’’ i.e., the heat
equations for both theories of a mixed parabolic-hyperbolic
type, predicting infinite speeds of propagation for heat waves

contrary to physical observations. The generalized thermoelas-
ticity theories in which the heat conduction equation is hyper-
bolic do not suffer from this paradox.

Chen and Gurtin (1968), Chen et al. (1968, 1969) have for-
mulated a theory of heat conduction in deformable bodies,
which depends on two distinct temperatures, the conductive

temperature u and thermodynamic temperature T. Ies�an
(1970) established the uniqueness, reciprocity theorems and
variational principle for homogeneous isotropic solid in the
frame of coupled thermoelasticity theory involving two tem-

peratures. Youssef (2006) extended this theory in the context
of the generalized theory of thermoelasticity with one relaxa-
tion time and Magaña and Quintanilla (2009) studied modifi-

cations of the non-classical models of thermoelasticity. They
proved uniqueness results for the solutions of the systems of
equations that model both theories for anisotropic material.

The foundation of magnetoelasticity was presented by
Kaliski and Petykiewicz (1959). Increasing attention is being
devoted to the interaction between magnetic field and strain

field in a thermoelastic solid due to its many applications in
the fields of geophysics, plasma physics and related topics. In
the preceding references, it was assumed that the interactions
between the two fields take place by means of the Lorentz

forces appearing in the equations of motion and by means of
a term entering Ohm’s law and describing the electric field pro-
duced by velocity of a material charge, moving in a magnetic

field.
Differential equations of fractional order have been the

focus of many studies due to their frequent appearance in var-

ious applications in fluid mechanics, viscoelasticity, biology,
physics and engineering. The most important advantage of
using fractional differential equations in these and other appli-

cations is their non-local property. It is well known that the
integer order differential operator is a local operator but the
fractional order differential operator is non-local. This means
that the next state of a system depends not only upon its cur-

rent state but also upon all of its historical states. This is more
realistic and it is one reason why fractional calculus has
become more and more popular (Caputo, 1967; Mainardi,

1997 and Podlubny, 1999).
Although the tools of fractional calculus were available and

applicable to various fields of study, the investigation of the

theory of fractional differential equations started quite recently
(Caputo, 1967). The differential equations involving Riemann–
Liouville differential operators of fractional order 0 < a < 1,
appear to be important in modeling several physical phenom-

ena (Kiryakova, 1994) and therefore seem to deserve an inde-
pendent study of their theory parallel to the well-known theory
of ordinary differential equations. Khalid et al. (2012) applied

the homotopy perturbation method and variational iteration
method to obtain the approximate solution of the harmonic
wave propagation in a nonlinear magneto-thermoelasticity

under the influence of rotation. The analytical approximate
solution for non-linear space-time fractional Klein–Gordon
equation is given by Khalid and Mohamed (2013). A domain

decomposition method to obtain approximate solutions for
fractional PDEs was given by Khalid (2012).

Fractional calculus has been used successfully to modify
many existing models of physical processes. The first

application of fractional derivatives was given by Abel who
applied fractional calculus in the solution of an integral
equation that arises in the formulation of the Tautochrone

problem. The generalization of the concept of derivative and
integral to a non-integer order has been subjected to several
approaches and some various alternative definitions of frac-

tional derivatives appeared in Refs. (Miller and Ross, 1993;
Gorenflo and Mainardi, 1997, Hilfer, 2000). In the last few
years fractional calculus was applied successfully in various

areas to modify many existing models of physical processes,
e.g., chemistry, biology, modeling and identification, electron-
ics, wave propagation and viscoelasticity (Caputo and
Mainardi, 1971; Caputo, 1974; and Rossikhin and Shitikova,

1997). One can refer to Podlubny (1999) for a survey of
applications of fractional calculus.

