

تعيمم تحويل تكاملي في فضاء بو همينز (Boehmians)

S.K.Q. Al-Omari

Department of Applied Sciences, Faculty of Engineering Technoloy, Al-Balqa Applied University, Amman 1134, Jordan.

> الملخص:
> هذا البحث يحقق في تحويل 2L على بعض فضـاء الدو ال المعممة وقد نم بناء فضائين بو همينز . ان تحويل نم مده وبعض خصـائصه نم الحصول عليها.

ORIGINAL ARTICLE

An extension of certain integral transform to a space of Boehmians

S.K.Q. Al-Omari *
Department of Applied Sciences, Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134, Jordan

Received 26 August 2013; revised 15 January 2014; accepted 11 February 2014
Available online 12 March 2014

KEYWORDS

\mathcal{L}^{2} transform;
Function space;
Generalized function;
Boehmian

Abstract This paper investigates the \mathcal{L}^{2} transform on a certain space of generalized functions. Two spaces of Boehmians have been constructed. The transform \mathcal{L}^{2} is extended and some of its properties are also obtained.
© 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Integral transforms are widely used to solve various problems in calculus, mechanics, mathematical physics, and some problems appear in computational mathematics as well.

In the sequence of these integral transforms, the Laplace type integral transform, so-called \mathcal{L}^{2} transform, is defined for a squared and an exponential function $f(t)$ by David et al. (2007), as

$$
\begin{equation*}
\mathcal{L}^{2}(f(x))(y)=\int_{0}^{\infty} x e^{-x^{2} y^{2}} f(x) d x \tag{1}
\end{equation*}
$$

The \mathcal{L}^{2} transform is related to the classical Laplace transform by means of the following relationships :

$$
\begin{equation*}
\mathcal{L}^{2}(f(x))(y)=\frac{1}{2} \mathcal{L}(f(\sqrt{x}))\left(y^{2}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}(f(x))(y)=2 \mathcal{L}^{2}\left(f\left(x^{2}\right)\right)(\sqrt{y}) . \tag{3}
\end{equation*}
$$

[^0]Peer review under responsibility of University of Bahrain.

Let f and g be Lebesgue integrable functions; then the operation $*$ between f and g is defined by
$(f * g)(t)=\int_{0}^{t} x f\left(\sqrt{\left(t^{2}-x^{2}\right)}\right) g(x) d x$
The operation $*$ is commutative, associative and satisfies the equation $\mathcal{L}^{2}(f * g)(y)=\mathcal{L}^{2}(f)(y) \mathcal{L}^{2}(g)(y)$.

Some facts about the transform \mathcal{L}^{2} are given as follows:
(1) $\mathcal{L}^{2}\left(\frac{\sin t^{2}}{t^{2}}\right)(y)=\frac{1}{2} \arctan \left(\frac{1}{y^{2}}\right)$.
(2) $\mathcal{L}^{2}(\mathcal{H}(t-a))(y)=\frac{1}{2 y^{2}} e^{-y^{2} a^{2}}, \mathcal{H}$ being the heaviside unit function.
(3) $\mathcal{L}^{2}\left(t^{2}\right)(y)=\frac{\gamma\left(\frac{n}{2}+1\right)}{2 y^{n+2}}, \gamma$ being the gamma function.

More properties, applications and the inversion formula of \mathcal{L}^{2} transform are given by Yürekli (1999a,b).

2. Abstract construction of Boehmians

The minimal structure necessary for the construction of Boehmians consists of the following elements :
(i) A set \mathfrak{J};
(ii) A commutative semigroup $(\mathfrak{R}, *)$;
(iii) An operation $\odot: \mathfrak{J} \times \mathfrak{R} \rightarrow \mathfrak{I}$ such that for each $x \in \mathfrak{I}$ and $v_{1}, v_{2}, \in \mathfrak{R}$,
$x \odot\left(v_{1} * v_{2}\right)=\left(x \odot v_{1}\right) \odot v_{2} ;$
(vi) A collection $\Delta \subset \mathfrak{R}^{\mathbb{N}}$ satisfying :
(a) If $x, y \in \mathfrak{I},\left(v_{n}\right) \in \Delta, x \odot v_{n}=y \odot v_{n}$ for all n, then $x=y ;$
(b) If $\left(v_{n}\right),\left(\sigma_{n}\right) \in \Delta$, then $\left(v_{n} * \sigma_{n}\right) \in \Delta$. Δ is the set of all delta sequences.

Consider

$\mathcal{A}=\left\{\left(x_{n}, v_{n}\right): x_{n} \in \mathfrak{I},\left(v_{n}\right) \in \Delta, x_{n} \odot v_{m}=x_{m} \odot v_{n}, \forall m, n \in \mathbb{N}\right\}$.
If $\left(x_{n}, v_{n}\right),\left(y_{n}, \sigma_{n}\right) \in \mathcal{A}, x_{n} \odot \sigma_{m}=y_{m} \odot v_{n}, \forall m, n \in \mathbb{N}$, then we say $\left(x_{n}, v_{n}\right) \sim\left(y_{n}, \sigma_{n}\right)$. The relation \sim is an equivalence relation in \mathcal{A}. The space of equivalence classes in \mathcal{A} is denoted by $\boldsymbol{b}(\mathfrak{I}, \mathfrak{R}, \Delta)$. Elements of $\boldsymbol{b}(\mathfrak{I}, \mathfrak{R}, \Delta)$ are called Boehmians.

Between \mathfrak{I} and $\boldsymbol{b}(\mathfrak{I}, \mathfrak{R}, \Delta)$ there is a canonical embedding expressed as
$x \rightarrow \frac{x \odot s_{n}}{s_{n}}$ as $n \rightarrow \infty$.
The operation \odot can be extended to $\boldsymbol{b}(\mathfrak{I}, \mathfrak{R}, \Delta) \odot \mathfrak{I}$ by
$\frac{x_{n}}{v_{n}} \odot t=\frac{x_{n} \odot t}{v_{n}}$.
The sum of two Boehmians and multiplication by a scalar can be defined in a natural way

$$
\left[\frac{\left(x_{n}\right)}{\left(v_{n}\right)}\right]+\left[\frac{\left(g_{n}\right)}{\left(\psi_{n}\right)}\right]=\left[\frac{\left(x_{n} \odot \psi_{n}+g_{n} \odot v_{n}\right)}{\left(v_{n} \odot \psi_{n}\right)}\right]
$$

