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 :الملخص

( HPTM)لاضطراب هموتوبي أسلوب عملي على أساس طريقة التحويل الحديثة في هذا البحث تم تقديم 
 ،للتفاضل الكسري( Caputo)باستخدام تعريف . ستوكس الزمنية الكسرية في أنبوب-لحل معادلة نافيير

ان  . بيانيا وتم تمثيل الحل التحليلي  بالكاملالواضح  حل المعادلة عرضتم  ،وبافتراض شرط إبتدائي
تحويل الحديثة لاضطراب هموتوبي هي مؤلفة من طريقة تحويلات لابلاس وطريقىة اضطراب طريقة ال
ان النتائج التي تم الحصول عليها باستخدام التقنية المقترحة تدل على ان النهج هو سهل التطبيق . هموتوبي
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Abstract In this paper, we present a reliable algorithm based on the new homotopy perturbation

transform method (HPTM) to solve a time-fractional Navier–Stokes equation in a tube. The frac-

tional derivative is considered in the Caputo sense. By using an initial value, the explicit solution of

the equation has been presented in a closed form and then its numerical solution has been repre-

sented graphically. The new homotopy perturbation transform method is a combined form of

the Laplace transform method and the homotopy perturbation method. The results obtained by

the proposed technique indicate that the approach is easy to implement and computationally very

attractive.
ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Fractional calculus is a field of applied mathematics that deals
with derivatives and integrals of arbitrary orders. Fractional

differential equations have gained importance and popularity,
mainly due to their demonstrated applications in science and
engineering. For example, these equations are increasingly
used to model problems in fluid flow, rheology, diffusion,

relaxation, oscillation, anomalous diffusion, reaction–diffu-
sion, turbulence, diffusive transport akin to diffusion, electric

networks, polymer physics, chemical physics, electrochemistry
of corrosion, relaxation processes in complex systems, propa-
gation of seismic waves, dynamical processes in self-similar
and porous structures and many other physical processes.

The most important advantage of using fractional differential
equations in these and other applications is their non-local
property. It is well known that the integer order differential

operator is a local operator but the fractional order differential
operator is non-local. This means that the next state of a sys-
tem depends not only upon its current state but also upon all

of its historical states. This is more realistic and it is one reason
why fractional calculus has become more and more popular
(Caputo, 1969; Debnath, 2003; He, 1998, 1999a; Hilfer,
2000; Kilbas et al. 2006; Mainardi et al., 2001; Miller and

Ross, 1993; Oldham and Spanier, 1974; Podlubny, 1999;
Young, 1995).
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Recently, El-Shahed and Salem (2005) have generalized the
classical Navier–Stokes equations by replacing the first time
derivative by a fractional derivative of order a, 0 < a 6 1.

The Laplace, Fourier sine and finite Hankel transforms have
been employed to obtain the exact solution for the time-frac-
tional Navier–Stokes equations.

The Navier–Stokes equation is the primary equation of
computational fluid dynamics, relating pressure and external
forces acting on a fluid to the response of the fluid flow. The

Navier–Stokes and continuity equations are given by:

@u

@t
þ ðu:rÞu ¼ � 1

q
rpþ mr2u; ð1Þ

r:u ¼ 0; ð2Þ

where q is the density, p is the pressure, m is the kinematics vis-
cosity, u is the velocity and t is the time. This model can be

generalized by replacing the first-time derivative by a fractional
derivative of order a, 0 < a 6 1. The time-fractional model for
Navier–Stokes equation then has the form of the operator
equation

Da
�tuþ ðu:rÞu ¼ �

1

q
rpþ mr2u; ð3Þ

where Da
�t denotes the Caputo fractional derivative of order a.

