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 (IV)تأثير محتوى الكبريتات عمى الخواص السطحية لحفازات أكسيد القصدير 

 المدعم بالكبريتات 

 
 حسين عبدالفتاح خمف، صابر السيد منصور، إيناس عبد المولي المدني

 
  ،  ليبيا919قسم الكيمياء، كمية العموم، جامعة عمر المختار، البيضاء ص ب 

 

 :الممخص
في ىذه الدراسة تم تحضير حفازات أكسيد القصدير النقية عن طريق إضافة محمول الأمونيا 

وبعد غسيل  . 8.0 القصدير حتى الوصول إلى رقم ىيدروجيني  (IV)المخفف إلى محمول كموريد 
 3 كمفن لمدة 873وحرقو عند  (جل)الراسب المتكون عدة مرات والحصول عمى أكسيد القصدير 

مولاري إلى محمول الجل المتكون قبل عممية الحرق ½ ساعات، ثم إضافة حمض الكبريتيك 
، 12، 6)لمحصول عمى حفازات أسيد القصدير المدعم بالكبريتات وبنسب مختمفة من الكبريتات 

التحميل الحراري الوزني والتفاضمي، :  بعدىا تم توصيف الحفازات بعدة تقنيات منيا.  ( 18%
 كمفن، الأشعة تحت الحمراء باستخدام أقراص 77حيود الأشعة السينية، إمتزاز النتروجين عند 

بروميد البوتاسيوم بالإضافة إلى قياس الحامضية عن طريق المعايرة الجيدية باستخدام بيوتيل 
وقد أظيرت النتائج أن الجل المتكون قبل الحرق يحتوي عمى جزيئين من الماء .  الأمين العادي

(SnO2.2H2O)  . كما أن إضافة الكبريتات لم تتسبب في حدوث تغيير لطور أكسيد القصدير
إلا أنيا تسبب انخفاض في حجم الدقائق وبالتالي تحدث زيادة في  (التركيب البموري الرباعي)

جم /2م88وبزيادة محتوى الكبريتات تزداد كذلك مساحة السطح حتى تصل إلى .  مساحة السطح
ىذا بالإضافة إلى أن وجود الكبريتات عمى سطح الأكسيد تظير تركيبين مختمفين %.  18لعينة 

كما أن دراسة .  من الكبريتات عمى السطح كما إتضح ذلك من فحص الأشعة تحت الحمراء
الحامضية قد أظيرت أن إضافة الكبريتات للأكسيد تسبب ظيور مراكز حامضية قوية جداً عمى 
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Abstract Tin(IV) oxide catalysts, pure and surface-doped with different loading levels of sulfate,

have been prepared and characterized by means of thermal analysis (TGA and DTA), X-ray pow-

der diffraction (XRD), nitrogen adsorption at 77 K, FT-IR spectroscopy using KBr pellets and

potentiometric titration using n-butylamine. The catalysts were prepared from aqueous solutions

of ammonia and tin(IV) chloride, with production of an amorphous precipitate that calcined at

873 K for 3 h to give tin(IV) oxide (SnO2). The sulfation was carried out by impregnation of sulfuric

acidic 0.5 M with tin(IV) hydroxide with different amounts of sulfate (6%, 12% and 18% SO�24 by

weight). Structural investigation of the catalysts by TGA, XRD and N2-sorption revealed that

tin(IV) gel has at least two molecules of water to give the formula SnO2Æ2H2O and the addition

of sulfate does not modify the crystalline structure of tin(IV) oxide (tetragonal phase) but decreases

the crystallite size and, consequently, increase the specific surface area. The increase in loading level

of sulfate resulted in increase in specific surface area of the catalysts. Acidity measurement by poten-

tiometric titration using n-butylamine show that the addition of sulfate can increase the acidity of

tin(IV) oxide and all sulfated tin(IV) oxide having strong acid sites. Moreover, FT-IR spectra

expose that sulfated tin(IV) oxide has two different structures of sulfates.
ª 2011 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Tin(IV) oxide is an active catalyst for many reactions due to
acidic, basic, oxidizing and reducing surface properties. It

has become well established that the performance of a hetero-

geneous catalyst depends not only on the intrinsic catalytic
activity of its components, but also on its texture and stability.
One of the most important factors in controlling the surface

properties of a catalyst involves the correct choice of the addi-
tives. The adsorption of various anions (Mekhemer, 2005),
particularly sulfate or phosphate anions, onto oxide has been
attempted as a means of improving their catalytic activity.