and
$\alpha\left[\frac{\left(x_{n}\right)}{\left(v_{n}\right)}\right]=\left[\frac{\alpha x_{n}}{v_{n}}\right], \alpha \in \mathbb{C}$.
The operation \odot and the differentiation are defined by
$\left[\frac{\left(x_{n}\right)}{\left(v_{n}\right)}\right] \odot\left[\frac{\left(g_{n}\right)}{\left(\psi_{n}\right)}\right]=\left[\frac{\left(x_{n} \odot g_{n}\right)}{\left(v_{n} \odot \psi_{n}\right)}\right]$
and
$D^{\alpha}\left[\frac{\left(x_{n}\right)}{\left(v_{n}\right)}\right]=\left[\frac{\left(D^{\alpha} x_{n}\right)}{\left(v_{n}\right)}\right]$.
In particular, if $\left[\frac{\left(x_{n}\right)}{\left(v_{n}\right)}\right] \in \boldsymbol{b}(\mathfrak{J}, \mathfrak{R}, \Delta)$ and $\delta \in \mathfrak{R}$ is any fixed element, then the product \odot, defined by
$\left[\frac{\left(x_{n}\right)}{\left(v_{n}\right)}\right] \odot \delta=\left[\frac{\left(x_{n} \odot \delta\right)}{\left(v_{n}\right)}\right]$,
is in $\boldsymbol{b}(\mathfrak{I}, \mathfrak{R}, \Delta)$.
Many a time \mathfrak{J} (also considered as a quasi-normed space) is also equipped with a notion of convergence. The intrinsic relationship between the notion of convergence and the product \odot is given by:
(i) If $f_{n} \rightarrow f$ as $n \rightarrow \infty$ in \mathfrak{I} and $\phi \in \mathfrak{R}$ is any fixed element, then $f_{n} \odot \phi \rightarrow f \odot \phi$ as $n \rightarrow \infty$ in \mathfrak{J}.
(ii) If $f_{n} \rightarrow f$ as $n \rightarrow \infty$ in \mathfrak{J} and $\left(\delta_{n}\right) \in \Delta$, then $f_{n} \odot \delta_{n} \rightarrow f$ as $n \rightarrow \infty$ in \mathfrak{I}.

In $\boldsymbol{b}(\mathfrak{I}, \mathfrak{R}, \Delta)$, two types of convergence are:
(1) A sequence $\left(h_{n}\right)$ in $\boldsymbol{b}(\mathfrak{J}, \mathfrak{R}, \Delta)$ is said to be δ-convergent to h in $\boldsymbol{b}(\mathfrak{I}, \mathfrak{R}, \Delta)$, denoted by $h_{n} \xrightarrow{\delta} h$ as $n \rightarrow \infty$, if there exists a delta sequence $\left(v_{n}\right)$ such that $\left(h_{n} \odot v_{n}\right),\left(h \odot v_{n}\right) \in \mathfrak{I}, \forall k$, $n \in \mathbb{N}$, and $\left(h_{n} \odot v_{k}\right) \rightarrow\left(h \odot v_{k}\right)$ as $n \rightarrow \infty$, in \mathfrak{I}, for every $k \in \mathbb{N}$.
(2) A sequence $\left(h_{n}\right)$ in $\boldsymbol{b}(\mathfrak{J}, \mathfrak{R}, \Delta)$ is said to be Δ-convergent to h in $\boldsymbol{b}(\mathfrak{J}, \mathfrak{R}, \Delta)$, denoted by $h_{n} \xrightarrow{\Delta} h$ as $n \rightarrow \infty$, if there exists a $\left(v_{n}\right) \in \Delta$ such that $\left(h_{n}-h\right) \odot v_{n} \in \mathfrak{I}, \forall n \in \mathbb{N}$, and $\left(h_{n}-h\right) \odot v_{n} \rightarrow 0$ as $n \rightarrow \infty$ in \mathfrak{J}.

The following theorem is equivalent to the statement of δ-convergence :
Preposition 1. $h_{n} \xrightarrow{\delta} h(n \rightarrow \infty)$ in $\boldsymbol{b}(\mathfrak{J}, \mathfrak{R}, \Delta)$ if and only if there is $f_{n, k}, f_{k} \in \mathfrak{J}$ and $v_{k} \in \Delta$ such that $h_{n}=\left[\frac{f_{n, k}}{v_{k}}\right], h=\left[\frac{f_{k}}{v_{k}}\right]$ and for each $k \in \mathbb{N}, f_{n, k} \rightarrow f_{k}$ as $n \rightarrow \infty$ in \mathfrak{I}.

For further discussion of Boehmian spaces and their construction; see Ganesan (2010), Karunakaran and Ganesan (2009), Al-Omari (2012, 2013a,b,c,d), Al-Omari and Kilicman (2011, 2012a,b, 2013a,b), Boehme (1973), Bhuvaneswari and Karunakaran (2010), Ganesan (2010), Karunakaran and Angeline (2011), Karunakaran and Devi (2010), Mikusinski (1983, 1987, 1995), Nemzer (2006, 2007, 2008, 2009, 2010) and Roopkumar (2009).

3. The Boehmian space $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet$,

\boldsymbol{p} denotes the space of rapidly decreasing functions defined on $\mathbb{R}_{+}\left(\mathbb{R}_{+}=(0, \infty)\right)$. That is, $\phi(x) \in \boldsymbol{p}$ if $\phi(x)$ is a complex-valued and infinitely smooth function defined on \mathbb{R}_{+}and is such that, as $|t| \rightarrow \infty, \phi$ and its partial derivatives decrease to zero faster than every power of $|t|^{-1}$.

In more details, $\phi(t) \in \boldsymbol{p}$ iff it is infinitely smooth and is such that
$\left|t^{m} \phi^{(k)}(t)\right| \leqslant C_{m, k}, \quad t \in \mathbb{R}_{+}$,
m and k run through all non-negative integers; see Pathak (1997).
\boldsymbol{d} denotes the Schwartz space of test functions of bounded support defined on \mathbb{R}_{+}.

- denotes the Mellin-type convolution product offirst kind defined by Zemanian (1987), as
$(f \bullet g)(y)=\int_{0}^{\infty} f\left(\frac{y}{t}\right) t^{-1} g(t) d t$.
To construct the first Boehmian space $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$, we need to establish the following necessary theorems.

Theorem 2. Let $\phi \in \boldsymbol{p}$ and $\varphi \in \boldsymbol{d}$; then we have $\phi \bullet \varphi \in \boldsymbol{p}$.
Proof. Let \mathbb{K} be a compact subset in \mathbb{R}_{+}containing the support of φ. Then, for all $k \in \mathbb{N}$ and $m \in \mathbb{N}$, we, by (4) and (5), get that

$$
\begin{aligned}
& \left|y^{m} \mathcal{D}_{y}^{k}(\phi \bullet \varphi)(y)\right| \leqslant \int_{\mathbb{K}}\left|y^{m} \mathcal{D}_{y}^{k}\left(\phi\left(\frac{y}{t}\right) t^{-1} \varphi(t)\right)\right| d t \\
& =\int_{\mathbb{K}}\left|y^{m}\right|\left|\mathcal{D}_{y}^{k} \phi\left(\frac{y}{t}\right)\right|\left|t^{-1} \varphi(t)\right| d t \leqslant C_{m, k} \int_{\mathbb{K}}\left|t^{-1} \varphi(t)\right| d t<M C_{m, k}
\end{aligned}
$$

Hence, by considering the supremum over all $y \in \mathbb{R}_{+}$, we obtain that $\phi \bullet \varphi \in \boldsymbol{p}$.

