
 
 

 في منطقة الطاقة المتوسطة 04-تحليل التشتت المرن للبيونات المشحونة عن نواة كالسيوم

 
 2،1 زهير شحادة
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  :الملخص

تحليلها  مت 04-النتائج التجريبية للمقاطع المستعرضة التفاضلية للتشتت المرن للبيونات المشحونة عن نواة كالسيوم
طبيعة هذه ن إ. الساقطة الطاقاتمن  فولت إلكترونمليون  04، 50، 04 لـستخدام جهد ضوئي موضعي بسيط اب

 ذيل التوزيعفي منطقة  أشكالهاستخدام زوايا الطور المتوفرة ونظرية التشتت العكسي لتحديد اأولًا بتحديدها تم قد الجهود 
هذه   .ستخدام توصيف ستركراب دخالهاإتأثيرات كولوم تم   .تهاتعديل معاملابعدها جوردن و -ستخدام معادلة كلايناب

 إن    .الطاقات الثلاث لهذهالجزء الحقيقي للجهد النووي للبيونات الموجبة والسالبة هو نفسه  نألى إالدراسة تؤسس 
 ةانتقال بين منطقتي الرنين والطاقمنطقة التي تمث ل و  ،، خاصة في منطقة الطاقة المتوسطةةه المقاربنجاح هذ

 .كالسيوم ولأهداف نووية أخرىالنواة  لـطاقات أخرى  لتشملهذه الدراسة لتوسيع اً، يعطي دافعاً قوياً دالمنخفضة ج
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Abstract The data of differential cross sections for elastically scattered charged pions from 40Ca

have been analyzed using a simple local optical potential for 50, 65, and 80 MeV incident energies.

The nature of these potentials has been determined first by using the available phase shifts and an

inverse scattering theory to determine their forms at the tail region using the Klein–Gordon equa-

tion and then adjusting its parameters. The Coulomb effects are incorporated by using Stricker’s

prescription. The study establishes that the real part of the nuclear potential for p+ and p� is

the same at these three energies. The success of this approach, especially in this intermediate energy

region, which represents a transition region between resonance and very low-energy regions, pro-

vides a strong argument for extending this study at other energies for Ca-target and for other

nuclear targets.
ª 2013 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Pions are one of the important mesons determining the long
range part of the nucleon–nucleon interaction and are key
ingredients toward understanding the nature of strong interac-

tions. For this purpose, at least three major dedicated research
facilities, Los Alamos Meson Physics Facility (LAMPF), Paul
Scherrer Institute/Swiss Institute of Nuclear research (PSI/

SIN) and Tri-University Meson Facility (TRIUMF) have been
built to study meson-nucleon and meson-nucleus physics.
versity of Bahrain.

g by Elsevier

n. Production and hosting by Elsev

3.003
Consequently, many data of high quality on pion-nucleon

and pion–nucleus scatterings, in particular pion–nucleus elastic
ones, have been taken over the last few decades (Dam et al.,
1982; Gretillat et al., 1981; Burleson et al., 1994; Krane,
1988; Preedom et al., 1981; Seth et al., 1990; Shalaby et al.,

2007).
The understanding of elastically scattered pions by nuclei

forms the first step in determining the many pion–nucleus pro-

cesses such as inelastic scattering, single charge exchange, dou-
ble charge exchange, meson productions, . . .etc. (Blecher et al.,
1979). The early elastic scattering data on pion-nuclei systems

have primarily been taken at the forward angles. The poten-
tials deduced from the analyses of these early data are well
summarized in a book (Ericson and Weise, 1988). These early

potentials have been only marginally successful in deducing the
nature of the pion–nucleus potential as noted by (Leitch et al.,
1984) and contradicted the first data taken over the entire
angular range for 163.3 MeV pions scattered by 40Ca
ier B.V. All rights reserved.
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(Shehadeh et al., 2003). (Satchler, 1992) could, however, pro-
vide a reasonable analysis of the data using a simple optical
model potential, akin to the one usually used to analyze nucle-

ons scattered by nuclei. He, however, used a modified form of
the Klein–Gordon (K–G) equation for the analysis. Similar
analyses have been successful to describe elastically scattered

pions at other energies incident on calcium (Khallaf and
Ibrahim, 2006; Akhter et al., 2001).

