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Abstract A mathematical model which describes the quasistatic frictional contact between a pie-

zoelectric body and a deformable foundation is studied in this paper. A nonlinear electro-viscoelas-

tic constitutive law is used to model the piezoelectric material. The contact is described with the

normal compliance condition and a version of Coulomb’s law of friction. A variational formulation

of the model, in the form of a coupled system for the displacements and the electric potential, is

derived. The existence of a unique weak solution of the model is established under a smallness

assumption of the friction coefficient. The proof is based on arguments of evolutionary variational

inequalities and fixed points of operators.
ª 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

In this work, we continue the research of Lerguet et al. (2007)

with a perfect insulator foundation and an other version of
Coulomb’s low friction. We formulate and analyze the varia-
tional formulation of the electro-viscoelastic problem. Situa-

tions of contact between deformable bodies are very common
in the industry and everyday life. Contact of braking pads with
wheels, tires with roads, pistons with skirts or complex metal
forming processes are just a few examples. Because of the

importance of contact processes in structural and mechanical
systems, a considerable effort has been made in its modeling
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and numerical simulations and so, the engineering literature
concerning this topic is rather extensive (Berdichevsky, 2009;

Muradova and Stavroulakis, 2007; Fisher-Cripps, 2000).
There is a considerable interest in frictional or frictionless

contact problems involving piezoelectric materials (Bisenga
et al., 2002; Sofonea and Essoufifi, 2004; Drabla and Zellagui,

2009, 2011). Indeed, many actuators and sensors in engineer-
ing controls are made of piezoelectric ceramics. However, there
exists virtually no mathematical results about contact prob-

lems for such materials and there is a need to expand the
MTCM (Mathematical Theory of Contact Mechanics) to in-
clude the coupling between the mechanical and electrical mate-

rial properties.
The piezoelectric effect is characterized by such a coupling

between the mechanical and electrical properties of the materi-
als. This coupling, leads to the appearance of electric field in

the presence of a mechanical stress, and conversely, mechani-
cal stress is generated when electric potential is applied. The
first effect is used in sensors, and the reverse effect is used in

actuators.
On a nano-scale, the piezoelectric phenomenon arises from

a nonuniform charge distribution within a crystal’s unit cell.
ier B.V. All rights reserved.
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When such a crystal is deformed mechanically, the positive and
negative charges are displaced by a different amount causing
the appearance of electric polarization. So, while the overall

crystal remains electrically neutral, an electric polarization is
formed within the crystal. This electric polarization due to
mechanical stress is called piezoelectricity. A deformable mate-

rial which exhibits such a behavior is called a piezoelectric
material. Piezoelectric materials for which the mechanical
properties are elastic are also called electro-elastic materials

and piezoelectric materials for which the mechanical properties
are viscoelastic are also called electro-viscoelastic materials.

Only some materials exhibit sufficient piezoelectricity to be
useful in applications. These include quartz, Rochelle salt, lead

titanate zirconate ceramics, barium titanate, and polyvinyli-
dene fluoride (a polymer film), and are used extensively as
switches and actuators in many engineering systems, in radio-

electronics, electroacoustics and in measuring equipment. Gen-
eral models for electro-elastic materials can be found in
Mindlin (1968), Mindlin (1972) and, more recently, in Ikeda

(1990). A static and a slip-dependent frictional contact prob-
lems for electro-elastic materials were studied in Bisenga
et al. (2002). A contact problem with normal compliance for

electro-viscoelastic materials was investigated in Sofonea
et al. (2004). In the last two references the foundation was as-
sumed to be insulated. The variational formulations of the cor-
responding problems were derived and existence and

uniqueness of weak solutions were obtained.
We present in this work two logically connected aspects of

the theory of electro-viscoelastic materials: the constitutive the-

ory and the variational formulation of the related initial
boundary value problem.

The paper is structured as follows. In Section 2 we describe

the model of the frictional contact process between an electro-
viscoelastic body and a deformable foundation. In Section 3
we introduce some notation, list the assumptions on the prob-

lem’s data, and derive the variational formulation of the mod-
el. It consists of a variational inequality for the displacement
field coupled with a nonlinear time-dependent variational
equation for the electric potential. We state our main result,

the existence of a unique weak solution to the model in Theo-
rem 3.1. The proof of the theorem is provided in Section 4,
where it is carried out in several steps and is based on argu-

ments of evolutionary inequalities with monotone operators,
and a fixed point theorem.
2. The model