This completes the proof of the theorem.
Theorem 3. Let $\phi_{1}, \phi_{2} \in \boldsymbol{p}, \varphi_{1}, \varphi_{2} \in \boldsymbol{d}$; then we have
(1) $\phi_{1} \bullet \phi_{2}=\phi_{2} \bullet \phi_{1}$.
(2) $\left(\phi_{1}+\phi_{2}\right) \bullet \varphi_{1}=\phi_{1} \bullet \varphi_{1}+\phi_{2} \bullet \varphi_{1}$.
(3) $\left(\phi_{1} \bullet \varphi_{1}\right) \bullet \varphi_{2}=\phi_{1} \bullet\left(\varphi_{1} \bullet \varphi_{2}\right)$.

Proof of (1) and (3) follows from the Reference (Pathak, 1997). Proof of (2) is straightforward from the properties of integration. Therefore, we prefer to omit the details.

Hence the theorem is completely proved.
Theorem 4. Let $\phi_{n} \rightarrow \phi$ in \boldsymbol{p} as $n \rightarrow \infty$ and $\varphi \in \boldsymbol{d}$; then $\phi_{n} \bullet \varphi \rightarrow \phi \bullet \varphi$ as $n \rightarrow \infty$.

Proof of this theorem is straightforward from simple integration.

Definition 5. Denoted by Δ the set of all sequences $\left(\delta_{n}\right) \in \boldsymbol{d}$ that satisfying:
(i) $\int_{0}^{\infty} \delta_{n}=1$;
(ii) $\int_{0}^{\infty}\left|\delta_{n}\right|<M, n \in \mathbb{N}$;
(iii) supp $\delta_{n} \subset(0, \varepsilon), \varepsilon \rightarrow 0$ as $n \rightarrow \infty$.

Each $\left(\delta_{n}\right)$ is called a delta sequence or an approximating identity which corresponds to the Dirac delta distribution.

Theorem 6. Let $\phi \in \boldsymbol{p}$ and $\left(\delta_{n}\right) \in \Delta$; then $\phi \bullet \delta_{n} \rightarrow \phi$ as $n \rightarrow \infty$.

Proof. By Axiom (i) of Definition 5, we write
$\left|\left(\phi \bullet \delta_{n}-\phi\right)(y)\right| \leqslant \int_{0}^{\infty}\left|\phi\left(\frac{y}{t}\right) t^{-1}-\phi(y)\right|\left|\delta_{n}(t)\right| d t$.
The mapping $\psi(y)=\phi\left(\frac{y}{t}\right) t^{-1}-\phi(y)$ is uniformly continuous for each $y \in \mathbb{R}_{+}$. Therefore, it follows that
$\left|\left(\phi \bullet \delta_{n}-\phi\right)(y)\right| \rightarrow 0$
as $n \rightarrow \infty$.
Hence, we have established that $\phi \bullet \delta_{n} \rightarrow \phi$ as $n \rightarrow \infty$.
Hence the theorem has been proved.
Now, we assert that the product of delta sequences is a delta sequence. Detailed proof is as follows.

Let $\phi_{n}, \psi_{n} \in \Delta$. Then, we have

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\phi_{n} \bullet \psi_{n}\right)(x) d x=\int_{0}^{\infty} \int_{0}^{\infty} \phi_{n}(x / y) \psi_{n}(y) y^{-1} d y d x \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \phi_{n}(x / y) d x \psi_{n}(y) y^{-1} d y \quad(\text { By change of variables }) \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \phi_{n}(u) d u \psi_{n}(y) d y=\int_{0}^{\infty} \phi_{n}(u) d u \int_{0}^{\infty} \psi_{n}(y) d y=1
\end{aligned}
$$

Next, let M_{1} and M_{2} be constants such that $\int_{0}^{\infty}\left|\phi_{n}\right| \leqslant M_{1}$ and $\int_{0}^{\infty}\left|\psi_{n}\right| \leqslant M_{2}$; then
$\int_{0}^{\infty}\left|\left(\phi_{n} \bullet \psi_{n}\right)(x)\right| d x \leqslant \int_{0}^{\infty} \int_{0}^{\infty}\left|\phi_{n}(x / y) \phi_{n}(y)\right| y^{-1} d y d x$.
Once again, change of variables, implies
$\int_{0}^{\infty}\left|\left(\phi_{n} \triangleright \psi_{n}\right)(x)\right| d x \leqslant \int_{0}^{\infty}\left|\phi_{n}(u)\right| d u \int_{0}^{\infty}\left|\psi_{n}(y)\right| d y \leqslant M_{1} M_{2}$.
Finally, the inequality
$\operatorname{supp}\left(\phi_{n} \bullet \psi_{n}\right) \leqslant\left(\operatorname{supp} \phi_{n}\right)\left(\operatorname{supp} \psi_{n}\right)$.
establishes our assertion.
The space $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$ is therefore considered as a space of Boehmians.

Definition 7. Let $\phi \in \boldsymbol{p}$ and $\varphi \in \boldsymbol{d}$. Between \boldsymbol{p} and \boldsymbol{d} define a product \times as in the integral equation
$(\phi \times \varphi)(y)=\int_{0}^{\infty} t \phi(y t) \varphi(t) d t$.
We establish the second Boehmian space $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$.
Theorem 8. Let $\phi \in \boldsymbol{p}$ and $\varphi \in \boldsymbol{d}$; then we have $\phi \times \varphi \in \boldsymbol{p}$.
Proof. By (7), we write

$$
\begin{align*}
\left|y^{m} \mathcal{D}_{y}^{k}(\phi \times \varphi)(y)\right| & =\left|y^{m} \mathcal{D}_{y}^{k} \int_{0}^{\infty} t \phi(y t) \varphi(t) d t\right| \\
& \leqslant \int_{0}^{\infty}\left|y^{m} \mathcal{D}_{y}^{k} \phi(y t)\right||t \varphi(t)| d t . \tag{8}
\end{align*}
$$

Since $\phi \in \boldsymbol{p}$, we, from (8), find that
$\left|y^{m} \mathcal{D}_{y}^{k}(\phi \times \varphi)(y)\right| \leqslant C_{m, k} \int_{\mathbb{K}}|t \varphi(t)| d t<M C_{m, k}$,
where \mathbb{K} is a compact set in \mathbb{R}_{+}containing the support of φ.
Hence, (9) leads to the conclusion that $\phi \times \varphi \in \boldsymbol{p}$.
This completes the proof of the theorem.
Theorem 9. Let $\phi \in \boldsymbol{p}$ and $\varphi, \psi \in \boldsymbol{d}$; then $\phi \times(\varphi \bullet \psi)=$ $(\phi \times \varphi) \times \psi$.