The time-fractional Navier–Stokes equations have been stud-
ied by Ganji et al. (2010); Momani and Odibat (2006) by using
the Adomian decomposition method (ADM) and the homoto-

py perturbation method (HPM) respectively. The homotopy
perturbation method (HPM) was first introduced by He
(1999b). The homotopy perturbation method has also been

used by many researchers to handle linear and nonlinear prob-
lems arising in science and engineering (Ganji, 2006; He, 2003,
2006; Kumar and Singh, 2010; Kumar, 2013; Kumar et al.,

2012a; Vanani et al., 2013). The homotopy analysis method
was applied to study boundary layer flow in the region of
the stagnation point towards a stretching sheet (Nadeem
et al., 2010a) and stagnation flow of a Jeffrey fluid over a

shrinking sheet (Nadeem et al., 2010b). In recent years, many
authors have paid attention to study the solutions of linear and
nonlinear partial differential equations by using various meth-

ods combined with the Laplace transform. Among these are
the Laplace decomposition method (Gondal et al., 2013a;
Khuri, 2001; Khan and Hussain, 2011; Khan and Gondal,

2012a,b; Khan et al., 2012a, 2012d, 2013; Khan, 2013), homot-
opy perturbation transform method (Kumar et al., 2012b,
2012c; Singh et al. 2012a, 2012b, 2013; Khan et al., 2011,

2012b, 2012e; Gondal and Khan, 2010) and homotopy analysis
transform method (Arife et al., 2012; Gondal et al., 2013b;
Khan et al. 2012c; Kumar et al. 2013a, 2013b; Khader et al.,
2013; Salah et al., 2013).

In the present article, we consider the unsteady flow of a vis-
cous fluid in a tube in which, besides time as one of the depen-
dent variables, the velocity field is a function of only one space

coordinate. Next, we apply the new homotopy perturbation
transform method (HPTM) to solve the time-fractional Na-
vier–Stokes equation. The homotopy perturbation transform

method (HPTM) is a combination of the Laplace transform
method and the homotopy perturbation method (HPM). The
objective of this paper is to extend the application of the HPTM
to obtain a solution of the time-fractional Navier–Stokes

equation. The advantage of this technique is its capability of

combining two powerful methods for obtaining exact and
approximate analytical solutions for nonlinear equations. It is
worth mentioning that the proposed method is capable of

reducing the volume of the computational work as compared
to the classical methods while still maintaining the high accu-
racy of the numerical result; the size reduction amounts to an

improvement of the performance of the approach.

2. Basic definitions of fractional calculus

In this section, we mention the following basic definitions of
fractional calculus.

Definition 1. The Riemann–Liouville fractional integral oper-
ator of order a > 0, of a function fðtÞ 2 Cl; l P �1 is defined

as (Podlubny, 1999):

JafðtÞ ¼ 1

CðaÞ

Z t

0

ðt� sÞa�1fðsÞds; ða > 0Þ; ð4Þ

J0fðtÞ ¼ fðtÞ: ð5Þ

For the Riemann–Liouville fractional integral we have:

Jatc ¼ Cðcþ 1Þ
Cðcþ aþ 1Þ t

aþc: ð6Þ

Definition 2. The fractional derivative of fðtÞ in the Caputo
sense is defined as (Caputo, 1969):

Da
�tfðtÞ ¼ Jn�aDnfðtÞ ¼ 1

Cðn� aÞ

Z t

0

ðt� sÞn�a�1
fðnÞðsÞds; ð7Þ

for n� 1 < a 6 n; n 2 N; t > 0:

Definition 3. The Laplace transform of the Caputo derivative
is given by Caputo (Caputo, 1969); see also Kilbas et al. (2006)

in the form

L½Da
�tfðtÞ� ¼ saL½fðtÞ� �

Xn�1
r¼0

sa�r�1 fðrÞð0þÞ ðn� 1 < a 6 nÞ :

ð8Þ

3. Analysis of the new proposed method

Consider unsteady, one-dimensional motion of a viscous fluid

in a tube. The equations of motions which govern the flow field
in the tube are the Navier–Stokes equations in cylindrical coor-
dinates and they are given by.

