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Abstract In present study, nonlinear dynamics of a particle on a rotating parabola are analyzed by
means of the analytic and semi-analytic approaches. The Energy balance method (EBM), homoto-
py perturbation method (HPM) and amplitude—frequency formulation (AFF) are applied as the
analytic approaches and the frequency-amplitude relationships are obtained. The governing equa-
tion of motion is also solved by the differential transform method (DTM) as a semi-analytic
approach. The effects of different parameters on the governing equation are evaluated. Comparison
of results with exact and numerical solutions are investigated. the performance and capability of
each method are revealed and discussed.

© 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Many phenomena in applied sciences and engineering ex-
pressed as nonlinear differential equations. This issue especially
in mechanics and physics for dynamics and oscillations analysis
is visible. In recent years, remarkable attention has been direc-
ted toward solutions of these nonlinear problems and research-
ers developed many methods. among these methods, some of
them are proposed by Prof. He and called He’s methods such
as: energy balance method (He, 2002), homotopy perturbation
method (He, 1999), amplitude—frequency formulation (He,
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2008a), max-min approach (He, 2008b), Hamiltonian ap-
proach (He, 2010), variational approach (He, 2007, 2011a,b;
Zhou and He, 2010), Parameter expanding method (He, 2006,
2008¢) and variational iteration method (He et al., 2010). These
analytic methods successfully served to analysis of nonlinear
problems. for example; the oscillation of a mass attached to a
stretched elastic wire (Durmaz et al., 2011; Xu, 2010), cantilever
beam vibration with nonlinear boundary condition (Sedighi
and Shirazi, 2012), nonlinear oscillations of a punctual charge
in the electric field of a charged ring (Yildirim et al., 2011), ana-
lytical solution for magnetohydrodynamic flows of viscoelastic
fluids in converging/diverging channels (Shadloo and
Kimiaeifar, 2011) and many other problems (Askari et al.,
2010; Belendez et al., 2009; Chen et al., 2011; Cveticanin,
2006; Ganji et al., 2010; Kimiaeifar et al., 2011; Mehdipour
et al., 2010; Ozis and Yildirim, 2007; Xu and He, 2010; Yazdi
et al., 2010, 2012a,b; Younesian et al., 2010, 2011a,b; Zhang,
2009) are solved by carrying out the He’s methods. Besides
these methods, there exist other techniques for solving nonlin-
ear problems, that one of them is the differential transform
method. The Differential transform method is a semi-analytic

1815-3852 © 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.
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method, based on Taylor expansion and does not require any
linearization and small perturbation. This method has been ex-
erted to structural dynamics (Kaya and Ozgumus, 2007; Yalcin
et al., 2009), heat transfer problems (Yaghoobi and Torabi,
2011) and so on (El-Shahed, 2008; Momani and Ertiirk, 2008).

In this study, the nonlinear dynamics of a particle on a
rotating parabola are considered. The governing equation
introduced by Nayfeh and Mook (1979):

U+ AR + S+ 4w =0, u(0) =4, (0)=0.

(1)
We solve Eq. (1) via the energy balance method, homotopy
perturbation method, amplitude—frequency formulation and
differential transform method and examine the advantages

and disadvantages of each method by comparison of results
with exact and fourth-order Runge—Kutta solutions.

2. Solution procedure
2.1. The energy balance method (EBM)

In energy balance method, first the variational principle ob-
tained and then the Hamiltonian is constructed, finally by col-
location method, one can yield the angular frequency.

For the nonlinear equation presented in Eq. (1), the varia-
tional principle can be obtained as:

J() = /0 (—%iﬁ(l +dghd) +§u2)dt‘ 2)

Its Hamiltonian and residueR, therefore, can be written in the
form:

H:lu2(1+4q2u2)+éu2:§A2 (3)
2 2 2
R(1) :lzf(l +4q2u2)—0—§u2—§A2 =0. 4)
2 2 2

For satisfied initial condition in Eq. (1), assume the approxi-
mate solution in the form of:

u(t) = Acos wt. (5)
Substituting Eq. (5) into Eq. (4), yield:

= % (—wAsinwr)*(1 + 4¢* (A cos wi)?)