Proof. Let the hypothesis of the theorem satisfies for $\phi \in \boldsymbol{p}$ and $\varphi, \psi \in \boldsymbol{d}$. Then, using (5) and (7) yield

$$
\begin{align*}
(\phi \times(\varphi \bullet \psi))(y) & =\int_{0}^{\infty} \phi(y t) t(\varphi \bullet \psi)(t) d t \\
& =\int_{0}^{\infty} \phi(y t) t \int_{0}^{\infty} \varphi\left(\frac{t}{\xi}\right) \xi^{-1} \psi(\xi) d \xi d t \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} \phi(y t) t \varphi\left(\frac{t}{\xi}\right) d t\right) \psi(\xi) \xi^{-1} d \xi \tag{10}
\end{align*}
$$

The change of variables $t=\xi z$ implies $d t=\xi d z$.
Hence, from (10), we obtain

$$
\begin{aligned}
(\phi \times(\varphi \bullet \psi))(y) & =\int_{0}^{\infty}\left(\int_{0}^{\infty} \phi(y \xi z) \xi z \varphi(z) \xi d z\right) \psi(\xi) \xi^{-1} d \xi \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} \phi((y \xi) z) z \varphi(z) d z\right) \xi \psi(\xi) d \xi \\
& =\int_{0}^{\infty}(\phi \times \varphi)(y \xi) \xi \psi(\xi) d \xi \\
& =((\phi \times \varphi) \times \psi)(y)
\end{aligned}
$$

This completes the proof of the theorem.

Theorem 10. Let $\phi_{1}, \phi_{2} \in \boldsymbol{p}$ and $\varphi \in \boldsymbol{d}$; then we have
(i) $\left(\phi_{1}+\phi_{2}\right) \times \varphi=\phi_{1} \times \varphi+\phi_{2} \times \varphi$.
(ii) $(\alpha \phi) \times \varphi=\alpha(\phi \times \varphi), \alpha \in \mathbb{C}$.

Proof of this theorem follows from the general properties of integration. Details are thus omitted. The theorem is therefore proved.

Theorem 11. Let $\phi_{n} \rightarrow \phi$ in \boldsymbol{p} as $n \rightarrow \infty$; then $\phi_{n} \times \varphi \rightarrow \phi \times \varphi$ as $n \rightarrow \infty$, for each $\varphi \in \boldsymbol{d}$.

Proof of this theorem follows from Theorem 9.
Theorem 12. Let $\phi \in \boldsymbol{p}$ and $\left(\delta_{n}\right) \in \Delta$; then $\phi \times \delta_{n} \rightarrow \phi$ as $n \rightarrow \infty$.

Proof. Utilizing Definition 5 and Axiom (i) yield

$$
\begin{align*}
& \left|y^{m} \mathcal{D}_{y}^{k}\left(\left(\phi \times \delta_{n}\right)(y)-\phi(y)\right)\right| \\
& \quad=\left|y^{m} \int_{0}^{\infty} \mathcal{D}_{y}^{k}(t \phi(y t)) \delta_{n}(t) d t-y^{m} \mathcal{D}_{y}^{k} \phi(y) \int_{0}^{\infty} \delta_{n}(t) d t\right| \\
& \quad \leqslant\left|y^{m} \mathcal{D}_{y}^{k}(t \phi(y t)-\phi(y))\right|\left|\delta_{n}(t)\right| d t \tag{11}
\end{align*}
$$

Since $\phi \in \boldsymbol{p}$ it follows
$\left|y^{m} \mathcal{D}_{y}^{k}(t \phi(y t)-\phi(y))\right|<C_{m, k}, m, k \in \mathbb{N}$.
Hence, from(11) and Definition 5(ii), we get
$\left|y^{m} \mathcal{D}_{y}^{k}\left(\left(\phi \times \delta_{n}\right)(y)-\phi(y)\right)\right|<M C_{m, k}$.
Hence the theorem is therefore completely proved.
The Boehmian space $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$ has been constructed.
Theorem 13. Let $\phi \in \boldsymbol{p}$ and $\varphi \in \boldsymbol{d}$; then we have
$\mathcal{L}^{2}(\phi \bullet \varphi)(y)=\left(\mathcal{L}^{2} \phi \times \varphi\right)(y)$.
Proof. Let $\phi \in \boldsymbol{p}$ and $\varphi \in \boldsymbol{d}$; then we have

$$
\begin{aligned}
\mathcal{L}^{2}(\phi \bullet \varphi)(y) & =\int_{0}^{\infty}(\phi \bullet \varphi)(\xi) \xi e^{-y^{2} \xi^{2}} d \xi \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} \phi\left(\frac{\xi}{t}\right) t^{-1} \varphi(t) d t\right) \xi e^{-y^{2} \xi^{2}} d \xi \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} \phi\left(\frac{\xi}{t}\right) \xi e^{-y^{2} \xi^{2}} d \xi\right) t^{-1} \varphi(t) d t
\end{aligned}
$$

The substitution $\xi=z t$ implies

$$
\begin{aligned}
\mathcal{L}^{2}(\phi \bullet \varphi)(y)= & \int_{0}^{\infty}\left(\int_{0}^{\infty} \phi(z) z t e^{-y^{2} z^{2} t^{2}} t d z\right) t^{-1} \varphi(t) d t \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} \phi(z) z e^{-\left(y^{2} t^{2} z^{2}\right.} d z\right) t \varphi(t) d t \\
& =\int_{0}^{\infty} \mathcal{L}^{2}(\phi)(y t) t \varphi(t) d t \\
& =\left(\mathcal{L}^{2} \phi \times \varphi\right)(y)
\end{aligned}
$$

Hence the theorem is proved.

In view of above, we define the extended \mathcal{L}^{2} transform of a Boehmian $\left[\frac{\left(\phi_{n}\right)}{\left(\delta_{n}\right)}\right]$ in $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$ as
$\widehat{\mathcal{L}^{2}}\left[\frac{\left(\phi_{n}\right)}{\left(\delta_{n}\right)}\right]=\left[\frac{\left(\mathcal{L}^{2} \phi_{n}\right)}{\left(\delta_{n}\right)}\right] \in \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$.
Theorem 14. $\widehat{\mathcal{L}^{2}}: \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta) \rightarrow \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$ is welldefined.