We consider a body made of a piezoelectric material which
occupies the domain X � Rd ðd ¼ 2; 3Þ with a smooth bound-

ary oX = C and a unit outward normal m. The body is acted
upon by body forces of density f0 and has volume free electric
charges of density q0. It is also constrained mechanically and
electrically on the boundary. To describe these conditions, we

assume a partition of Cinto three open disjoint parts C1, C2

and C3, on the one hand, and a partition of C1 [ C2 into two
open parts Ca and Cb, on the other hand. We assume that

measC1 > 0 and measCa > 0; these conditions allow the use
of coercivity arguments which guarantee the uniqueness of
the solution for the model. The body is clamped on C1 and,

therefore, the displacement field u= (u1, . . . ,ud) vanishes there.
Surface tractions of density f2 act on C2. We also assume that
the electrical potential vanishes on Ca and a surface free electri-
cal charge of density q2 is prescribed on Cb. In the reference con-
figuration the body may come in contact over C3 with an

insulator obstacle, which is also called the foundation. The con-
tact is frictional and is modeled with the normal compliance
condition and a version of Coulomb’s law of friction. Also,

there may be electrical charges on the part of the body which
is in contact with the foundation and which vanish when
contact is lost. We are interested in the evolution of the defor-

mation of the body and of the electric potential on the time
interval [0,T]. The process is assumed to be isothermal,
electrically static, i.e., all radiation effects are neglected, and
mechanically quasistatic; i.e., the inertial terms in the momen-

tum balance equations are neglected. We denote by x 2 X [ C
and t 2 [0,T] the spatial and the time variables, respectively,
and, to simplify the notation, we do not indicate in what follows

the dependence of various functions on x and t. In this paper i, j,
k, l= 1, . . . , d, summation over two repeated indices is implied,
and the index that follows a comma represents the partial deriv-

ative with respect to the corresponding component of x. A dot
over a variable represents the time derivative. We use the
notation Sd for the space of second order symmetric tensors

on Rd and ‘‘Æ’’ and i Æ i represent the inner product and the
Euclidean norm on Sd and Rd, respectively, that is u Æ v = uivi,
ivi = (v Æ v)1/2 for u; v 2 Rd, and r Æ s = rijsij, isi = (s Æ s)1/2 for
r; s 2 Sd. We also use the usual notation for the normal

components and the tangential parts of vectors and ten-
sors, respectively, by um = u Æ m, us = u � umm, rm = rij mimj,
and rs = rm � rmm. The classical model for the process is as

follows.

Problem P. Find a displacement field u : X� ½0;T� ! Rd, a
stress field r : X� ½0;T� ! Sd, an electric potential u : X�
½0;T� ! R and an electric displacement field

D : X� ½0;T� ! Rd such that
r ¼ Aeð _uÞ þ GeðuÞ � E�EðuÞ in X� ð0;TÞ; ð2:1Þ
D ¼ EeðuÞ þ BEðuÞ in X� ð0;TÞ; ð2:2Þ
Div rþ f 0 ¼ 0 in X� ð0;TÞ; ð2:3Þ
div D� q0 ¼ 0 in X� ð0;TÞ; ð2:4Þ
u ¼ 0 on C1 � ð0;TÞ; ð2:5Þ
rm ¼ f 2 on C2 � ð0;TÞ; ð2:6Þ
� rm ¼ pmðum � gÞ on C3;�ð0;TÞ; ð2:7Þ
krsk 6 lpmðum � gÞ; on C3 � ð0;TÞ;
krsk < lpmðum � gÞ ) _us ¼ 0;

krsk ¼ lpmðum � gÞ ) there exists k P 0

such that rs ¼ �k _us;

8>>><
>>>:

ð2:8Þ

u ¼ 0 on Ca � ð0;TÞ; ð2:9Þ
D � m ¼ q2 on Cb � ð0;TÞ; ð2:10Þ
D � m ¼ 0 on C3 � ð0;TÞ; ð2:11Þ
uð0Þ ¼ u0 in X: ð2:12Þ

We now describe problem (2.1)–(2.12) and provide explana-
tion of the equations and the boundary conditions.

First, Eqs. (2.1) and (2.2) represent the nonlinear electro
viscoelastic constitutive law in which r = (rij) is the stress

tensor, e(u) denotes the linearized strain tensor, A and G are
the viscosity and elasticity operators, respectively, E ¼ ðeijkÞ
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represents the third-order piezoelectric tensor, E� is its trans-
pose, B ¼ ðbijÞ denotes the electric permittivity tensor, and
D= (D1, . . . ,Dd) is the electric displacement vector. Since we

use the electrostatic approximation, the electric field satisfies
E(u) = �$ u, where u is the electric potential.

We recall that e(u) = (eij(u)) and eij(u) = (ui,j + uj,i)/2. The

tensors E and E� satisfy the equality

Er � v ¼ r � E�v 8r ¼ ðrijÞ 2 Sd; v 2 Rd

and the components of the tensor E� are given by e�ijk ¼ ekij.

A viscoelastic Kelvin–Voigt constitutive relation (Han and
Sofonea, 2002) is given in (2.1), in which the dependence of the
stress on the electric field is taken into account. Relation (2.2)

describes a linear dependence of the electric displacement field
D on the strain and electric fields; such a relation has been fre-
quently employed in the literature (Bisenga et al., 2002).