& ., &,
—O—E(Acoswt) _EA =0. (6)

R(1)

From Eq. (6), we obtained the following result:

V2 A — 2 (Acos wi)’
~ Asinot \| 1+ 4¢*(A cos wz)2 ’

Finally collocation at wt =% gives:
€

WEBM = — F——— -

V14 2¢2 4>
2.2. The homotopy perturbation method (HPM )
Based on standard procedure of the homotopy perturbation

method, we first by using Eq. (1) establish the following
homotopy:

pel0,1] (9

It is obvious that when p = 0, Eq. (9) becomes a linear ordin-
ary differential equation and when p = 1, it becomes the origi-
nal nonlinear equation. We consider « and 1 as series of p in
the following form:

W'+ 1 u=pl—u—4¢**u" — dgPul* + ul,

1 =w? —poy — posy ..., (10)
u=uy+pu, +pu ..., (11)
Substituting Egs. (10) and (11) into Eq. (9) yields:
(uo + puy + prun .. )"+ (0) - (uo + pu, + p*us ...)
= p[—& (uo + puy + p’uy ...) — 4¢" (uo + pu,
+ P2 . ) (o + puy + pPus .. )" — dqP (uo + pu,
+ pPur ) (o + puy + pPus )7+ (o + puy
+ptuy . )] (12)

By expanding Eq. (12) and collecting terms with same power,
we can find two first linear equations with initial conditions as
follows:

PP + g =0, u(0) = A,u,(0) = 0. (13)
Pl + o’uy = —&tuy — 4¢Pk — AqPuoul + up(1 + o).
u1(0) = u;(0) = 0. (14)

Solving Eq. (13) gives:
uy(t) = Acos wt. (15)
Substituting Eq. (15) into Eq. (14) yields:
! + @iy = —e* A cos wt — 4q* (A cos o)’ (—w* A cos wt)
— 4q? (A cos wt)(—wA sin wr)’ 4 (A cos wr)
x (1 +ap). (16)
Avoiding secular term in u;, requires:
21
/ =2 A cos ot + 42w A cos® o1 — 42 A° cos ot sin’ o
O+A(1+oc1)coswt]cosa)t:0. (17)
From Eq. (17) we obtain:
w =& — 1 =207 A* 0. (18)
Setting p = 1 in Eq. (10), we have:
o =1+a. (19)

First-order approximate solution can be obtain by substituting
Eq. (18) into Eq. (19) as:
€

WHPM = —F—————— -
V142424

(20)

2.3. The amplitude—frequency formulation (AFF)

Based on standard procedure of the amplitude—frequency for-
mulation, we consider two trial functions u;(f) = Acost and
uy(t) = Acoswt, respectively. Which are the solutions of the

following linear equations:
i+ olu =0, ol =1 (21)

i+ wu=0, ) = . (22)
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Substituting the mentioned trial functions into Eq. (1), results
in the following residuals:

Ri(tf) = —Acost — 4q* A% cos® t + 2 A cos t + 4¢* A° cos tsin’ 1,
(23)
Ry(t) = —Aw?* cos wt — 4q*> A>w* cos® wt 4 &> A cos ot
+ 4g*> A3 cos wt sin® wt. (24)

According to the AFF, the residuals rewritten in the form of
weighted residuals as follows:

7

- 4 (7 1
R =— | Ri(t)cos(wt)dt = —=A(1 — & +2¢°4*), (25)
T /o 2
4 7
Ry =— Ry (1) cos(wnt)dt
T
= f%A(wz — & 4247 A%0P). (26)
The original amplitude—frequency formulation reads:
2 _OiR - o3R (27)
Ry — R,

Finally substituting Eqs. (25) and (26) into Eq. (27), the
approximate frequency obtained as:
€

w =
AFF o Vv

(28)

2.4. The differential transform method (DTM )

The basic operations of the differential transform method tab-
ulated in Table 1.

Applying the differential transform method to the Eq. (1),
the following recurrence relation is obtained:

(k+2)(k+1)U(k+2)
[k k—s
+44° Z m+2 )U(m+2)U(s)U(ksm)]
L s=0 m=
+ & U(k)
[k k—s
+44° Z m+1)(s+1)U(s+l)U(k—s—m)}
L s=0 m:O
=0,
(29)
Also initial conditions in Eq. (1) transformed as :
U(0)=4,U(1)=0. (30)

From Eq. (29), for different values of k, the following recursive
relation is obtained:

Table 1
method.

The basic operations of differential transform

Transformed function

Ulk) = aV(k) = pW(k)

Original function

u(t) = av(z) £ pw(z)

u(r) = v(t) - w(t) Ulk) = 5o V(s) - Wik —s)
u(r) = £H0 U(k) = & ik + m)

u(t) = exp(f) U(k) =%

k=0:20(2)+4¢°[2U(0)°U(2)] + £ U(0) + 44> [U(0) U(1)*] = 0,

31)
k=1:6U3)+44[4U0)U(1)UQ2) 4+ 6U(0) UQ3)] +£U(1)

+44°[4U0)U(1)UQ2) + U(1)] =0, (32)