Sherief et al. (2010) introduced a formula of heat conduc-

tion as

qþ so
@aq

@ta
¼ �jrT; 0 < a 6 1; ð1Þ

and proved a uniqueness theorem and derived a reciprocity

relation and a variational principle.
Youssef (2010) introduced another formula of heat conduc-

tion in the form

qþ so
@q

@t
¼ �kIt�1rT; 0 < t 6 2; ð2Þ

and a uniqueness theorem has been proved.
Ezzat (2011) established a new model of fractional heat

conduction equation by using the new Taylor series expansion

of time-fractional order which was developed by Jumarie
(2010) as

qþ sa
o

a!

@aq

@ta
¼ �krT; 0 < a 6 1: ð3Þ

Fractional order theory of a perfect conducting thermoelastic
medium was investigated by Ezzat and El-Karamany (2011).
El-Karamany and Ezzat (2011) introduced two models where

the fractional derivatives and integrals are used to modify
the Cattaneo heat-conduction law and, in the context of the
two-temperature thermoelasticity theory, uniqueness and reci-

procal theorems are proved, the convolutional variational
principle is given and used to prove a uniqueness theorem with
no restrictions imposed on the elasticity or thermal conductiv-
ity tensors, except symmetry conditions. The integral analog of

the leibniz rule for fractional calculus and its applications is
derived by Jaimini et al. (2001).

In the current work, a new model of time fractional deriv-

ative of order a and time fractional integral of order t in heat
conduction equation has been derived in the context of gen-
eralized thermoelasticity theory. The resulting formulation is

applied to a semi-infinite electrically perfect conducting
half-space of elastic solid in the presence of a constant mag-
netic field. The Laplace transform technique is used through-
out. Laplace transforms are obtained using the complex

inversion formula of the transform together with Fourier
expansion techniques proposed by Honig and Hirdes
(1984). The effects of various physical parameters on various

heat transfer, stress, displacement and strain characteristics as
well as the electric field are discussed in detail and repre-
sented graphically.
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2. Two-temperature theory of thermoelasticity with two

fractional order heat transfer

The conventional thermoelasticity is based on the principles of

the classical theory of heat conductivity, specifically on the
modified Fourier’s law, in which relates the heat flux vector
q to the temperature gradient

q ¼ �kIt�1rT; 0 < t 6 2: ð4Þ

The energy equation in terms of the heat flux vector q,

(Povstenko, 2004)

@

@t
qCEhþ cT0eð Þ ¼ �r:qþQ: ð5Þ

During the past three decades, nonclassical thermoelasticity

theories, in which Fourier law (4) and heat Eq. (5) are replaced
by more general equations, have been formulated by taking
Taylor’s series to expand q(x,t+ so) and retaining terms up

to the first order in so. The first well-known generalization of
such a type

qþ so
@q

@t
¼ �kIt�1rT; 0 < t 6 2; ð6Þ

leads to the heat transport equation in the theory of general-

ized thermoelasticity (Youssef, 2010)

@

@t
1þ so

@

@t

� �
qCETþ cT0eð Þ

¼ kIt�1r2TþQþ so
@Q

@t
; 0 < t 6 2: ð7Þ

Recently, Youssef (2006) investigated two-temperature gener-
alized thermoelasticity theory in which Fourier law (4) is
replaced by

qþ so
@q

@t
¼ �kIt�1ru; 0 < t 6 2; ð8Þ

/� T ¼ u�H ¼ ar2u; ð9Þ

leads to the heat equation in the form

@

@t
1þ so

@

@t

� �
qCEHþ cu0eð Þ

¼ kIt�1r2uþQþ so
@Q

@t
; 0 < t 6 2: ð10Þ

In the current work, the new fractional Taylor’s series of time-

fractional order a developed in Jumarie, 2010) is adopted to
expand q(x,t+ so) and retaining terms up to order a in the
thermal relaxation time so, we get (Ezzat, 2011)

qðx; tþ soÞ ¼ qðx; tÞ þ sa
o

a!