The increase in activity is believed to arise from increase in
the surface acidity of the modified oxide (Clearfield et al.,
1994). Modification of metal oxides with sulfate anion can gen-

erate a strong acidity, even stronger than 100% sulfuric acid
and hence they become superacid catalysts that are useful in
reactions like isomerizations, low temperature esterification,

alkylation and cracking (Jyothi1 et al., 2000; Song et al.,
1996). Sulfated tin(IV) oxide is one of the candidates for
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having the strongest acidity on the surface. The acid strength
is reported to be higher than that of sulfated zirconia
(El-Sharkawy et al., 2007; Hino et al., 2007). Ceramics acid

of tungstated tin(IV) oxide prepared by Arata is more active
than aluminosilicates for the esterification of n-octanoic acid
with methanol (Hino et al., 2006). Other application of CO

oxidation over SnO2 and Pd/SnO2 catalysts was reported by
(Sasikala et al., 2000), whereas organic syntheses catalyzed
by superacidic metal oxides: sulfated zirconia and related

compounds were reviewed (Arata, 2009).
Nevertheless, papers concerning sulfated tin(IV) oxide cat-

alyst have been quite few because of difficulty in preparation,
compared with the easy preparation of other sulfated oxides.

This study aimed to prepare tin(IV) oxide catalysts acidified
with sulfate anions and study the effect of sulfate amounts
on the surface properties of it. Tin(IV) oxide was prepared

from stannic chloride and has been sulfated using sulfuric acid
with different loading levels of sulfate (6%, 12% and 18%
SO�24 ). These sulfated catalysts were characterized using differ-

ent tools to know the effect of sulfate levels on the surface
properties of the SnO2 catalysts.

2. Experimental

2.1. Materials

Tin(IV) oxide gel, used as a precursor of sulfated and promoted
oxide, was prepared by the method described in the literatures

(Matsuhashi et al.,2001a,b). In brief, by a slowdropwise addition
of a 1:1 aqueous ammonia to a 0.3 M aqueous solution of
tin(IV) chloride (SnCl4�5H2O) AR grade, BDH product
(England), with a continuous stirring till pH = 8 is reached.

The white precipitate was left over-night before being filtered
and washed thoroughly with 2% CH3COONH4 solution until
all chloride was eliminated (silver nitrate test), and then dried

at 383 K till constant weight is obtained. The dried material
was ground to 250 mesh size and kept dry over P2O5 desiccator.
The dry gel thus obtained is denoted in the text as TH and it was

used as a precursor for preparation of SnO2 and modified SnO2

catalysts. Pure tin oxide, SnO2, was obtained from the dried gel
(TH) by calcination at 873 K for 3 h. The resultant oxide, SnO2

(XRD verified vide infra), was designated in the text as TO.

Sulfated SnO2 samples were prepared by impregnation of
SnO2ÆxH2O (TH) gel with the appropriate amount of 0.5 M
H2SO4 solution to obtain 6%, 12% and 18% SO�24 by weight.

The resultant was dried at 383 K for 24 h, followed by calcina-
tion at 873 K for 3 h and the products were designated as xSTO
(where x = 6%, 12% and 18%).

2.2. Apparatus and techniques

2.2.1. Thermal analysis

Both TGA and DTA were performed between room tempera-
ture and 1273 K in a static atmosphere of air, using V2-2A
DUPONT 9900 thermal analyzer. The rate of heating was

standardized at 10 K min�1, and small portions (5–15 mg) of
the sample were used in TG measurements.

2.2.2. X-ray powder diffractometry

XRD diffractograms were recorded for all samples using a
model JSX-60PA JEOL diffractometer (Tokyo, Japan) and

CuKa radiation (k = 1.5418 Å). The generator was operated
at 35 kV and 20 mA. The samples were scanned in the range
of 2h = 10–70� at a scanning speed of 6 min�1. For identifica-

tion purposes, diffraction patterns (I/I�) versus d spacing (Å)
were matched with the relevant ASTM standards (Frank,
1981). The crystallite size D of the samples were calculated

using the Scherrer’s relationship (Klug and Alexander, 1970):

D ¼ kk
b cos h

ð1Þ

where K is the crystallite shape constant (�1), k the radiation
wavelength, b the line breadth (radians) and h is the Bragg

angle.