@u

@t
¼ � @p

q@z
þ m

@2u

@r2
þ 1

r

@u

@r

� �
; ð9Þ

subject to the initial condition

uðr; 0Þ ¼ fðrÞ: ð10Þ

If the fractional derivative model is used to present the time
derivative term, the Eq. (9) assumes the form

@au

@ta
¼ P þ m

@2u

@r2
þ 1

r

@u

@r

� �
0 < a 6 1; ð11Þ
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where P ¼ � @p
q@z : To apply the HPTM, we write (11) in an

operator form

Da
�tu ¼ P þ m

@2u

@r2
þ 1

r

@u

@r

� �
0 < a 6 1: ð12Þ

Applying the Laplace transform (denoted in this paper by L)
on both sides of Eq. (12), we get

L ½Da
�t u� ¼ L½P� þ L m

@2u

@r2
þ 1

r

@u

@r

� �� �
: ð13Þ

Using the property of the Laplace transform, we have

L ½uðr; tÞ� ¼ P

saþ1
þ 1

sa
L m

@2u

@r2
þ 1

r

@u

@r

� �� �
: ð14Þ

Operating with the Laplace inverse on both sides of Eq. (14)
gives

uðr; tÞ ¼ Gðr; tÞ þ L�1
1

sa
L m

@2u

@r2
þ 1

r

@u

@r

� �� �� �
; ð15Þ

where Gðr; tÞ represents the term arising from the source term

and the prescribed initial conditions. Now we apply the
homotopy perturbation method

uðr; tÞ ¼
X1
n¼0

pn unðr; tÞ: ð16Þ

Substituting (16) in (15), we get

X1
n¼0

pn unðr; tÞ ¼ Gðr; tÞ þ pðL�1
"
1

sa
L

"
m ð @

2

@r2

 X1
n¼0

pn unðr; tÞ
!

þ 1

r

@

@r
ð
X1
n¼0

pn unðr; tÞÞÞ
##!

; ð17Þ

which is the coupling of the Laplace transform and the homot-
opy perturbation method using He’s polynomials. Comparing
the coefficients of like powers of p, the following approxima-

tions are obtained

p0 : u0ðr; tÞ ¼ Gðr; tÞ;

p1 : u1ðr; tÞ ¼ L�1

"
1

sa
L

"
m

 
@2

@r2
ðu0Þ þ

1

r

@

@r
ðu0Þ

!##
;

p2 : u2ðr; tÞ ¼ L�1

"
1

sa
L

"
m

 
@2

@r2
ðu1Þ þ

1

r

@

@r
ðu1Þ

!##
; ð18Þ

p3 : u3ðr; tÞ ¼ L�1

"
1

sa
L

"
m

 
@2

@r2
ðu2Þ þ

1

r

@

@r
ðu2Þ

!##
;

..

.

4. Numerical examples

In this section, we discuss the implementation of our proposed
method and investigate its accuracy by applying the homotopy

perturbation method with coupling of the Laplace transform.
The simplicity and accuracy of the proposed algorithm are
illustrated through the following numerical examples.

Example 1. Consider the following time-fractional Navier–

Stokes equation

@au

@ta
¼ P þ @2u

@r2
þ 1

r

@u

@r
0 < a 6 1; ð19Þ

subject to the initial condition

uðr; 0Þ ¼ 1� r2: ð20Þ

Applying the Laplace transform on both sides of Eq. (19), sub-

ject to the initial condition (20), we have

L½uðr; tÞ� ¼ 1

s
ð1� r2Þ þ P

saþ1
þ 1

sa
L

"
@2u

@r2
þ 1

r

@u

@r

#
: ð21Þ

The inverse Laplace transform implies that

uðr; tÞ ¼ ð1� r2Þ þ P
ta

Cðaþ 1Þ þ L�1

"
1

sa
L

"
@2u

@r2
þ 1

r

@u

@r

##
:

ð22Þ

Now applying the homotopy perturbation method, we get

X1
n¼0

pn unðr; tÞ ¼ ð1� r2Þ þ P
ta

Cðaþ 1Þ

þ p L�1
1

sa
L

@2

@r2

 X1
n¼0

pn unðr; tÞ
!"" 

þ 1

r

@

@r

 X1
n¼0

pn unðr; tÞ
!##!