Next, Eqs. (2.3) and (2.4) are the steady equations for the
stress and electric-displacement fields, respectively, in which
‘‘Div’’ and ‘‘div’’ denote the divergence operator for tensor
and vector valued functions, i.e.,

Div r ¼ ðrij;jÞ; div D ¼ ðDi;iÞ:

We use these equations since the process is assumed to be

mechanically quasistatic and electrically static.
Conditions (2.5) and (2.6) are the displacement and traction

boundary conditions, whereas (2.9) and (2.10) represent the

electric boundary conditions; the displacement field and the
electrical potential vanish on C1 and Ca, respectively, while the
forces and free electric charges are prescribed on C2 and Cb,
respectively. Finally, the initial displacement u0 in (2.12) is given.

We turn to the boundary conditions (2.7), (2.8), and (2.11)
which describe the contact on the surface C3 and in which our
main interest is. First, the normal compliance function pm, in

(2.7), is described below, and g represents the gap in the refer-
ence configuration between C3 and the foundation, measured
along the direction of m. When positive, um � g represents the

interpenetration of the surface asperities into those of the
foundation. This condition was first used in a large number
of papers (Kikuchi and Oden, 1988; Han and Sofonea, 2002;
Klarbring et al., 1988). Condition (2.8) is the associated fric-

tion law where lpm is a given function. According to (2.8) the
tangential shear cannot exceed the maximum frictional resis-
tance lpm(um � g), the so-called friction bound. Moreover,

when sliding commences, the tangential shear reaches the fric-
tion bound and opposes the motion. Frictional contact condi-
tions of the form (2.7) and (2.8) have been used in various

papers (Rochdi et al., 1998; Han and Sofonea, 2002).
Next, (2.11) is the electrical contact condition on C3 which

decouples the electrical and mechanical problems on the con-

tact surface. Condition (2.11) models the case when the obsta-
cle is a perfect insulator and was used in Bisenga et al., 2002
and Sofonea et al., (2004). Now, we derive in the next section
a variational formulation of the problem and investigate its

solvability. Moreover, variational formulations are also start-
ing points for the construction of finite element algorithms
for this type of problems.

3. Variational formulation and the main result

We use the standard notation for the Lp and the Sobolev

spaces associated with Xand C and, for a function w 2 H1(X)
we still write w to denote its trace on C. We recall that the sum-
mation convention applies to a repeated index.

For the electric displacement field we use two Hilbert spaces

W ¼ L2ðXÞd; W1 ¼ fD 2 W : div D 2 L2ðXÞg

endowed with the inner products

ðD;EÞW ¼
Z

X
DiEidx; ðD;EÞW1

¼ ðD;EÞW þ ðdivD; divEÞL2ðXÞ

and the associated norms k � kW and k � kW1
, respectively. The

electric potential field is to be found in

W ¼ fw 2 H1ðXÞ : w ¼ 0 on Cag:

Since measCa > 0, the Friedrichs–Poincaré inequality holds,

thus,

krwkW P cFkwkH1ðXÞ 8w 2W; ð3:1Þ

where cF > 0 is a constant which depends only on X and Ca.
On W, we use the inner product

ðu;wÞW ¼ ðru;rwÞW
and let i Æ iW be the associated norm. It follows from (3.1) that
k � kH1ðXÞ and i Æ iW are equivalent norms on W and therefore

(W,i Æ iW) is a real Hilbert space. Moreover, by the Sobolev
trace theorem, there exists a constant c0, depending only on
X, Ca and C3, such that

kwkL2ðC3Þ 6 c0kwkW 8w 2W: ð3:2Þ

We recall that when D 2 W1 is a sufficiently regular function,
the Green type formula holds:

ðD;rwÞL2ðXÞd þ ðdiv D;wÞW ¼
Z

C
D � mwda 8w

2 H1ðXÞ: ð3:3Þ

For the stress and strain variables, we use the real Hilbert

spaces

Q ¼ fs ¼ ðsijÞ : sij ¼ sji 2 L2ðXÞg ¼ L2ðXÞd�dsym ; Q1 ¼ fr
¼ ðrijÞ 2 Q : div r ¼ ðrij;jÞ 2 Wg

endowed with the respective inner products

ðr; sÞQ ¼
Z

X
rijsijdx; ðr; sÞQ1

¼ ðr; sÞQ þ ðdiv r; div sÞW

and the associated norms i Æ iQ and k � kQ1
. For the displace-

ment variable we use the real Hilbert space

H1 ¼ fu ¼ ðuiÞ 2 W : eðuÞ 2 Qg

endowed with the inner product

ðu; vÞH1
¼ ðu; vÞW þ ðeðuÞ; eðvÞÞQ

and the norm k � kH1
.