Proof. Let $\left[\frac{\left(u_{n}\right)}{\left(r_{n}\right)}\right]=\left[\frac{\left(v_{n}\right)}{\left(\psi_{n}\right)}\right]$ in $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$. Then, by the concept of quotient of sequences in $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$, we write
$u_{n} \bullet \psi_{m}=v_{m} \bullet r_{n}=v_{n} \bullet r_{m}$.
Employing \mathcal{L}^{2} on both sides of the above equation implies $\mathcal{L}^{2} u_{n} \times \psi_{m}=\mathcal{L}^{2} v_{n} \times r_{m}, n, m$.

That is,
$\frac{\mathcal{L}^{2} u_{n}}{r_{n}}$ is equivalent to $\frac{\mathcal{L}^{2} v_{n}}{\psi_{n}}$.
Therefore, we get
$\left[\frac{\left(\mathcal{L}^{2} u_{n}\right)}{\left(r_{n}\right)}\right]=\left[\frac{\left(\mathcal{L}^{2} v_{n}\right)}{\left(\psi_{n}\right)}\right]$.
This completes the proof of the theorem.
It is also interesting to know that the transform $\widehat{\mathcal{L}^{2}}$ is a linear mapping from $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$ into $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$.

Detailed proof can be given as follows : If $\left[\frac{\left(u_{n}\right)}{\left(r_{n}\right)}\right],\left[\frac{\left(v_{n}\right)}{\left(\psi_{n}\right)}\right]$ $\in \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$ then
$\widehat{\mathcal{L}^{2}}\left(\left[\frac{\left(u_{n}\right)}{\left(r_{n}\right)}\right]+\left[\frac{\left(v_{n}\right)}{\left(\psi_{n}\right)}\right]\right)=\widehat{\mathcal{L}^{2}}\left(\left[\frac{\left(u_{n} \bullet \psi_{n}\right)+\left(v_{n} \bullet r_{n}\right)}{\left(r_{n} \bullet \psi_{n}\right)}\right]\right)$
$=\left[\frac{\mathcal{L}^{2}\left(u_{n} \bullet \psi_{n}+v_{n} \bullet r_{n}\right)}{\left(r_{n} \times \psi_{n}\right)}\right]$
$=\left[\frac{\mathcal{L}^{2}\left(u_{n} \bullet \psi_{n}\right)+\mathcal{L}^{2}\left(v_{n} \bullet r_{n}\right)}{\left(r_{n} \times \psi_{n}\right)}\right]$
$=\left[\frac{\left(\mathcal{L}^{2} u_{n} \times \psi_{n}\right)+\left(\mathcal{L}^{2} v_{n} \times r_{n}\right)}{\left(r_{n} \times \psi_{n}\right)}\right]$
$=\left[\frac{\left(\mathcal{L}^{2} u_{n}\right)}{\left(r_{n}\right)}\right]+\left[\frac{\left(\mathcal{L}^{2} v_{n}\right)}{\left(\psi_{n}\right)}\right]$.
Hence,
$\widehat{\mathcal{L}^{2}}\left(\left[\frac{\left(u_{n}\right)}{\left(r_{n}\right)}\right]+\left[\frac{\left(v_{n}\right)}{\left(\psi_{n}\right)}\right]\right)=\widehat{\mathcal{L}^{2}}\left[\frac{\left(u_{n}\right)}{\left(r_{n}\right)}\right]+\widehat{\mathcal{L}^{2}}\left[\frac{\left(v_{n}\right)}{\left(\psi_{n}\right)}\right]$.
Also, if $\alpha \in \mathbb{C}$, the field of complex numbers, then we see that
$\alpha \widehat{\mathcal{L}^{2}}\left[\frac{\left(u_{n}\right)}{\left(r_{n}\right)}\right]=\alpha\left[\frac{\left(\mathcal{L}^{2} u_{n}\right)}{\left(r_{n}\right)}\right]=\left[\frac{\left(\mathcal{L}^{2}\left(\alpha u_{n}\right)\right)}{\left(r_{n}\right)}\right]$.
Hence,
$\alpha \widehat{\mathcal{L}^{2}}\left[\frac{\left(u_{n}\right)}{\left(r_{n}\right)}\right]=\widehat{\mathcal{L}^{2}}\left(\alpha\left[\frac{\left(u_{n}\right)}{\left(r_{n}\right)}\right]\right)$.
This completes the proof of the theorem.

Definition 15. Let $\left[\frac{\left(\mathcal{L}^{2} f_{n}\right)}{\left(\phi_{n}\right)}\right] \in \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$; then we define the inverse $\widehat{\mathcal{L}^{2}}$ transform of $\left[\frac{\left.\mathcal{L}^{2} f_{n}\right)}{\left(\phi_{n}\right)}\right]$ as
$\widehat{\mathcal{L}^{2}-1}\left[\frac{\left(\mathcal{L}^{2} f_{n}\right)}{\left(\phi_{n}\right)}\right]=\left[\frac{\left(\mathcal{L}^{2}\right)^{-1}\left(\mathcal{L}^{2} f_{n}\right)}{\left(\phi_{n}\right)}\right]=\left[\frac{\left(f_{n}\right)}{\left(\phi_{n}\right)}\right]$,
for each $\left(\phi_{n}\right) \in \Delta$.
Theorem 16. $\widehat{\mathcal{L}^{2}}: \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta) \rightarrow \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta) \quad$ is \quad an isomorphism.