2.2.3. Nitrogen sorption measurement

Full nitrogen adsorption/desorption isotherms at 77 K were

obtained using a NOVA 2200 (version 6.10) high-speed gas
sorption analyzer (Quantachrome Corp., Boynton Beach,
FL, USA). The calcined samples were first outgassed at

470 K for 1 h. Twenty-four-point adsorption and desorption
isotherms were obtained, from which BET surface areas were
derived using standard and well-established methods (Sing
et al., 1985; Webb and Orr, 1997).

2.2.4. FTIR measurement

A very small amount of finely ground solid sample (5–10 mg)

is intimately mixed with powdered KBr (90 mg) and then
pressed in a 7 mm die under high pressure. IR analyses of
the catalysts were carried out over the frequency range of
4000–500 cm�1 using a Nicolet 380 FT-IR spectrophotometer

with 4 cm�1 resolution.

2.2.5. Acidity measurement

The total acidity of the solid samples under investigation was
measured by means of potentiometric titration (El-Sharkawy
et al., 2007; Rao et al., 2006). The solid catalyst (0.1 g) was sus-
pended in 10 ml acetonitrile (Merck), and agitated for 4 h. Then,

the suspension was titrated with 0.1 N n-butylamine in acetoni-
trile at 0.10 ml min�1. The electrode potential (Ei) variation was
measured with SevenMulti, METTLER-TOLEDO, GMBH,

Switerland. Cid and Pecci (1985) made a scale of acid strength
measurement as follow: Ei > 100 mV for very strong sites;
0 < Ei < 100 mV for strong acid sites; �100 < Ei < 0 mV

for weak sites; and finally Ei < �100 mV for very weak sites.

3. Results and discussion

3.1. Thermal analysis

From the TG profile of the precursor tin gel (SnO2ÆxH2O),
Fig. 1a, it can be seen that there are two mass loss steps in
the temperature range RT-1273 K. The first step ends at
423 K with loss of mass �3.6% and accompanied by an endo-

thermic peak at 380 K, is attributed to the loss of volatile
materials like physisorbed water (Magnacca et al., 2003).
The second one begins just after the first (680 K) bringing

the mass loss to �19.9%, is assigned to dehydroxylation
processes (DTA exothermic peak at 643 K) (Mekhemer
et al., 2005; Wang and Xie, 2001). Theoretical mass loss of

tin gel as stoichiometrically approaching SnO2Æ2H2O to anhy-
drous SnO2 is 19.3% (Scheme 1). The experimental mass loss is
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�19.9% hence this implies that the tin gel sample approaches
the suggested formula. Therefore, the exhibited thermal events
involve in general elimination of water of different strengths
and a final formation of SnO2, which agree with the XRD

data. As to sulfated sample, 6STO, there are three mass loss
steps, Fig. 1(b). The first two steps, ends at 473 K (endother-
mic peak at 393 K) and 643 K (exothermic peak at 693 K),

are attributed to removal of adsorbed water and dehydroxyla-
tion process of tin gel. The mass loss at higher temperature be-
gan at 973 K and ended at 1053 K and accompanied by an

endothermic peak at 1013 K, is attributed to decomposition
of sulfate groups (Khalaf, 2009; Reddy et al., 2006).

3.2. X-ray diffraction

The XRD diffractograms of the sulfated samples with different
loading levels of sulfate (6STO, 12STO and 18STO) calcined at
873 K are shown in Fig. 2. The main conclusion is that all pat-

terns are characteristic of pure SnO2 phase (ASTM card No.
41–1445) with tetragonal rutile structure at 2h = 26.54, 33.82
and 51.74. The intensities of the bands characteristic for

SnO2 (TO) gradually decreased, while the width of the reflec-
tions is considerably broadened, indicating a small crystalline
domain size (Khder et al., 2008). To know the role of sulfate

content on the crystallinity of the samples quantitatively, their
mean crystallite sizes were calculated from the broadening of
the strongest peak of the samples and based on Scherrer equa-

tion (Table 1). The addition of sulfate was associated with a
decrease in crystallite size to become 88, 50 and 31 Å for
6STO, 12STO and 18STO, respectively. This may be attributed
to the sulfate groups that remain bounded at the surface of the

samples and inhibit the growth of SnO2 crystallites, agreeing
thus with the other transition metal oxides, i.e. TiO2, ZrO2

and Fe2O3 (Khder et al., 2008). The decrease in the crystallite
size can be explained by the hypothesis that the bulky sulfate
groups on the surface of SnO2 particles prevent their agglom-

eration during calcination (Jogalekar et al., 1998).