When r is a regular function, the following Green’s type
formula holds,

ðr; eðvÞÞQ þ ðDiv r; vÞL2ðXÞd ¼
Z

C
rm � vda 8 v 2 H1: ð3:4Þ

Next, we define the space

V ¼ fv 2 H1 : v ¼ 0 on C1g:
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Since measC1 > 0, Korn’s inequality holds and

keðvÞkQ P cKkvkH1
8v 2 V; ð3:5Þ

where cK > 0 is a constant which depends only on X and C1.

On the space V we use the inner product

ðu; vÞV ¼ ðeðuÞ; eðvÞÞQ
and let i Æ iV be the associated norm. It follows from (3.5) that
the norms k � kH1

and i Æ iV are equivalent on V and, therefore,
the space (V, (Æ, Æ)V) is a real Hilbert space. Moreover, by the
Sobolev trace theorem, there exists a constant ~c0, depending
only on X, C1 and C3, such that

kvkL2ðC3Þd 6 ~c0kvkV 8v 2 V: ð3:6Þ

Finally, for a real Banach space (X, i Æ iX) we use the usual
notation for the spaces Lp(0,T;X) and Wk,p(0,T;X) where

1 6 p 61, k = 1, 2, . . .; we also denote by C([0,T];X) and
C1([0,T];X) the spaces of continuous and continuously differ-
entiable functions on [0,T] with values in X, with the respective

norms

kxkCð½0;T�;XÞ ¼ max
t2½0;T�
kxðtÞkX; kxkC1ð½0;T�;XÞ

¼ max
t2½0;T�
kxðtÞkX þ max

t2½0;T�
k _xðtÞkX:

Recall that the dot represents the time derivative.
We now list the assumptions on the problem’s data. The

viscosity operator A and the elasticity operator G are assumed

to satisfy the conditions:

ðaÞ A : X� Sd ! Sd;

ðbÞ There exists LA > 0 such that

kAðx; n1Þ � Aðx; n2Þk 6 LAkn1 � n2k

8 n1; n2 2 Sd; a:e: x 2 X:

ðcÞ There exists mA > 0 such that

ðAðx; n1Þ � Aðx; n2ÞÞ � ðn1 � n2ÞP

mAkn1 � n2k
2 8n1; n2 2 Sd; a:e: x 2 X:

ðdÞ The mapping x#Aðx; nÞ is Lebesgue

measurable on X; for any n 2 Sd:

ðeÞ The mapping x#Aðx; 0Þ belongs to Q:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3:7Þ

ðaÞ G : X� Sd ! Sd:

ðbÞ There exists LG > 0 such that

kGðx; n1Þ � Gðx; n2Þk 6 LGkn1 � n2k

8 n1; n2 2 Sd; a:e: x 2 X:

ðcÞ The mapping x#Gðx; nÞ is measurable on X;

for any n 2 Sd:

ðdÞ The mapping x#Gðx; 0Þ belongs to Q:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð3:8Þ

The piezoelectric tensor E and the electric permittivity tensor B
satisfy
ðaÞ E : X� S
d ! Rd:

ðbÞ Eðx; sÞ ¼ ðeijkðxÞsjkÞ 8s ¼ ðsijÞ 2 Sd; a:e: x 2 X:

ðcÞ eijk ¼ eikj 2 L1ðXÞ:

8><
>:

ð3:9Þ

ðaÞ B : X� Rd ! Rd:

ðbÞ Bðx;EÞ ¼ ðbijðxÞEjÞ 8E ¼ ðEiÞ 2 Rd; a:e: x 2 X:

ðcÞ bij ¼ bji 2 L1ðXÞ:
ðdÞ There exists mB > 0 such that bijðxÞEiEj P mBkEk2

8E ¼ ðEiÞ 2 Rd; a:e: x 2 X:

8>>>>>><
>>>>>>:

ð3:10Þ

In linearized electro viscoelasticity, the constitutive laws (2.1)

and (2.2) read

rij ¼ aijklek;lð _uÞ þ gijkleklðuÞ � ekiju;k; Di ¼ eijkejkðuÞ þ biju;j;

where aijkl, gijkl, bij are the components of the tensors A; G and
b, respectively, and u,j = ou/oxj. Clearly, assumption (3.7) is
satisfied if all the components aijkl belong to L1(X) and satisfy
the usual properties of symmetry and ellipticity:

aijkl ¼ ajikl ¼ aklij

and

aijklfijfkl P m0kfk2

for m0 > 0 and all symmetric tensors f. Assumption (3.8) is
satisfied if gijkl belong to L1(X) and satisfies the same symme-
try properties.

A second example is provided by the nonlinear electro vis-
coelastic constitutive law,

r ¼ Aeð _uÞ þ aðeðuÞ � PKðeðuÞÞ � E�EðuÞ;

Di ¼ eijkejkðuÞ þ biju;j;

Here A is a nonlinear fourth-order viscosity tensor that satis-

fies (3.7), a is a positive coefficient, K is a closed convex subset
of Sd such that 0 2 K and PK : Sd ! K denotes the projection
operator. Since the projection operator is nonexpansive, the

elasticity operator Gðx; eÞ ¼ aðe� PKeÞ satisfies the condition
(3.8).