The potential deduced by Satchler, however, needed modi-

fication when full K–G equation was used (Shehadeh et al.,
2003) to describe this process. The determination of this and
subsequent potentials by (Shehadeh, 2009) were facilitated by
the use of an inverse scattering theory (IST) at a fixed energy

developed for the K–G equation (Shehadeh et al., 1999) using
the phase shifts extracted primarily from data at forward an-
gles (FrÖhlich et al., 1984). The determined potential is strictly

speaking for the scattering of p0 by 40Ca since the Coulomb
interaction was neglected. The first analysis incorporating the
Coulomb interaction between p+ and 40Ca in the K–G equa-

tion (Shehadeh et al., 2011) slightly modifies the parameters
of the previous. The latter, however, indicated that a simple
way to incorporate the Coulomb effect on elastic scattering

is to use Stricker’s prescription (Stricker et al., 1979) in con-
junction with the K–G equation without incorporating explic-
itly the Coulomb term in the potential function.

In this paper, we extend our studies to 50, 65 and 80 MeV

incident energies for both positively and negatively charged
pions and 40Ca target. In view of the success of Stricker’s pre-
scription noted in the preceding paragraph, the analyses have

been carried out using the K–G equation with the Coulomb ef-
fect being incorporated using Stricker’s prescription. The con-
version from laboratory energy to the center of mass has been

carried out using Satchler’s method. As before, the IST has
been used to determine the nature of the potential. As noted
later, the points of the potential determined from the IST are

suitable in the exterior region and not in the region up to about
3 fm from the center.

The theory, which points a formulation of kinematic
parameters and the pion-40Ca potential, is described in Sec-

tion 2. Section 3 contains the results and their discussions. Sec-
tion 4 summarizes conclusions.

2. Theory

The radial wave function for the K–G equation for spherically
symmetric potential V(r) is determined by the following

equation:

d2=dr2 þ k2 �UðrÞ � lðlþ 1Þ
r2

� �
RnlðrÞ ¼ 0 ð1Þ

where k2 and U(r) are expressed as:

k2 ¼ ðE2 �m2c4Þ=�h2c2 ð2Þ

UðrÞ ¼ 2E

�h2c2
VðrÞ � V2ðrÞ=2E
� �

¼ Veff ð3Þ

with V(r) the nuclear part of the potential.
In order to use a non-relativistic optical model computer

code, the HARDCORE (Rickertsen et al., 1969), to describe
the scattering at relativistic energy, the Satchler’s treatment
has been used in calculating kinematic parameters. In the treat-

ment, the center-of-mass kinetic energy, Ec.m., is defined as:
Ec:m: ¼
�h2k2

2l
ð4Þ

where �hk is the relativistically correct center-of-mass momen-
tum of the pion and l is the reduced mass of the two interact-
ing particles:

l ¼ MpmT

Mp þmT

ð5Þ

where mT is the target mass and Mp is the effective mass of the
incident pion which is defined as

Mp ¼ cpmp ð6Þ

with mpc
2 = 139.6 MeV, and cp = (x+ c‘)(1 + 2xc‘ + x2)�1/

2 where x = mp/mT and c‘ = 1 + K‘/mpc
2; K‘ is the pion bom-

barding energy in the laboratory system.In (4) k is given by:

k ¼ mpc

�h

� �
c2p � 1
� 	1=2 ¼ 1

mp

mpc
2

�hc


 �
mp c2p � 1
� 	1=2

¼ 4:72056mp c2p � 1
� 	

fm�1 ð7Þ

In atomic mass units u, one can use mp = 0.1499u and
mT = 40u for 40Ca.With this, one can rewrite (4) as,

Ec:m: ¼ 20:901
k2

lðuÞMeV ð8Þ

Substituting (5) and (7) in (8), Ec.m. can be easily calculated.