: ð23Þ

Comparing the coefficients of like powers of p, we have

p0 : u0ðr; tÞ ¼ ð1� r2Þ þ P
ta

Cðaþ 1Þ ;

p1 : u1ðr; tÞ ¼ L�1

"
1

sa
L

"
@2

@r2
ðu0Þ þ

1

r

@

@r
ðu0Þ

##

¼ � 4ta

Cðaþ 1Þ ; ð24Þ

p2 : u2ðr; tÞ ¼ L�1

"
1

sa
L

"
@2

@r2
ðu1Þ þ

1

r

@

@r
ðu1Þ

##
¼ 0;

p3 : u3ðr; tÞ ¼ L�1

"
1

sa
L

"
@2

@r2
ðu2Þ þ

1

r

@

@r
ðu2Þ

##
¼ 0;

..

.

Therefore, the solution is

uðr; tÞ ¼ ð1� r2Þ þ ðP� 4Þ ta

Cðaþ 1Þ ; ð25Þ

which represents the exact solution for Eq. (19) and setting
a = 1 in (25), we reproduce the solution of the classical Na-
vier–Stokes equation as follows

uðr; tÞ ¼ ð1� r2Þ þ ðP� 4Þt: ð26Þ

It is to be observed that only the third order term of the
HPTM is used to evaluate the exact solution for the time-frac-
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tional Navier–Stokes equation (19). The numerical results for

exact solution (25), when a = 0.5 and a = 1 are shown by
Fig. 1(a) and (b) respectively and those for different values
of r and a at t = 1 are depicted in Fig. 2. From Fig. 1(a)

and (b), it is easy to conclude that the solution continuously
depends on the time-fractional derivative.

Example 2. Consider the following time-fractional Navier–
Stokes equation

@au

@ta
¼ @2u

@r2
þ 1

r

@u

@r
0 < a 6 1; ð27Þ

subject to the initial condition

uðr; 0Þ ¼ r: ð28Þ

In a similar way as above, we have

X1
n¼0

pn unðr; tÞ ¼ rþ p

 
L�1

"
1

sa
L

"
@2

@r2

 X1
n¼0

pn unðr; tÞ
!

þ 1

r

@

@r

 X1
n¼0

pn unðr; tÞ
!##!

: ð29Þ

Comparing the coefficients of like powers of p, we have

p0 : u0ðr; tÞ ¼ r;

p1 : u1ðr; tÞ ¼
1

r

ta

Cðaþ 1Þ ;

p2 : u2ðr; tÞ ¼
1

r3
t2a

Cð2aþ 1Þ ; ð30Þ

p3 : u3ðr; tÞ ¼
9

r5
t3a

Cð3aþ 1Þ ;

..

.

pn : unðr; tÞ ¼
12 � 32 � � � � � ð2n� 3Þ2

r2n�1
tna

Cðnaþ 1Þ :

Therefore, the solution is

uðr; tÞ ¼ rþ
X1
n¼1

12 � 32 � � � � � ð2n� 3Þ2

r2n�1
tna

Cðnaþ 1Þ : ð31Þ

Setting a = 1 in (31), we reproduce the solution of the problem
as follows

uðr; tÞ ¼ rþ
X1
n¼1

12 � 32 � � � � � ð2n� 3Þ2

r2n�1
tn

n!
; ð32Þ

which is the same solution as obtained by Baizar et al. (2002)
and Momani, Odibat (2006).

Figure 1 The surface shows the solution u(r, t) for Equation (19)

when P = 1: (a) a = 0.5; (b) a = 1.

Figure 2 Plots of uðr; tÞ vs. r at P = 1 and t= 1 for different

values of a.
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5. Concluding remarks

In this paper, the new homotopy perturbation transform meth-
od (HPTM) has been successfully applied to solve the time-

fractional Navier–Stokes equations in a tube with initial condi-
tions. The technique provides the solutions in terms of conver-
gent series with easily computable components in a direct way

without using linearization, perturbation or restrictive assump-
tions. The results show that the solution continuously depends
on the time-fractional derivative. The main advantage of this
technique is to overcome the deficiency that is mainly caused

by unsatisfied conditions. Thus, it can be concluded that the
HPTM is very powerful and efficient in finding analytical as
well as numerical solutions for wide classes of fractional partial

differential equations.
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