Proof. Assume $\widehat{\mathcal{L}^{2}}\left[\frac{\left(f_{n}\right)}{\left(\phi_{n}\right)}\right]=\widehat{\mathcal{L}^{2}}\left[\frac{\left(g_{n}\right)}{\left(\psi_{n}\right)}\right]$. Using (12) and the concept of quotients we get $\mathcal{L}^{2} f_{n} \times \psi_{m}=\mathcal{L}^{2} g_{m} \times \phi_{n}$. Therefore, Theorem 13 implies
$\mathcal{L}^{2}\left(f_{n} \bullet \psi_{m}\right)=\mathcal{L}^{2}\left(g_{m} \bullet \phi_{n}\right)$.
Properties of \mathcal{L}^{2} implies $f_{n} \bullet \psi_{m}=g_{m} \bullet \phi_{n}$. Therefore, from the concept of qoutients of equivalent classes of $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$, we get
$\left[\frac{\left(f_{n}\right)}{\left(\phi_{n}\right)}\right]=\left[\frac{\left(g_{n}\right)}{\left(\psi_{n}\right)}\right]$.
To establish that $\widehat{\mathcal{L}^{2}}$ is surjective, let $\left[\frac{\left(\mathcal{L}^{2} f_{n}\right)}{\left(\phi_{n}\right)}\right] \in \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$. Then $\mathcal{L}^{2} f_{n} \times \phi_{m}=\mathcal{L}^{2} f_{m} \times \phi_{n}$ for every $m, n \in \mathbb{N}$. Once again, Theorem 13 implies $\quad \mathcal{L}^{2}\left(f_{n} \bullet \phi_{m}\right)=\mathcal{L}^{2}\left(f_{m} \bullet \phi_{n}\right)$. Hence $\left[\frac{\left(f_{n}\right)}{\left(\phi_{n}\right)}\right] \in \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$ is a Boehmian satisfying the equation $\widehat{\mathcal{L}^{2}}\left[\frac{\left(f_{n}\right)}{\left(\phi_{n}\right)}\right]=\left[\frac{\left(\mathcal{L}^{2} f_{n}\right)}{\left(\phi_{n}\right)}\right]$.
This completes the proof of the theorem.
Theorem 17. Let $\left[\frac{\left.\mathcal{C}^{2} f_{n}\right)}{\left(\phi_{n}\right)}\right] \in \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$ and $\phi \in \boldsymbol{d}$; then we have
$\widehat{\mathcal{L}^{2}-1}\left(\left[\frac{\left(\mathcal{L}^{2} f_{n}\right)}{\left(\phi_{n}\right)}\right] \times \phi\right)=\left[\frac{\left(f_{n}\right)}{\left(\phi_{n}\right)}\right] \bullet \phi$ and
$\widehat{\mathcal{L}^{2}}\left(\left[\frac{\left(f_{n}\right)}{\left(\phi_{n}\right)}\right] \bullet \phi\right)=\left[\frac{\left(\mathcal{L}^{2} f_{n}\right)}{\left(\phi_{n}\right)}\right] \times \phi$.

Detailed proof of the first part is as follows : Applying (13) yields

$$
\begin{aligned}
\widehat{\mathcal{L}^{2}-1}\left(\left[\frac{\left(\mathcal{L}^{2} f_{n}\right)}{\left(\phi_{n}\right)}\right] \times \phi\right) & =\widehat{\mathcal{L}^{2}-1}\left(\left[\frac{\left(\mathcal{L}^{2} f_{n}\right) \times \phi}{\left(\phi_{n}\right)}\right]\right) \\
& =\left[\frac{\left(\mathcal{L}^{2}\right)^{-1}\left(\left(\mathcal{L}^{2} f_{n}\right) \times \phi\right)}{\left(\phi_{n}\right)}\right]
\end{aligned}
$$

By using (12), we obtain
$\widehat{\mathcal{L}^{2}-1}\left(\left[\frac{\left(\mathcal{L}^{2} f_{n}\right)}{\left(\phi_{n}\right)}\right] \times \phi\right)=\left[\frac{\left(f_{n}\right) \bullet \phi}{\left(\phi_{n}\right)}\right]=\left[\frac{\left(f_{n}\right)}{\left(\phi_{n}\right)}\right] \bullet \phi$.
The proof of the second part $\widehat{\mathcal{L}^{2}}\left(\left[\frac{\left(f_{n}\right)}{\left(\phi_{n}\right)}\right] \bullet \phi\right)=\left[\frac{\left(\mathcal{L}^{2} f_{n}\right)}{\left(\phi_{n}\right)}\right] \times \phi$ is similar.

This completes the proof of the theorem.

Theorem 18. $\widehat{\mathcal{L}^{2}}: \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta) \rightarrow \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$ and $\widehat{\mathcal{L}^{2}-1}$: $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta) \rightarrow \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$ are continuous with respect to δ and Δ-convergence.

Proof. First of all, we show that $\widehat{\mathcal{L}^{2}}: \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta) \rightarrow$ $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$ and $\widehat{\mathcal{L}^{2}-1}: \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta) \rightarrow \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$ are continuous with respect to δ-convergence.
$\widehat{\text { Let }} \beta_{n} \stackrel{\delta}{\xrightarrow{2}} \beta$ in $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$ as $n \rightarrow \infty$; then we show that $\widehat{\mathcal{L}^{2}} \beta_{n} \rightarrow \mathcal{L}^{2} \beta$ as $n \rightarrow \infty$. By virtue of Preposition 1 we can find $f_{n, k}$ and f_{k} in \boldsymbol{p} such that
$\beta_{n}=\left[\frac{f_{n, k}}{\phi_{k}}\right]$ and $\beta=\left[\frac{f_{k}}{\phi_{k}}\right]$
and $f_{n, k} \rightarrow f_{k}$ as $n \rightarrow \infty$ for every $k \in \mathbb{N}$. Hence, $\mathcal{L}^{2} f_{n, k} \rightarrow \mathcal{L}^{2} f_{k}$ as $n \rightarrow \infty$ in the space \boldsymbol{p}. Thus,
$\left[\frac{\mathcal{L}^{2} f_{n, k}}{\phi_{k}}\right] \rightarrow\left[\frac{\mathcal{L}^{2} f_{k}}{\phi_{k}}\right]$
as $n \rightarrow \infty$ in $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$.
To prove the second part, let $g_{n} \xrightarrow{\delta} g$ in $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$ as $n \rightarrow \infty$. Then, once again, by Preposition $1, g_{n}=\left[\frac{\mathcal{L}^{2} f_{n, k}}{\phi_{k}}\right]$ and $g=\left[\frac{\mathcal{L}^{2} f_{k}}{\phi_{k}}\right]$ and $\mathcal{L}^{2} f_{n, k} \rightarrow \mathcal{L}^{2} f_{k}$ as $n \rightarrow \infty$. Hence $f_{n, k} \rightarrow f_{k}$ in $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$ as $n \rightarrow \infty$. Or, $\left[\frac{f_{n, k}}{\phi_{k}}\right] \rightarrow\left[\frac{f_{k}}{\phi_{k}}\right]$ as $n \rightarrow \infty$. Using (13) we get
$\widehat{\mathcal{L}^{2}-1}\left[\frac{\mathcal{L}^{2} f_{n, k}}{\phi_{k}}\right] \rightarrow \widehat{\mathcal{L}^{2}-1}\left[\frac{\mathcal{L}^{2} f_{k}}{\phi_{k}}\right]$ as $n \rightarrow \infty$.
Now, we establish continuity of $\widehat{\mathcal{L}^{2}}$ and $\widehat{\mathcal{L}^{2}-1}$ with respect to Δ-convergence.