@aq

@ta
; 0 < a 6 1: ð11Þ

From a mathematical viewpoint, Fourier law (11) in the theory
of generalized fractional heat conduction involving two tem-

peratures, is given by

qþ sa
o

a!

@aq

@ta
¼ �kIt�1ru; 0 < a 6 1; 0 < t 6 2: ð12Þ

Taking the partial time- derivative of fraction order a of Eq.

(5), we get

@aþ1

@taþ1
qCEHþ cu0eð Þ ¼ �r: @aq

@ta

� �
þ @

aQ

@ta
; 0 < a 6 1:

ð13Þ

Multiplying Eq. (13) by sa
o

a!
and adding to Eq. (5) we have

@

@t
1þ sa

o

a!

@a

@ta

� �
qCEHþ cuoeð Þ

¼ �r: qþ sa
o

a!

@aq

@ta

� �
þQþ sa

o

a!

@aQ

@ta
; 0 < a 6 1: ð14Þ

Substituting from Eq. (14), we get

@

@t
1þ sa

o

a!

@a

@ta

� �
qCEHþ cuoeð Þ

¼ kIt�1r2uþ 1þ sa
o

a!

@a

@ta

� �
Q; 0< a6 1; 0< t6 2: ð15Þ

Eq. (15) is the generalized energy equation with fractional time
derivatives and integrals in which the relaxation time so is con-
sidered. Some theories of heat conduction law follow as limit

cases for different values of the parameters a, t and so.

Limiting cases

(i) In the theory of thermoelasticity

1- The heat Eq. (21) in the limiting case H = u, so = 0
and t = 1 transforms to the work of Biot (1956)..
2- The heat Eq. (21) in the limiting case H = u,so = 0

and 0 < t 6 2 transforms to the work of Povstenko
(2004)

(ii) In the theory of two temperature thermoelasticity

3- The heat Eq. (20) in the limiting case H „ u, so = 0

and t = 1 transforms to the work of Chen and Gurtin
(1968) and Ies�an (1970)..

(iii) In the theory of generalized thermoelasticity

4- The heat Eq. (21) in the limiting case H = u ,t = 1,
so > 0 and a = 1 transforms to the work of Lord and
Shulman (1967).

(iv) In the theory of two temperature generalized thermoelas-

ticity

5- The heat Eq. (21) in the limiting case H „ u, t = 1,
so > 0 and a = 1 transforms to the works of Youssef
(2006).
6- (v) In the theory of two temperature generalized mag-

neto-thermoelasticity

7- The heat Eq. (21) in the limiting case H „ u, t = 1,
so > 0 and a = 1 transforms to the works of Ezzat

et al. (2009).
8- (vi) In the theory of generalized thermoelasticity with

derivative fractional order a
9- The heat Eq. (21) in the limiting case H = u, t = 1,
so > 0 and 0 < a 6 1 transforms to the work of
Sherief et al. (2010) and Ezzat (2011).

(vii) In the theory of generalized thermoelasticity with inte-

gral fractional ordert

10- The heat Eq. (21) in the limiting case, H = u,
so > 0, a = 1 and 0 < t 6 2 transforms to the work
of Youssef (2010).
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3. The physical problem and state space approach

We shall consider a thermoelastic medium of prefect conduc-
tivity permeated by an initial magnetic field H. This produces

an induced magnetic field h and induced electric field E, which
satisfy the linearized equations of electromagnetism and are
valid for slowly moving media. The governing equations for

generalized two- temperature magneto-thermoelasticity consist
of (Ezzat, 2001)

curl h ¼ Jþ eo
@E

@t
; ð16Þ

curl E ¼ �lo

@h

@t
; ð17Þ

E ¼ �loð
@u

@t
^HÞ; ð18Þ

div h ¼ 0: ð19Þ

The equation of motion in the absence of body forces

q
@2ui
@t2
¼ rji;j þ lo J ^Hð Þi; ð20Þ

The heat equation with fractional time derivatives

1þ sa
o

a!