The normal compliance function pm satisfies

ðaÞ pm : C3 � R! Rþ

ðbÞ 9Lm > 0 such that jpmðx; u1Þ � pmðx; u2Þj 6 Lmju1 � u2j
8 u1; u2 2 R; a:e: x 2 C3:

ðcÞ x # pmðx; uÞ is measurable on C3; for all u 2 R:

ðdÞ x # pmðx; uÞ ¼ 0; for all u 6 0:

8>>>>>><
>>>>>>:

ð3:11Þ

An example of a normal compliance function pm which satisfies
conditions (3.11) is pm(u) = cmu+ where cm 2 L1(C3) is a posi-

tive surface stiffness coefficient, and u+ = max {0,u}.
The forces, tractions, volume and surface free charge densi-

ties satisfy

f 0 2W1;pð0;T;L2ðXÞdÞ; ð3:12Þ
f 2 2W1;pð0;T;L2 C2ð ÞdÞ; ð3:13Þ
q0 2W1;pð0;T;L2ðXÞÞ; ð3:14Þ
q2 2W1;pð0;T;L2ðCbÞÞ: ð3:15Þ
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Here, 1 6 p 61. Finally, we assume that the gap function, the

friction coefficient and the initial displacement satisfy

g 2 L2ðC3Þ; g P 0 a:e: on C3; ð3:16Þ
l 2 L1ðC3Þ; lðxÞP 0 a:e: on C3 ð3:17Þ
u0 2 V: ð3:18Þ

Next, we define the three mappings jfr : V� V! R;
f : ½0;T� ! V and q : [0,T] fi W, respectively, by

jfrðu; vÞ ¼
Z

C3

pmðum � gÞvm daþ
Z

C3

lpmðum � gÞkvskda; ð3:19Þ

ðfðtÞ; vÞV ¼
Z

X
f 0ðtÞ � vdxþ

Z
C2

f 2ðtÞ � vda; ð3:20Þ

ðqðtÞ;wÞW ¼
Z

X
q0ðtÞwdx�

Z
Cb

q2ðtÞwda ð3:21Þ

for all u,v 2 V, u, w 2W and t 2 [0,T]. We note that the defi-
nitions of, f and q are based on the Riesz representation theo-

rem, moreover, it follows from assumptions (3.11)–(3.15) that
the integrals in (3.19)–(3.21) are well-defined.

Using Green’s formulas (3.3) and (3.4), it is easy to see that

if (u,r,u,D) are sufficiently regular functions which satisfy
(2.3)–(2.10) then

rðtÞ; eðvÞ � eð _uðtÞÞð ÞQ þ jfrðuðtÞ; vÞ
� jfrðuðtÞ; _uðtÞÞP ðfðtÞ; v� _uðtÞÞV; ð3:22Þ

ðDðtÞ;rwÞW þ ðqðtÞ;wÞW ¼ 0 ð3:23Þ

for all v 2 V, w 2W and t 2 [0,T]. We substitute (2.1) in (3.22),
(2.2) in (3.23), note that E(u) = �$u, use the initial condition
(2.12) and derive a variational formulation of Problem P. It is
in the terms of displacement and electric potential fields.

Problem PV. Find a displacement field u : [0,T] fi V and an
electric potential u : [0,T] fi W such that

ðAeð _uðtÞÞ; eðvÞ � eð _uðtÞÞÞQ þ ðGeðuðtÞÞ; eðvÞ � eð _uðtÞÞQ
þðE�ruðtÞ; eðvÞ � eð _uðtÞÞQ þ jfrðuðtÞ; vÞ � jfrðuðtÞ; _uðtÞÞ
P ðfðtÞ; v� _uðtÞÞV

8><
>:

ð3:24Þ

for all v 2 V and t 2 [0,T],

ðBruðtÞ;rwÞW � ðEeðuðtÞÞ;rwÞW ¼ ðqðtÞ;wÞW ð3:25Þ

for all w 2W and t 2 [0,T], and

uð0Þ ¼ u0: ð3:26Þ

Next, we use (3.19) and (3.11)(b), keeping in mind (3.6), we
obtain

jfrðu1; v1Þ � jfrðu1; v2Þ þ jfrðu2; v1Þ � jfrðu2; v2Þ
6 ~c20LmklkL1ðC3Þku1 � u2kVkv1 � v2kV: ð3:27Þ

now, by using (3.11)(b) and (3.17), it follows that the integral
in (3.19) is well defined. Moreover, we have

jfrðu; vÞ 6 ~c20LmklkL1ðC3ÞkukVkvkV: ð3:28Þ

The inequalities (3.27) and (3.28) will be used in various places
in the rest of the paper.
Our main existence and uniqueness result that we state now
and prove in the next section is the following.