Let $\beta_{n} \xrightarrow{\Delta} \beta$ in $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$ as $n \rightarrow \infty$. Then, there exist $f_{n} \in \boldsymbol{p}$ and $\left(\phi_{n}\right) \in \Delta$ such that $\left(\beta_{n}-\beta\right) \bullet \phi_{n}=\left[\frac{\left(f_{n}\right) \bullet \phi_{k}}{\phi_{k}}\right]$ and $f_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Employing (12) gives
$\widehat{\mathcal{L}^{2}}\left(\left(\beta_{n}-\beta\right) \bullet \phi_{n}\right)=\left[\frac{\mathcal{L}^{2}\left(\left(f_{n}\right) \bullet \phi_{k}\right)}{\phi_{k}}\right]$.
Hence, we have
$\widehat{\mathcal{L}^{2}}\left(\left(\beta_{n}-\beta\right) \bullet \phi_{n}\right)=\left[\frac{\left(\mathcal{L}^{2} f_{n}\right) \times \phi_{k}}{\phi_{k}}\right]=\mathcal{L}^{2} f_{n} \rightarrow 0$
as $n \rightarrow \infty$ in \boldsymbol{p}.
Therefore
$\widehat{\mathcal{L}^{2}}\left(\left(\beta_{n}-\beta\right) \bullet \phi_{n}\right)=\left(\widehat{\mathcal{L}^{2}} \beta_{n}-\widehat{\mathcal{L}^{2}} \beta\right) \times \phi_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Hence, $\widehat{\mathcal{L}^{2}} \beta_{n} \xrightarrow{\Delta} \widehat{\mathcal{L}^{2}} \beta$ as $n \rightarrow \infty$.
Finally, let $g_{n} \xrightarrow{\Delta} g$ in $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$ as $n \rightarrow \infty$; then we find $\mathcal{L}^{2} f_{k} \in \boldsymbol{p}$ such that $\left(g_{n}-g\right) \times \phi_{n}=\left[\frac{\mathcal{L}^{2} f_{k} \times \phi_{k}}{\phi_{k}}\right]$ and $\mathcal{L}^{2} f_{k} \rightarrow 0$ as $n \rightarrow \infty$ for some $\left(\phi_{n}\right) \in \Delta$.

Now, using (13), we obtain

$$
\widehat{\mathcal{L}^{2}-1}\left(\left(g_{n}-g\right) \times \phi_{n}\right)=\left[\frac{\left(\mathcal{L}^{2}\right)^{-1}\left(\mathcal{L}^{2} f_{k} \times \phi_{k}\right)}{\phi_{k}}\right] .
$$

Theorem 13 implies
$\widehat{\mathcal{L}^{2}-1}\left(\left(g_{n}-g\right) \times \phi_{n}\right)=\left[\frac{\left(f_{n}\right) \bullet \phi_{k}}{\phi_{k}}\right]=f_{n} \rightarrow 0$ as $n \rightarrow \infty$ in \boldsymbol{p}.
Thus
$\widehat{\mathcal{L}^{2}-1}\left(\left(g_{n}-g\right) \times \phi_{n}\right)=\left(\widehat{\mathcal{L}^{2}-1} g_{n}-\widehat{\mathcal{L}^{2}-1} g\right) \bullet \phi_{n} \rightarrow 0$ as $n \rightarrow \infty$.
From this we find that $\widehat{\mathcal{L}^{2}-1} g_{n} \xrightarrow{\Delta} \widehat{\mathcal{L}^{2}-1} g$ as $n \rightarrow \infty$ in $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$.

This completes the proof of the theorem.
Theorem 19. The extended $\widehat{\mathcal{L}^{2}}$ transform is consistent with \mathcal{L}^{2}.
Proof. For every $f \in \boldsymbol{p}$, let β be its representative in $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$; then $\beta=\left[\frac{f \bullet\left(\varphi_{n}\right)}{\left(\varphi_{n}\right)}\right]$, where $\left(\varphi_{n}\right) \in \Delta, \forall n \in \mathbb{N}$. Its clear that $\left(\varphi_{n}\right)$ is independent from the representative, $\forall n \in \mathbb{N}$. Therefore

$$
\begin{aligned}
\widehat{\mathcal{L}^{2}}(\beta) & =\widehat{\mathcal{L}^{2}}\left(\left[\frac{f \bullet\left(\varphi_{n}\right)}{\left(\varphi_{n}\right)}\right]\right) \\
\text { i.e. } & =\left[\frac{\mathcal{L}^{2}\left(f \bullet\left(\varphi_{n}\right)\right)}{\left(\varphi_{n}\right)}\right] \\
& =\left[\frac{\mathcal{L}^{2} f \times\left(\varphi_{n}\right)}{\left(\varphi_{n}\right)}\right]
\end{aligned}
$$

which is the representative of $\mathcal{L}^{2} f$ in \boldsymbol{p}.
Hence the proof is completed.
Theorem 20. Let $\left[\frac{\left(g_{n}\right)}{\left(\psi_{n}\right)}\right] \in \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$; then the necessary and sufficient condition that $\left[\frac{\left(g_{n}\right)}{\left(\psi_{n}\right)}\right]$ to be in the range of $\widehat{\mathcal{L}^{2}}$ is that g_{n} belongs to range of \mathcal{L}^{2} for every $n \in \mathbb{N}$.

Proof. Let $\left[\frac{\left(g_{n}\right)}{\left(\psi_{n}\right)}\right]$ be in the range of $\widehat{\mathcal{L}^{2}}$; then of course g_{n} belongs to the range of $\mathcal{L}^{2}, \forall n \in \mathbb{N}$.

To establish the converse, let g_{n} be in the range of $\mathcal{L}^{2}, \forall n \in \mathbb{N}$. Then there is $f_{n} \in \boldsymbol{p}$ such that $\mathcal{L}^{2} f_{n}=g_{n}, n \in \mathbb{N}$.

Since, $\left[\frac{\left(g_{n}\right)}{\left(\psi_{n}\right)}\right] \in \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \times, \Delta)$,
$g_{n} \times \psi_{m}=g_{m} \times \psi_{n}$,
$\forall m, n \in \mathbb{N}$. Therefore,
$\mathcal{L}^{2}\left(f_{n} \bullet \varphi_{n}\right)=\mathcal{L}^{2}\left(f_{m} \bullet \varphi_{n}\right), \forall m, n \in \mathbb{N}$,
where $f_{n} \in \boldsymbol{p}$ and $\varphi_{n} \in \Delta, \forall n \in \mathbb{N}$.
The fact that \mathcal{L}^{2} is injective, implies that $f_{n} \bullet \varphi_{m}=$ $f_{m} \bullet \varphi_{n}, m, n \in \mathbb{N}$.