@a

@ta

� �
qCE

@h
@t

Hþ uoc
@e

@t
�Q

� �
¼ kIt�1u;ii; 0

< a 6 1; 0 < t 6 2: ð21Þ

The relation between the heat conduction and dynamical heat

u�H ¼ au;ii ð22Þ

where a > 0, is the temperature discrepancy. The constitutive
equation

rij ¼ 2leij þ kedij � cHdij: ð23Þ

The strain–displacement relations

eij ¼
1

2
ui:j þ uj;i
� �

: ð24Þ

In the above equations a comma denotes material derivatives
and the summation convention is used.

Now, we shall consider a homogeneous isotropic thermo-
elastic perfect conducting solid occupying half-space x P 0,

which is initially quiescent and where all the state functions
depend only on the dimension x and the time t and the dis-
placement vector has components (u(x, t), 0, 0). A constant

magnetic field with components (0,Ho,0) is permeating the
medium. The induced magnetic field h will have one compo-
nent in the y-direction, while the induced electric field E will

have one component in z-direction.
Let us introduce the following non-dimensional variables:

x0 ¼ cogox; u
0 ¼ cogou; t

0 ¼ c2ogot; s
0
0 ¼ c2ogoso;H

0 ¼ cH
qc2o

;

r0ij ¼
rij

qc2o
; q0i ¼

qic
kqc3ogo

; q0i ¼
qic

kqc3ogo

; h0 ¼ h

Ho

;E0 ¼ E

loHoco
;

u0 ¼ cu
qc2o

; go ¼
qCE

j
; e ¼ u0c

2

kqc2ogo

;Q0 ¼ Qc
kqc40g

2
0

The dimensionless temperature discrepancy is

bo ¼ ac2og
2
o ¼ aðco=kÞ2.

Using homogeneity and scale change of fractional deriva-
tives, the following system of equations in terms of the preced-

ing non-dimensional variables results (suppressing the primes
for convenience)

h ¼ �e; ð25Þ

E ¼ � @u
@t
; ð26Þ

It�1
@2u
@x2
¼ @

@t
þ sa

o

a!

@aþ1

@taþ1

� �
ðHþ eeÞ � 1þ sa

o

a!

@a

@ta

� �
Q; ð27Þ

@2r
@x2
þ b

@2e

@x2
¼ a�

@2e

@t2
; ð28Þ

r ¼ e�H; ð29Þ

u�H ¼ bo

@2u
@x2

; ð30Þ

where a� ¼ 1þ a2o
c2
and b = (ao/co)

2.

From now on, we shall consider a heat source of the form
Q= Qo d(x)H(t), where Qo is a positive constant.

To simplify the algebra, only problems with zero initial

conditions are considered. Applying the Laplace transform
defined by the formulas (Povstenko, 2005)

LfgðtÞg ¼ �gðsÞ ¼
R1
0

e�stgðtÞdt
LfDngðtÞg ¼ snLfgðtÞg n > 0

�
; ð31Þ

on both sides of Eqs. (25)–(30) and writing the resulting equa-
tions in matrix form results in

d2

dx2

�u

�r

� �
¼

L1 L2

M1 M2

� �
�u

�r

� �
�Qob � dðxÞ

1

0

� �
; ð32Þ

where

- ¼ st 1þ sa
o

a!
sa

� �
; b� ¼ -

s 1þ bo-ð1þ eÞ½ � ;

L1 ¼
-ð1þ eÞ

1þ bo-ð1þ eÞ ; L2 ¼
-e

1þ bo-ð1þ eÞ

M1 ¼
m a � s2 � bL1ð Þ

1þ bn
; M2 ¼

n a � s2 � bL2ð Þ
1þ bn

;

m ¼ 1� boL1 and n ¼ 1� boL2:

Choosing as state variables the temperature of heat conduction
�u and the stress component �r in the x-direction, Eq. (32) can
be written in the absence of heat source as:

d2Gðx; sÞ
dx2

¼ AðsÞGðx; sÞ; ð33Þ

where

Gðx; sÞ ¼
�uðx; sÞ
�rðx; sÞ

� 	
and AðsÞ ¼

L1 L2

M1 M2

� 	
:

The formal solution of system (33) can be written in the form

Gðx; sÞ ¼ exp �
ffiffiffiffiffiffiffiffiffi
AðsÞ

p
x

h i
Gð0; sÞ; ð34Þ

where

Gð0; sÞ ¼
�uð0; sÞ
�rð0; sÞ

� 	
¼

�uo

�ro

� 	
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where for bounded solution with large x, we have canceled the

part of exponential that has a positive power.
We shall use the well-known Cayley–Hamilton theorem to

find the form of the matrix exp[�
ffiffiffiffiffiffiffiffiffi
AðsÞ

p
x]. The characteristic

equation of the matrix A(s) can be written as follows:

k2 � kðL1 þM2Þ þ ðL1M2 � L2M1Þ ¼ 0: ð35Þ

The roots of this equation, namely, k1 and k2, satisfy the fol-

lowing relations:

k1 þ k2 ¼ L1 þM2 ð36aÞ
k1k2 ¼ L1M2 � L2M1: ð36bÞ

The Taylor series expansion of the matrix exponential in
Eq. (34) has the form

exp �
ffiffiffiffiffiffiffiffiffi
AðsÞ

p
x

h i
¼
X1
n¼0

�
ffiffiffiffiffiffiffiffiffi
AðsÞ

p
x

� �n
n!

: ð37Þ

Using the Cayley–Hamilton theorem, we can express A2 and
higher powers of the matrix A in terms of I and A, where I
is the unit matrix of second order.

Thus, the infinite series in Eq. (37) can be reduced to

exp �
ffiffiffiffiffiffiffiffiffi
AðsÞ

p
x

h i
¼ aoðx; sÞIþ a1ðx; sÞAðsÞ: ð38Þ

where ao and a1 are coefficients depending on x and s.
By the Cayley–Hamilton theorem, the characteristic roots

k1 and k2 of the matrix A must satisfy Eq. (37), thus

exp �
ffiffiffiffiffi
k1

p
x

h i
¼ ao þ a1k1; ð39aÞ

exp �
ffiffiffiffiffi
k2

p
x

h i
¼ ao þ a1k2: ð39bÞ

The solution of the above system is given by

ao ¼
k1e

�
ffiffiffiffi
k2
p

x � k2e
�
ffiffiffiffi
k1
p

x

k1 � k2
; and a1 ¼

e�
ffiffiffiffi
k1
p

x � e�
ffiffiffiffi
k2
p

x

k1 � k2
:

Hence, we have

exp �
ffiffiffiffiffi
k1

p
x

h i
¼ Lijðx; sÞ; i; j ¼ 1; 2;

where

L11 ¼
e�

ffiffiffiffi
k2
p

xðk1 � L1Þ � e�
ffiffiffiffi
k1
p

xðk2 � L1Þ
k1 � k2

;

L12 ¼
L2 e�

ffiffiffiffi
k1

p
x � e�

ffiffiffiffi
k2

p
x


 �
k1 � k2

L22 ¼
e�

ffiffiffiffi
k1
p

xðk2 �M2Þ � e�
ffiffiffiffi
k2
p

xðk1 �M2Þ
k1 � k2

;

L21 ¼
M1 e�

ffiffiffiffi
k1

p
x � e�

ffiffiffiffi
k2

p
x


 �
k1 � k2

: ð40Þ

The solution in Eq. (34) can be written in the form

Gðx; sÞ ¼ LijGð0; sÞ: ð41Þ

Hence, we obtain

�uðx;sÞ¼ ðk1�uo�L1�uo�L2�roÞe�
ffiffiffiffi
k2

p
x�ðk2�uo�L1�uo�L2�roÞe�

ffiffiffiffi
k1

p
x

k1�k2

;