Theorem 3.1. Assume that 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13,

3.14, 3.15, 3.16, 3.17, 3.18, hold. Then, there exists l0 > 0
depending only on X;C1;C3;A, and pm such that, if
klkL1ðC3Þ < l0, then Problem PV has a unique solution (u,u).
Moreover, the solution satisfies

u 2W2;pð0;T;VÞ; ð3:29Þ
u 2W1;pð0;T;VÞ: ð3:30Þ

It is easy to check that r and D the function given by (2.1)

and (2.2) respectively, satisfy:

r 2W1;pð0;T;Q1Þ; ð3:31Þ
D 2W1;pð0;T;W1Þ: ð3:32Þ

We conclude that the weak solution (u,r,u,D) of the piezoelec-
tric contact Problem P has the regularity implied in (3.29)–
(3.31) and (3.32).

4. Proof of Theorem 3.1

The proof of Theorem 3.1 is carried out in several steps and is

based on the following abstract result for evolutionary varia-
tional inequalities.

Let X be a real Hilbert space with the inner product (Æ,Æ)X
and the associated norm i Æ iX, and consider the problem of
finding u : [0,T] fi X such that

ðA _uðtÞ; v� _uðtÞÞX þ ðBuðtÞ; v� _uðtÞÞX þ jðuðtÞ; vÞ
�jðuðtÞ; _uðtÞÞP ðfðtÞ; v� _uðtÞÞX 8v 2 X; t 2 ½0;T�;

�

ð4:1Þ

uð0Þ ¼ u0: ð4:2Þ

To study problem (4.1) and (4.2) we need the following
assumptions: The operator A : X fi X is strongly monotone
and Lipschitz continuous, i.e.,

ðaÞ There exists mA > 0 such that

ðAu1 � Au2; u1 � u2ÞX P mAku1 � u2k2X
8u1; u2 2 X:

ðbÞ There exists LA > 0 such that

kAu1 � Au2kX 6 LAku1 � u2kX 8u1; u2 2 X:

8>>>>>><
>>>>>>:

ð4:3Þ

The nonlinear operator B : X fi X is Lipschitz continuous, i.e.,
there exists LB > 0 such that

kBu1 � Bu2kX 6 LB ku1 � u2kX 8u1; u2 2 X: ð4:4Þ

The functional j : X� X! R satisfies:

ðaÞ jðu; �Þ is convex and l:s:c: on X for all u 2 X:

ðbÞ There exists m > 0 such that

jðu1; v2Þ � jðu1; v1Þ þ jðu2; v1Þ � jðu2; v2Þ
6 m ku1 � u2kX kv1 � v2kX 8u1; u2; v1; v2 2 X:

8>>>><
>>>>:

ð4:5Þ
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Finally, we assume that

f 2 Cð½0;T�;XÞ ð4:6Þ

and

u0 2 X: ð4:7Þ

The following existence, uniqueness and regularity result was
proved in Han and Sofonea (2000) and may be found in

Han and Sofonea (2002).

Theorem 4.1. Let (4.3)–(4.7), hold. Then:

(1) There exists a unique solution u 2 C1([0,T];X) of prob-

lem (4.1) and (4.2).
(2) If u1 and u2 are two solutions of (4.1) and (4.2) corre-

sponding to the data f1, f2 2 C([0,T];X), then there exists

c> 0 such that
k _u1ðtÞ � _u2ðtÞkX 6 cðkf1ðtÞ � f2ðtÞkXÞ þ ku1ðtÞ
� u2ðtÞkX 8 t 2 ½0;T�: ð4:8Þ
(3) If, moreover, f 2W1,p(0,T;X), for some p 2 [1,1], then
the solution satisfies u 2W2,p(0,T;X).

We turn now to the proof of Theorem 3.1. To that end we
assume in what follows that (3.7)–(3.18) hold and, everywhere

below, we denote by c various positive constants which are
independent of time and whose value may change from line
to line.

Let g 2 C([0,T];Q) be given, and in the first step consider
the following intermediate mechanical problem in which
g ¼ E�ru is known.

Problem P1
g. Find a displacement field ug : [0,T] fi V such that

ðAeð _ugðtÞÞ;eðvÞ�eð _ugðtÞÞÞQþðGeðugðtÞÞ;eðvÞ�eð _ugðtÞÞÞQ
þðgðtÞ;eðvÞ�eð _ugðtÞÞÞQþ jfrðugðtÞ;vÞ� jfrðugðtÞ; _ugðtÞÞ
P ðfðtÞ;v� _ugðtÞÞV 8v2V; t2½0;T�;

8><
>: ð4:9Þ

ugð0Þ ¼ u0: ð4:10Þ

We have the following result for P1
g.

Lemma 4.2. There exists l0 > 0 depending only on X;C1;C3;A,
and pm such that, if klkL1ðC3Þ < l0, Then:

(1) There exists a unique solution ug 2 C1([0,T];V) to the
problem (4.9) and (4.10).