Thus, $\frac{f_{n}}{\varphi_{n}}$ is qoutient of sequences in $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$. Hence,
$\left[\frac{\left(f_{n}\right)}{\left(\varphi_{n}\right)}\right] \in \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$ and $\widehat{\mathcal{L}^{2}}\left(\left[\frac{\left(f_{n}\right)}{\left(\varphi_{n}\right)}\right]\right)=\left[\frac{\left(g_{n}\right)}{\left(\psi_{n}\right)}\right]$.
Hence the theorem is proved.
Theorem 21. Let $\beta=\left[\frac{\left(f_{n}\right)}{\left(\varphi_{n}\right)}\right] \in \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$ and $\gamma=\left[\frac{\left(\kappa_{n}\right)}{\left(\phi_{n}\right)}\right] \in$ $\boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$; then
$\widehat{\mathcal{L}^{2}}(\beta \bullet \gamma)=\widehat{\mathcal{L}^{2}} \beta \times \gamma$.

Proof. Assume the requirements of the theorem are satisfied for some β and $\gamma \in \boldsymbol{b}(\boldsymbol{p},(\boldsymbol{d}, \bullet), \bullet, \Delta)$. Then

$$
\begin{aligned}
\widehat{\mathcal{L}^{2}}(\beta \bullet \gamma) & =\widehat{\mathcal{L}^{2}}\left(\left[\frac{\left(f_{n}\right) \bullet\left(\kappa_{n}\right)}{\left(\varphi_{n}\right) \bullet\left(\phi_{n}\right)}\right]\right) \\
& =\left[\frac{\mathcal{L}^{2}\left(\left(f_{n}\right) \bullet\left(\kappa_{n}\right)\right)}{\left(\varphi_{n}\right) \bullet\left(\phi_{n}\right)}\right] \\
& =\left[\frac{\left(\mathcal{L}^{2} f_{n}\right) \times\left(\kappa_{n}\right)}{\left(\varphi_{n}\right) \times\left(\phi_{n}\right)}\right] \\
& =\left[\frac{\left(\mathcal{L}^{2} f_{n}\right)}{\left(\varphi_{n}\right)}\right] \times\left[\frac{\left(\kappa_{n}\right)}{\left(\phi_{n}\right)}\right] .
\end{aligned}
$$

Therefore,
$\widehat{\mathcal{L}^{2}}(\beta \bullet \gamma)=\widehat{\mathcal{L}^{2}}(\beta) \times \gamma$.
This completes the proof of the theorem.

References

Al-Omari, S.K.Q., 2012]. On the generalized double Sumudu transforms of distributions and space of Boehmians. Int. J. Algebra 6 (3), 139-146.

Al-Omari, S.K.Q., 2013a]. Distributional and tempered distributional diffraction Fresnel transforms and their extension to Boehmian spaces. Ital. J. Pure Appl. Math. 30, 179-194.
Al-Omari, S.K.Q., 2013b]. On the application of natural transforms. Int. J. Pure Appl. Math. 85 (4), 729-744.
Al-Omari, S.K.Q., 2013. Hartley transforms on certain space of generalized functions. Georgian Math. J. (To Appear).
Al-Omari, S.K.Q., 2013d]. A note on F_{a}^{b} transformation of generalized functions. Int. J. Pure Appl. Math. 86 (1), 19-33.
Al-Omari, S.K.Q., Kilicman, A., 2011]. On diffraction Fresnel transforms for Boehmians. Abstr. Appl. Anal. 2011. Article ID 712746, 1-13.
Al-Omari, S.K.Q., Kilicman, A., 2012a]. Note on Boehmians for class of optical Fresnel wavelet transforms. J. Funct. Spaces Appl. 2012. Article ID 405368, 1-12.
Al-Omari, S.K.Q., Kilicman, A., 2012b]. On generalized HartleyHilbert and Fourier-Hilbert transforms. Adv. Difference Equ., 2012, 2012:232, 1-12.
Al-Omari, S.K.Q., Kilicman, A., 2013a]. Unified treatment of the Krä tzel transformation for generalized functions. Abstr. Appl. Anal. 2013. Article ID 750524, 1-12.

Al-Omari, S.K.Q., Kilicman, A., 2013b]. Some remarks on the extended Hartley-Hilbert and Fourier-Hilbert transforms of Boehmians. Abstr. Appl. Anal. 2013. Article ID 348701, 1-6.
Bhuvaneswari, R., Karunakaran, V., 2010]. Boehmians of type S and their Fourier transforms. Ann. UMCS Math. 64, 27-43.
Boehme, T.K., 1973]. The support of Mikusinski operators. Trans. Amer. Math. Soc. 176, 319-334.
David, B.A., Nese, D., Osman, Y., 2007]. Identities for the $E_{2,1}$ transform and their applications. Appl. Math. Comput. 187, 15571566.

Ganesan, C., 2010]. Weighted ultra distributions and Boehmians. Int. J. Math. Anal. 4 (15), 703-712.

Karunakaran, V., Angeline, C.R., 2011]. Gelfand transform for a Boehmian space of analytic functions. Ann. Polon. Math. 101, 39-45.
Karunakaran, V., Devi, C.P., 2010]. The Laplace transform on a Boehmian space. Ann. Polon. Math. 97, 151-157.
Karunakaran, V., Ganesan, C., 2009]. Fourier transform on integrable Boehmians. Integral Transforms Spec. Funct. 20, 937-941.
Mikusinski, P., 1983]. Convergence of Boehmians. Jpn. J. Math. 9, 159-179.

Mikusinski, P., 1987]. Fourier transform for integrable Boehmians. Rocky Mountain J. Math. 17 (3), 577-582.
Mikusinski, P., 1995]. Tempered Boehmians and ultradistributions. Proc. Amer. Math. Soc. 123 (3), 813-817.
Nemzer, D., 2006]. Boehmians on the torus. Bull. Korean Math. Soc. 43, 831-839.
Nemzer, D., 2007]. One-parameter groups of Boehmians. Bull. Korean Math. Soc. 44, 419-428.
Nemzer, D., 2008]. A note on the convergence of a series in the space of Boehmians. Bull. Pure Appl. Math. 2, 63-69.
Nemzer, D., 2009]. A note on multipliers for integrable Boehmians. Fract. Calc. Appl. Anal. 12, 87-96.
Nemzer, D., 2010]. S-asymptotic properties of Boehmians. Integral Transforms Spec. Funct. 21 (7), 503-551.

Pathak, R.S., 1997]. Integral Transforms of Generalized Functions and Their Applications. Gordon and Breach Science Publishers, Australia, Canada, India, Japan.
Roopkumar, R., 2009]. An extension of distributional wavelet transform. Colloq. Math. 115, 195-206.
Yürekli, O., 1999a]. Theorems on L2-transforms and its applications. Complex Var. Theory Appl. 38, 95-107.
Yürekli, O., 1999b]. New identities involving the Laplace and the L2-transforms. Appl. Math. Comput. 99, 141-151.
Zemanian, A.H., 1987]. Generalized Integral Transformation. Dover Publications, Inc., New York (First published by Interscience Publishers, New York).

[^0]: * Tel.: + 962772357977.

 E-mail address: s.k.q.alomari@fet.edu.jo.