ð42Þ

�rðx;sÞ¼ ðk1�ro�M1�uo�M2�roÞe�
ffiffiffiffi
k2
p

x�ðk2�ro�M1�uo�M2�roÞe�
ffiffiffiffi
k1
p

x

k1�k2

:

ð43Þ

By using Eqs. (42) and (43) with Eq. (29) we get

4. Application

It should be noted that the corresponding expressions for two-

temperature generalized thermoelasticity with relaxation time
in the absence of magnetic field can be deduced by setting
ao = 0 in Eq. (40).

We consider a semi-space homogeneous medium of perfect
conductivity occupying the region x P 0 with quiescent initial
state and boundary conditions in the following form:

(i) Thermal boundary condition:A thermal shock is applied
to the boundary plane x= 0 in the form

uð0; tÞ ¼ uoHðtÞ; or �uð0; sÞ ¼ �uo ¼
uo

s
; ð45Þ

where �uo is a constant and H(t) is the Heaviside unit step
function.

(i) Mechanical boundary condition:The bounding plane
x = 0 is taken to be traction-free, i.e.

rð0; tÞ þ T11ð0; tÞ � To
11ð0; tÞ ¼ 0; ð46Þ

where T11
o is the Maxwell stress tensor in a vacuum.

Since the transverse components of the vectors E and h are

continuous across the bounding plane, i.e. E(0, t) = Eo(0, t)
and h(0, t) = ho (0, t), t > 0, where E0 and h0 are the compo-
nents of the induced electric and magnetic field in free space

and the relative permeability is very nearly unity, it follows
that T11ð0; tÞ ¼ To

11ð0; tÞ and Eq. (46) reduces to (Ezzat, 2011)

rð0; tÞ ¼ 0; or �rð0; sÞ ¼ �r0 ¼ 0: ð47Þ

�Hðx; sÞ ¼ ðk1�uo � L1�uo � L2�roÞð1� bok2Þe�
ffiffiffiffi
k2

p
x � ðk2�uo � L1�uo � L2�roÞð1� bok1Þe�

ffiffiffiffi
k1

p
x

k1 � k2
ð44Þ
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Hence, we can use the conditions on (45) and (46) into Eqs.

(42) and (43) to get the exact solution in the Laplace transform
domain in the following forms:

�uðx;sÞ¼
uo ðk1�L1Þe�

ffiffiffiffi
k2
p

x�ðk2�L1Þe�
ffiffiffiffi
k1
p

x
h i

sðk1�k2Þ
; ð48Þ

�rðx;sÞ¼
uoM1 e�

ffiffiffiffi
k1

p
x� e�

ffiffiffiffi
k2

p
x


 �
sðk1�k2Þ

; ð49Þ

�Hðx;sÞ¼
uo Be�

ffiffiffiffi
k2
p

x�Ae�
ffiffiffiffi
k1
p

x
h i

sðk1�k2Þ
; ð50Þ

�eðx;sÞ

¼
uo ½mðk1�L1Þ�nM1�e�

ffiffiffiffi
k2
p

x�½mðk2�L1Þ�nM1�e�
ffiffiffiffi
k1
p

x
h i

sðk1�k2Þ
;

ð51Þ

where A= (k2 � L1)(1 � bok1), B = (k1 � L1)(1 � bo k2).

From Eq. (24), the displacement takes the form:

�uðx; sÞ ¼
uo Ce�

ffiffiffiffi
k1
p

x �De�
ffiffiffiffi
k2

p
x


 �
sðk1 � k2Þ

; ð52Þ

where C ¼ mðk2�L1Þ�nM1ffiffiffiffi
k1
p ; D ¼ mðk1�L1Þ�nM1ffiffiffiffi

k2
p .