(2) If u1 and u2 are two solutions of (4.9) and (4.10) corre-

sponding to the data g1, g2 2 C([0,T];Q), then there
exists c > 0 such that

k _u1ðtÞ � _u2ðtÞkV 6 cðkf g1
ðtÞ � f g2

ðtÞkQ þ ku1ðtÞ � u2ðtÞkVÞ
8 t 2 ½0;T�: ð4:11Þ

The function fg : [0,T] fi V is defined by

ðf gðtÞ; vÞV ¼ ðfðtÞ; vÞV � ðgðtÞ; eðvÞÞQ ð4:12Þ

for all u, v 2 V and t 2 [0,T].
(3) Moreover, if g 2W1,p([0,T];Q) for some p 2 [1,1], then

the solution satisfies ug 2W2,p(0,T;V).
Proof of Lemma 4.2. We apply Theorem 4.1 where X= V,

with the inner product (Æ,Æ)V and the associated norm i Æ iV.
We use the Riesz representation theorem to define the opera-
tors A : V fi V, G : V fi V by

ðAu; vÞV ¼ ðAeðuÞ; eðvÞÞQ; ð4:13Þ
ðGu; vÞV ¼ ðGeðuÞ; eðvÞÞQ ð4:14Þ
for all u, v 2 V. Assumptions (3.7) and (3.8) imply that the
operators A and G satisfy conditions (4.3) and (4.4),
respectively.

It follows from (3.6) that the functional jfr, given by (3.19),

satisfies condition (4.5)(a). We use again (3.11) and (3.6) to
find

jfrðu1; v1Þ � jfrðu1; v2Þ þ jfrðu2; v1Þ � jfrðu2; v2Þ
6 ~c20LmklkL1ðC3Þku1 � u2kVkv1 � v2kV

for all u1, u2, v1, v2 2 V, which show that the functional jfr satis-

fies the condition (4.5)(b) onX= V.Moreover, using (3.12) and
(3.13) it is easy to see that the function f defined by (3.20) satisfies
f 2W1,p(0,T;V) and, keeping in mind that g 2 C([0,T];Q), we

deduce from (4.14) that fg 2 C([0,T];V), i.e., fg satisfies (4.6). Fi-
nally, we note that (3.18) shows that condition (4.7) is satisfied,
too, and (4.14) shows that if g 2W1,p(0,T;Q) then

fg 2W1,p(0,T;V). Using now (4.12)–(4.14) we find that Lemma
4.2 is a direct consequence of Theorem 4.1. h

In the next step we use the solution ug 2 C1([0,T],V), ob-
tained in Lemma 4.2, to construct the following variational
problem for the electrical potential.

Problem P2
g. Find an electrical potential ug : [0,T] fi W such

that

ðBrugðtÞ;rwÞW � ðEeðugðtÞÞ;rwÞW ¼ ðqðtÞ;wÞW ð4:15Þ

for all w 2W, t 2 [0,T].

The well-posedness of problem P2
g is as follows.

Lemma 4.3. There exists a unique solution ug 2W1,p(0,T;W)
which satisfies (4.15). Moreover, if ug1

and ug2
are the solutions

of (4.15) corresponding to g1,g2 2 C([0,T];Q) then, there
exists c > 0, such that

kug1
ðtÞ � ug2

ðtÞkW 6 ckug1
ðtÞ � ug2

ðtÞkV 8t 2 ½0;T�: ð4:16Þ

Proof of Lemma 4.3. Let t 2 [0,T]. We use the Riesz represen-

tation theorem to define the operator Ag(t) : W fi W by

ðAgðtÞu;wÞW ¼ ðBru;rwÞW � ðEeðugðtÞÞ;rwÞW ð4:17Þ

for all u, w 2W. Let u1, u2 2W, then assumptions (3.10)
imply

ðAgðtÞu1 � AgðtÞu2;u1 � u2ÞW P mBku1 � u2k
2
W: ð4:18Þ

On the other hand, using again (3.9) and (3.10), we have

ðAgðtÞu1 � AgðtÞu2;wÞW 6 cEku1 � u2kWkwkW 8w 2W;

ð4:19Þ
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where cE is a positive constant which depends on E. Thus,
kAgðtÞu1 � AgðtÞu2kW 6 cEku1 � u2kW: ð4:20Þ