It is worth mentioning that Mp and Ec.m. have to be rede-
fined in the code accordingly.

In this investigation, a simple local optical potential has

been used. The simplicity and global success of this potential
compared to limited successes of other complicated potentials,
with deficiencies and drawbacks, require to test its capability,

reliability, validity and strength to explain the elastic scattering
data of pions of both charges from 40Ca in the low-energy re-
gion; namely Tp = 80, 65, and 50 MeV. At other energies,
Satchler’s potential Vs(r), given by

VsðrÞ ¼
Vo

1þ exp r�Ro

ao

� �þ i
W2

1þ exp r�R2

a2

� �þ i

�
W3 exp

r�R3

a3

� �
1þ exp r�R3

a3

� �h i2 ð9Þ

has to be modified (Shehadeh, 1995) by adding the term

V1ðrÞ ¼
V1

1þ exp r�R1

a1

� �h i2 ð10Þ

to its real part. Thus the new complex potential used herein is

VðrÞ ¼ VSðrÞ þ V1ðrÞ ð11Þ

In (3), V(r) is the potential that contains the non-Coulombic

part of pion–nucleus interaction.
As noted earlier, Coulomb effects are considered by follow-

ing Stricker’s treatment (Stricker et al., 1979), i.e. by observing

the fact the incident kinetic energy near the Coulomb barrier
height, defined in (12), is approximately zero for positively
charged pions. Hence, the Coulomb effect could approxi-
mately be incorporated by lowering the incident kinetic energy

by the amount of the barrier height, in this case approximately
by 7.6 MeV, for positively charged pions and increasing it by
the same amount for negatively charged pions. Thus, the
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K–G equation used to treat chargeless pions could be applied
to describe the scattering of charged pions by adjusting the
incident energy by the Coulomb barrier height energy defined

as

Vc ¼ �
ZTe

2

Rc

ð12Þ

In (12), ZT = 20 is the target’s atomic number,
e2 = 1.44 MeV fm, and Rc = 3.8 fm is the effective Coulomb
radius. The negative and positive signs are for p+ and p�,
respectively. As such, and for p±–40Ca cases, Vc is approxi-
mately 7.6 MeV. The incident kinetic energy is, then, modified
by Vc to reflect the Coulomb effect.
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Figure 1 On the left side, the calculated angular distributions (solid

squared potential, V2/2E, in (3) (upper part) and with including it (low

empty triangles) reported by Leitch et al. (1984) as a function of center

charged pions, respectively. On the right side, the real and imaginary p

term included, are compared with the potential points obtained by us

Table 1 The parameters of the imaginary potential W2 (in

MeV), R2 (in fm), a2 (in fm), W3 (in MeV), R3 (in fm), and a3
(in fm), used in Eq. (11) for the incident-energy charged pions

(Tp in MeV). Positive and negative signs in the first column

indicate p+ and p�, respectively.

Tp W2 R2 a2 W3 R3 a3

80(+) 380 2.821 0.135 211.6 2.487 0.720

80(�) 50 0.245 111.6

65(+) 100 3.121 0.135 211.6 1.887 0.720

65(�) 40 3.321 1.387 0.900

50(+) 200 2.750 0.175 111.6 1.387 0.900

50(�) 55 3.100 0.155 0.700
3. Results and discussion

The starting point of this investigation is the use of IST, out-
lined in appendix A, to determine the points of the potential

in the exterior region. As pointed by (Alam and Malik,
1991) and references therein, the points determined in the inte-
rior region i.e., r< 3 fm, are uncertain.

Using the potential points obtained from the inverse scat-
tering theory as a guide, I, therefore construct the potential
by adjusting the parameters of the real part of the potential
and obtain V0 = 24.5 MeV, R0 = 5.119 fm, a0 = 0.153 fm,

V1 = 120 MeV, R1 = 1.22 fm, and a1 = 0.663 fm. Benefitting
from a previous study (Shehadeh, 2009), these parameters were
kept fixed.