The induced magnetic and electric field takes the following
forms

�hðx;sÞ

¼�
uo ½mðk1�L1Þ�nM1�e�

ffiffiffiffi
k2

p
x�½mðk2�L1Þ�nM1�e�

ffiffiffiffi
k1

p
x

h i
sðk1�k2Þ

;

ð53Þ

�Eðx;sÞ¼�
uo Ce�

ffiffiffiffi
k1
p

x�De�
ffiffiffiffi
k2
p

x

 �

s2ðk1�k2Þ
: ð54Þ

Those complete the solution in the Laplace transform domain.

5. The numerical inversion of the Laplace transforms

In order to invert the Laplace transform in the above
equations, we adopt a numerical inversion method based on
a Fourier series expansion (Honig and Hirdes, 1984). In this

method, the inverse f(t) of the Laplace transform �f is approx-
imated by the relation.

fðtÞ ¼ ect

t1

1

2
�fðcÞ þ R1

XN
k¼1

�f cþ ikp
t1

� �
exp

ikpt
t1

� �" #
; 0

6 t1 6 2t; ð55Þ

where N is a sufficiently large integer representing the number
of terms in the truncated infinite Fourier series, N must be cho-

sen such that

fðtÞ ¼ ectR1 �f cþ ikp
t1

� �
exp

iNpt
t1

� �� 	
6 e1;

where e1 is a persecuted small positive number that corre-
sponds to the degree of accuracy to be achieved. The parame-
ter c is a positive free parameter that must be greater than the
real parts of all singularities of �fðsÞ, the optimal choice of c was

obtained according to the criteria described in Honig and

Hirdes (1984).

6. Numerical results and discussion

The copper material was chosen for purposes of numerical
evaluations. The constants of the problem were taken as fol-
lowing (Ezzat, 2011):(see Table 1)

The investigation of the effect of the fractional orders a and
t on perfect conducting thermoelastic material in the presence
of a magnetic field has been carried out in the preceding
sections. The computations were performed for a value of

time, namely t= 0.1. The numerical technique outlined above
was used to obtain the conductive temperature, the thermody-
namic temperature, the stress, the displacement and the strain

distributions. The results are represented graphically at differ-
ent values of derivative fractional order a and integral frac-
tional order t as shown in Figs. 1–4 as well as at different

positions of x as shown in Figs. 5–10. In these figures we
noticed the difference in all functions for the values of a
(0 < a 6 1) and t(0 < t 6 2) where the case of a = 1(normal

conductivity) indicates the old situation, and the case
0 < a < 1 (weak conductivity), indicates the new theory.
For a normal conductivity a = 1, the results coincide with
all the previous results of applications that are taken in the

context of the generalized thermoelasticity with one relaxation
time in the various fields. We observe the following:

� The fractional orders a and t have a significant effect on all
fields. The important phenomenon observed in all computa-
tions is that the solution to any of the functions considered

for the new theory vanishes identically outside the surface
region and the response to the thermal and mechanical
effects does not reach infinity instantaneously but remains
in a bounded region of the space. This result is very

important that the fractional orders theory may preserve
the advantage of both theories of Biot (1956) and Lord
and Shulman (1967).

* The fields are continuous functions for different values
of the fractional orders a(0 < a < 1) and t(0 < t 6 2)
and are smoother in the case bo = 0.075.

* The waves reach the steady state depending on the value
of the fractional orders a and t as well as temperature
discrepancy bo .

* The waves cut the x-axis rapidly when a = t = 1 and
bo = 0.0 than when 0 < a < 1, 0 < t < 2, and
bo = 0.075.