Inequalities (4.18) and (4.19) show that the operator Ag(t) is a
strongly monotone Lipschitz continuous operator on W and,

therefore, there exists a unique element ug(t) 2W such that

AgðtÞugðtÞ ¼ qðtÞ: ð4:21Þ

We combine now (4.17) and (4.21) and find that ug(t) 2W is

the unique solution of the nonlinear variational Eq. (4.15).
We show next that ug 2W1,p(0,T;W). To this end, let t1,

t2 2 [0,T] and, for the sake of simplicity, we write ug(ti) = ui,
ugm(ti) = ui, q(ti) = qi, for i= 1, 2. Using 4.15, 3.9 and 3.10 we

find

mBku1 � u2k
2
W 6 cEku1 � u2kVku1 � u2kW þ kq1

� q2kWku1 � u2kW; ð4:22Þ

where cE is a positive constant which depends on the piezoelec-

tric tensor E.
Inserting the last inequality in (4.22) yields

mBku1 � u2kW 6 cE ku1 � u2kV þ kq1 � q2kW: ð4:23Þ

It follows from inequality (4.23) that

ku1 � u2kW 6 cðku1 � u2kV þ kq1 � q2kWÞ: ð4:24Þ

We also note that assumptions (3.14) and (3.15), combined

with definition (3.21) imply that q 2W1,p(0,T;W). Since
ug 2 C1([0,T];X), inequality (4.24) implies that
ug 2W1,p(0,T;W).

Let g1, g2 2 C([0,T];Q) and let ugi
¼ ui; ugi ¼ ui, for i= 1,

2. We use (4.15) and arguments similar to those used in the
proof of (4.23) to obtain

mBku1ðtÞ � u2ðtÞkW 6 cEku1ðtÞ � u2ðtÞkV
for all t 2 [0,T]. This inequality, leads to (4.16), which con-

cludes the proof. h

We now consider the operator K : C([0,T];Q) fi C([0,T];Q)

defined by

KgðtÞ ¼ E�rugðtÞ 8 g 2 Cð½0;T�;QÞ; t 2 ½0;T�: ð4:25Þ

We show that K has a unique fixed point.

Lemma 4.4. There exists a unique ~g 2W1;pð0;T;QÞ such that

K~g ¼ ~g.

Proof of Lemma 4.4. Let g1, g2 2 C([0,T];Q) and denote by ui
and ui the functions ugi and ugi

obtained in Lemmas 4.2 and
4.3, for i= 1, 2. Let t 2 [0,T]. Using (4.25) and (3.9) we obtain

kKg1ðtÞ � Kg2ðtÞkQ 6 c ku1ðtÞ � u2ðtÞkW
and, keeping in mind (4.17), we find

kKg1ðtÞ � Kg2ðtÞkQ 6 c ku1ðtÞ � u2ðtÞkV: ð4:26Þ

On the other hand, since uiðtÞ ¼ u0 þ
R t

0
_uiðsÞ ds, we have

ku1ðtÞ � u2ðtÞkV 6
Z t

0

k _u1ðsÞ � _u2ðsÞkVds ð4:27Þ

and using this inequality in (4.11) yields
k _u1ðtÞ� _u2ðtÞkV6 c kg1ðtÞ�g2ðtÞkQþ
Z t

0

k _u1ðsÞ� _u2ðsÞkV ds

� �
:

It follows now from a Gronwall-type argument thatZ t

0

k _u1ðsÞ � _u2ðsÞkV ds 6 c

Z t

0

kg1ðtÞ � g2ðtÞkQds: ð4:28Þ

Combining (4.26)–(4.28) leads to

kKg1ðtÞ � Kg2ðtÞkQ 6 c

Z t

0

kg1ðtÞ � g2ðtÞkQds:

Reiterating this inequality n times results in

kKng1ðtÞ � Kng2ðtÞkQ 6
cn

n!
kg1ðtÞ � g2ðtÞkCð½0;T�;QÞ:

This inequality shows that for a sufficiently large n the opera-
tor Kn is a contraction on the Banach space C([0,T];Q) and,
therefore, there exists a unique element ~g 2 Cð½0;T�;QÞ such
that K~g ¼ ~g. The regularity ~g 2W1;pð0;T;QÞ follows from
the fact that u~g 2W1;pð0;T;WÞ, obtained in Lemma 4.3, com-
bined with the definition (4.25) of the operator K. h

We have now all the ingredients to prove the Theorem 3.1
which we complete now.

Existence. Let ~g 2W1;pð0;T;QÞ be the fixed point of the
operator K, and let u~g; u~g be the solutions of problems P1

g

and P2
g, respectively, for g ¼ ~g. It follows from (4.25) that

E�ru~g ¼ ~g and, therefore, 4.9, 4.10 and 4.15 imply that

ðu~g;u~gÞ is a solution of problem PV. Properties (3.29) and
(3.30) follows from Lemma 4.2 (3) and Lemma 4.3.

Uniqueness. The uniqueness of the solution follows from the

uniqueness of the fixed point of the operator K. It can also be
obtained by using arguments similar as those used in Rochdi
et al. (1998).
5. Conclusion

This paper deals with a mathematical model which describes

the quasistatic frictional contact between a piezoelectric body
and a deformable foundation. The contact is described with
the normal compliance condition and a version of Coulomb’s

law of friction. The connection between the problem with the
Signorini’s contact condition and the normal compliance con-
dition that were studied is new and has both theoretical and
applied interest. Other results are new, and are reported here

for the first time.
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