On the other hand, the parameters of the imaginary part are
changed according to potential points extracted from IST to
provide reasonable fits to the observed angular distributions.

These parameters are listed in table 1. In the interior region,
generally for r 6 3fm, points determined using IST are usually
uncertain. This is further complicated by the fact that Fröhlich

et al. have done the phase shift analyses using forward angle
data only which could make the determined phase shifts some-
what uncertain.

On the left side of Fig. 1, the calculated angular distributions

in the 80 MeV case, obtained by neglecting the squared poten-
tial term, V2/2E, in (3) (upper insert) and including it (lower in-
sert) in (11) are compared with the observed data (Leitch et al.,

1984). In the same figure (right side), the analytical potential
forms joining the points of the real and imaginary parts of
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and dashed lines) using the potential given by Eq. (11) without the

er part) are compared with the experimental data (solid circles and

of mass angle (hc.m.) for Tp = 80 MeV for positively and negatively

arts of the potential given by Eq. (11), with the squared potential

ing the inverse scattering theory for positive pions.
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Figure 2 Same as Fig. 1 but for the 65 MeV case.
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Figure 3 Same as Fig. 1 but for the 50 MeV case.
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the effective potential, defined by (A.4) and (A.5), respectively,
are shown by solid lines. Similar graphs are shown in Figs. 2

and 3 for 65 and 50 MeV incident p±. The data are from
(Dam et al., 1982; Fröhlich et al., 1984), respectively. The inclu-
sion of the squared potential term in the potential (11) improves
the fits for both positive and negative pions. Therefore, its
inclusion in studying data at higher energies is warranted. From

these graphs, it is very clear that the points of the potential ob-
tained from the IST serve very well in determining the nature of
the potential from a distance of 3 fm outward. This success is a
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strong motivation for initiating a comprehensive study of deter-
mining potentials from the elastically scattered charged pions
from 40Ca at all energies where phase shift analyses are avail-

able. In addition, this work will be extended to treat the scat-
tered charged pions from other nuclei, such as 16O and 12C,
at energies where phase shift analyses are available (Fröhlich

et al., 1981; Dumbrajs et al., 1984).

4. Conclusions

This analysis establishes a number of very important points
illuminating the nature of pion–nucleus potential, the most
important of them being that the non-Coulomb real part of

the pion–nucleus potential is the same for p+ and p� at inci-
dent energies considered herein. The others are the following:
(a) The analyses of large angle data require the inclusion of

V2(r) term in the K–G equation which often is omitted. (b)
The potential points determined from about 3 fm outward
can be reasonably obtained by the IST and (c) As already
noted by Shehadeh et al. (2011), Stricker’s prescription is a rea-

sonable way to incorporate the effect of the Coulomb term.

5. Appendix A

It is well-known that pion–nucleus interaction is governed by
the Klein–Gordon equation with a spherically symmetric po-
tential, V(r), that can be written as:

d2=dr2 þ k2 �UðrÞ � lðlþ 1Þ
r2

� �
RnlðrÞ ¼ 0 ðA:1Þ

where Rnl(r) is the r times the radial part of the wave function

for a spherical symmetric external potential. Also, in (1), k2

and U(r) are given by

k2 ¼ E2 �m2c4
� 	

=�h2c2 ðA:2Þ

UðrÞ ¼ 2E

�h2c2
VðrÞ � V2ðrÞ=2E
� �

¼ Veff ðA:3Þ

In (A.3), E and m are, respectively, total energy and pion
rest mass and c is the velocity of electro-magnetic wave in vac-

uum. V(r) is the complex pion–nucleus potential.
Since V(r) is complex, the real and imaginary part of the

effective potential, ReU and ImU, respectively, have the fol-

lowing expressions:

ReUðrÞ ¼ 2E

�h2c2


 �
ReVðrÞ � fðReVðrÞÞ2 � ðImVðrÞÞ2g

2E

" #

ðA:4Þ

ImUðrÞ ¼ 2E

�h2c2


 �
ImVðrÞ � 2ðReVðrÞÞ2 � ðImVðrÞÞ2

2E

" #
ðA:5Þ

For completeness and importance, the inverse scattering
theory used to extract the real and imaginary parts of the effec-
tive potential (Shehadeh et al., 1995) is summarized in the fol-

lowing. Introducing

unlðrÞ ¼ ðkrÞ
�ðlþ1Þ

RnlðrÞ ðA:6Þ

one obtains the following equation for unl(r) from (A.1),

d2

dr2
þ 2ðlþ 1Þ

r

d

dr
þ k2 �UðrÞ

� �
unlðrÞ ¼ 0 ðA:7Þ
Dividing the range, R, of U(r) in N equal parts, one has

R= ND and the point r = nD with n being an integer. Replac-
ing the differential operators by central differences, one may
obtain from (A.7) the following difference equation

unþ1 ¼ AnðlÞBnðlÞun þ CnðlÞun�1; n ¼ 1; 2:::N ðA:8Þ

In (A.8), we have suppressed the suffice (nl) in u and An(l),
Bn(l) and Cn(l) are given by the following expressions:

AnðlÞ ¼ 2� D2k2 þ D2Un ðA:9Þ

BnðlÞ ¼ n=ðlþ 1þ nÞ ðA:10Þ

CnðlÞ ¼ ðlþ 1� nÞ=ðlþ 1þ nÞ ðA:11Þ

and Un is the value of U at the n-th point. The logarithmic
derivative relevant for the calculation of phase shifts for a gi-
ven l, ZN(l) is given by replacing the first derivative by central

difference at R= ND, and is the following:

ZNðlÞ ¼
N

2


 �
uNþ1 � uN�1

/N


 �
ðA:12Þ

The evaluation of (A.12) requires the knowledge of uN, uN+1

and uN�1 at n = N. For n = N, (A.8) reduces to

uNþ1
uN

¼ ANðlÞBNðlÞ þ CNðlÞ= uN=uN�1ð Þ ðA:13Þ

One may now replace (uN/uN�1); successively and obtain the

following continued fraction equation

/Nþ1
uN

¼ ANðlÞBNðlÞ þ
CNðlÞ

AN�1ðlÞBN�1ðlÞþ
CN�1ðlÞ

AN�2ðlÞBN�2ðlÞþ
:::

�
C3ðlÞ

A2ðlÞB2ðlÞþ
C2ðlÞ

A1ðlÞB1ðlÞ þ C1ðlÞ= u1=u0ð Þ

�
ðA:14Þ

Since for a given l, there is always a point ‘‘m’’ where

Cm(l) = 0, the last term in the continued fraction does not en-
ter in the calculation. One can similarly calculate uN�1/uN and
obtain ZN(l) and hence, the phase shift.

For the inverse scattering process, one starts at a point
where UN = 0. At that point AN = 2�D2k2, is known. Using
(A.12) and (A.13) at that point one gets

uN

uN�1
¼ CNðlÞ

2
N
ZNðlÞ � ANðlÞBNðlÞ

� � ðA:15Þ

where l = 0,1,2. . .,L and N= L + 1, L being the largest par-

tial wave. As noted earlier, there is always an ln that makes
Cn(lN�n) = 0. For n = N�1, we therefore, have

AN�1ðl1Þ ¼
1

BN�1ðl1Þ
uNðl1Þ

uN�1ðl1Þ
ðA:16Þ

This inward iteration may be continued to find all AN�j at
the points for j = 2,3. . .N�1

AN�jðljÞ¼
1

BN�jðljÞ
CNþ1�jðljÞ

�ANþ1�jðljÞBNþ1�jðljÞþ
::::

CN�2ðljÞ
�AN�2ðljÞBN�2ðljÞþ

�

:
CN�1ðljÞ

�AN�1ðljÞBN�1ðljÞþuNðljÞ=uN�1ðljÞ

�
ðA:17Þ

Once AN�j(lj) is known, Un is given by

Un ¼
1

D2
An � 2þ D2k2
� �

ðA:18Þ

and hence, both the real and imaginary parts at points
n= N�1 of Veff can be calculated.
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