* In Figs. 1–7 exhibit the space variation of conductive

temperature, thermodynamic temperature, stress, dis-
placement and strain fields at different values of a and
t for two cases of the non-dimensional temperature dis-

crepancy bo where the case of bo = 0.0 indicates the old

Table 1 Values of the constants.

k= 386 N/Ks, aT = 1.78 · 10 �5 K�1, CE = 383.1 m2/K,

go = 8886.73 s/m2,

l = 3.86 · 1010 N/m2, k = 7.76 · 1010 N/m2, q = 8954 kg/m3,

co = 4158 m/s, To = 293 K, e = 0.0168, so = 0.02 s.
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situation (one temperature) and the case of bo = 0.075

(Puri and Jordan, 2006), indicates the two-temperature
theory.

* The graphs in Figs. 1–4 represent the variations of con-

ductive temperature u and thermodynamic temperature
H against the fractional orders a (0 < a < 1) and t
(0 < t < 2). We notice that the particles transport the
heat to the other particles easily and this makes the

decreasing rate of the temperature greater than the other
one (Povstenko, 2005, Sherief et al., 2010 and Youssef,
2010).

* In Figs. 5–7, we notice that the magnetic field acts to
decrease the magnitude of the stress, the displacement
and the strain components. This is mainly due to the fact

that the magnetic field corresponds to term signifying a
positive force that tends to accelerate the charge carriers.

* Fig. 8 represents the graph of the stress distribution r
against distance x for three models. It is observed that

the stress in the three models has a singularity at
x = 0.3. In the new model for the wide range of a
(0 < a < 1) and t (0 < t < 2), the decreasing rate of

the stress is greater than the other one (Youssef, 2010
and Sherief et al., 2010).

* Figs. 9 and 10 represent the distributions of displacement
and strain verses the space variable x for three different
models (Youssef, 2010,Sherief et al., 2010 and the new

model),

which have the same behavior as the thermodynamic temper-
ature distributions except the wide range of x.
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7. Concluding remarks

* The important phenomenon observed in this problem

where the medium is of infinite extent is that the solution
of any of the considered function for the new theory
vanishes identically outside a bounded region of space.

This demonstrates clearly the difference between the cou-
pled and the generalized theories of thermoelasticity. In
the first and older theory, the waves propagate with

infinite speeds, so the value of any of the function is not
identically zero (though it may be very small) for any large
value of x. In the new theory, the response to the thermal
and mechanical effects does not reach infinity instanta-

neously but remains in a bounded region of space given
by 0 < x < x*(t).

* The main goal of this work is to introduce a new mathemat-

ical model for Fourier law of heat conduction with time-
fractional orders. This model enables us to improve the effi-
ciency of a thermoelectric material figure-of-merit. For a

material to be good thermoelectric cooler it must have a
high thermoelectric figure of merit, ZT and is defined as,
ZT ¼ roS2

j T (Ezzat, 2011) and it knows that in order to

achieve a high thermoelectric material figure-of-merit; one
requires a high electrical conductivity (perfect conducting
medium) and a low thermal conductivity (indicator frac-
tional orders a and t).

* The result provides a motivation to investigate conducting
thermoelectric materials as a new class of applicable ther-
moelectric solids.

* In this work, the method of direct integration by means of
the matrix exponential, which is a standard approach
in modern control theory and developed in detail in

many texts (Ezzat, 2008), is introduced in the field of
electro-magneto-generalized thermoelasticity with frac-
tional heat transfer when the medium is taken as a perfect
conductor and is applied to one-dimensional thermal

shock problem. The applicability of this approach to the
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equations of the two-temperature generalized theory of

magneto-thermoelasticity theory is easier than the classical
situation (one thermodynamic temperature).

* The effect of separating the thermodynamic temperature

and the conductive temperature is significant in generalized
thermoelasticity. The absolute value of the maximum stress
decreases relative to the case when the two temperatures
coincide. The curves of the stress and temperature

distributions are more uniform and the thermodynamic
temperature is smaller in magnitude relative to the
one-temperature case.
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