We will have:
1 &4
VO =30 raga) (33)
U@3) =0, (34)
1 tA(1 — 1242 4>
) = 55 . 3
U(s) =0, (36)
1 A1 — 1684747 + 7204 4%)
©) =" (1 + 4242 ’ (37)

U(7) =0, (38)

1 A(1 — 16204 A> + 430564* A* — 10080045 4°)
U(8) Y ,
40320 (1+4424%)
(39)
U(@9) =0, (40)
U(10) = " A(1 - 136169 A% 4 1447264¢" A* — 16546560¢° A° + 260467204 A%)

3628800(1 4 4¢2A%)°
(41)

The above process to determine coefficients of power series is
continuous and closed form solution finally obtained as:

u(t) = U(0) + Ut + UQR)P + UB)E + U + - - (42)

3. Results and discussion

In this section, the results of the mentioned methods are com-
pared with exact and numerical solutions. Regarding to the
past sections, the EBM, HPM and AFF yield to a same form
of solution and frequency-amplitude relationship. From Egs.
8, 20 and 28 the analytical period of motion obtained as:

w2
” : 1+ 24242, (43)

Tanal =

anal

The exact period of Eq. (1) is calculated by Wu et al. (2003):

43
Texact = E / 1+ 4q2A2 cos? tdt. (44)
0

Previously, He (2006) and Marinca and Herisanu (2006) ob-
tained a similar period using max—min approach and modified
iteration perturbation method, respectively. The maximum rel-
ative error of the period reach 10% even when g4 — co. Also
Marinca and Herisanu (2010) have determined a periodic solu-
tion for this Equation by means of optimal homotopy asymp-
totic method. The comparison between the analytic and semi-
analytic methods in conjunction with the fourth-order Runge—
Kutta method, presented in Figs. 1-4.

It can be clearly observed that for larger value of parame-
ters the results of EBM, HPM and AFF show some discrepan-
cies in comparison with the obtained results using the fourth-
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0.

0.1

Figure 1 A comparison between the analytic and semi-analytic
methods in conjunction with the fourth-order Runge—Kutta
method fore =1, ¢ = 0.2, 4 = 0.2.

0.1

0.05

—RK4

-0.05} o DTM 1
EBM,
HPM,AFF
-0.1E . : L L
05 1 15 2 25 3 35 4

Figure 2 A comparison between the analytic and semi-analytic
methods in conjunction with the fourth-order Runge-Kutta
method for ¢ = 1.5, ¢ = 0.6, 4 = 0.1.

Figure 3 A comparison between the analytic and semi-analytic
methods in conjunction with the fourth-order Runge—Kutta
method fore = 1,4 = 0.5, 4 = 1.

order Runge—Kutta numerical method. Whereas the differen-
tial transform method can predict the solution with high accu-
racy even for large value of parameters. From Eq. (43), i.e., the
obtained period from the governing equation of motion by the
analytical approaches, we can investigate the effects of differ-
ent parameters on the period. Easily be seen that when value
of the ¢ decreases or value of the ¢ increases and other param-
eters remain constant; the period increases. Also for constant
value of the ¢ when multiple values of ¢4 are constant, the per-
iod remains without changing. One can conclude that the ¢
have opposite effect on the period of motion in comparison
with A4, ¢g. To verify this issue, we consider several values of
the parameter and show results in Figs. 5-7. It should be noted
that these results obtained using the DTM. Moreover, the

1 . . ‘
+
¢ .
0.5- . . |
*
= OF *
+*
. —RK4
-0.5¢ " o DTM
. o FBM,
. HPM,AFF
0 2 4 3 8 10

Figure 4 A comparison between the analytic and semi-analytic
methods in conjunction with the fourth-order Runge—Kutta
method fore =1,g=1,4 = 1.

Figure 5 The effects of ¢ on the period of motion (¢ = 4 = 1).

Figure 7 The effect of ¢ and 4 on the period of motion (¢ = 1,
g4 = 1).

influence of constant parameters on stability and phaseplane
are investigated in Figs. 8 and 9.
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dw/dt
=3
T

Figure 8

-1 0.5 0 0.5 1

Figure 9 The effect of ¢ on phase plane (¢ = 1,4 = 1).

4. Conclusion

In this paper, nonlinear dynamics of a particle on a rotating
parabola are investigated. The analytical approaches are ap-
plied via the energy balance method, homotopy perturbation
method and amplitude—frequency formulation, also the semi-
analytical approach implemented by the differential transform
method. Results show the analytic approaches cannot predict
dynamics of the particle as well as the semi-analytic approach;
in contrast, the analytic methods are able to product an expli-
cit expression as the solution by a simple calculation, whereas
each parameter is effected in the governing equation clearly,
and its role can be investigated easily.
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