3.3. Surface texture

The nitrogen sorption isotherms at 77 K of pure oxide (TO)

and sulfated samples (6STO, 12STO and 18STO) were shown
in Fig. 3. From this figure, it is clear that all isotherms are
belonging to Type IV according to BET classification

(Brunauer et al., 1938) and displays hysteresis loop of Type
H3 mixed with some of H2 in case of 18STO sample according
to the IUPAC classification (Sing et al., 1985). All the samples

have a close closure point at P/Po = 0.4. This may infer that
the monolayer is completed slowly with contribution of
micropores. The more pronounced knee on the adsorption

isotherm of 6STO sample is reflected on its higher CBET value
(Table 1). This value greatly affects the shape of the isotherm
in the low-pressure region whatever is the Vm value. Larger
hysteresis loops can be noticed for TO, 6STO and 12STO

samples.
Values of SBET, St, VP, rP and CBET for all samples are sum-

marized in Table 1. It is apparent that SBET and porosity are

not similar for all samples, most likely due to variation in crys-
tallite size. The good agreement between the SBET and St val-
ues (Table 1) for all samples, reflects the higher accuracy of the

BET-C determination and, consequently, the appropriateness
of the reference Va-t curves (Gregg and Sing, 1982). From
these data, it is clear that pure TO sample has low specific sur-
face area (SBET = 11 m2 g�1) which agrees with previous data

(Harrison, 1989). The addition of su1fate into crystalline oxide
resulted in a gradual increase in the surface area for the sam-
ples 6STO, 12STO and 18STO to become 35, 60 and 88 m2 g
�1, respectively. These data agree with the data obtained from
XRD results, which complied in Table 1 also, in which the sul-
fated samples have small crystallite size (88, 50 and 31 Å for

6STO, 12STO and 18STO, respectively) that affect on the spe-
cific surface area (Khalaf, 2009).

The pore size distribution (PSD) curves for the samples,

Fig. 4, show that the PSD lies between micropores and
mesopores range. Three main peaks at <20 Å were observed
for all samples; in addition, some peaks were shown at radius
higher than 20 Å. This means that the porosity of TO is

Figure 1 TGA and DTA profiles for (a) tin(IV) gel (TH), and (b)

sulfated tin(IV) oxide (6STO), wloss is the mass fraction.

SnO2.2H2O SnO2 2H2O+

Scheme 1

Figure 2 X-ray powder diffractograms for xSTO in comparison

with TO catalysts.
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micropores in addition to little amount of mesopores. How-

ever, sulfated samples show a mix between mesopores and
micropores in agreement with the findings of the t- and aS-

methods. Then, the incorporate of sulfates onto tin(IV) oxide
can modify its porosity.

3.4. FTIR spectroscopy

Fig. 5 shows the IR spectra of sulfated tin(IV) oxide (xSTO) in

comparison with pure tin(IV) oxide (TO). From these spectra,
the presence of sulfate groups was confirmed by the bands at
1382, 1190, 1155 and 1079 cm�1. The first band (at 1382 cm�1)

characteristic of the surface sulfate species having S‚O cova-
lent bonds (Mekhemer et al., 2005). The other bands at 1190,
1155 and 1079 cm�1 are due to the asymmetric and symmetric
stretching frequency of the O‚S‚O and O–S–O group

(Mekhemer et al., 2005;Clearfield et al., 1994). Thus, it is evident
that the IR spectra of both types of sulfated samples show very
similar spectral features in the SO stretching region. These

features are in general attributed to triply bridging sulfate and
bridged bidentate sulfate, as represented in structures (I) and

Table 1 Nitrogen sorption analysis data.

Sample SBET m2g�1 CBET St
a m2g�1 SS

b Scum
c Vpcum

d Vptot
e Aver

rP
fÅ

Crystallite sizeg (Å)

cm3g�1

TO 11 14.7 10.3 10.8 6.9 0.016 0.0325 17.5 185

6STO 35 2.7 34 34.6 17.4 0.036 0.0387 18.5 88

12STO 60 3.5 59 58.8 19 0.035 0.048 13.5 50

18STO 88 4.0 87.7 86.5 41 0.066 0.1036 12.7 31

a The standard isotherm used in each case was selected according to (Sing et al., 1985).
b aS Surface area.
c Cumulative surface area.
d Cumulative pore volume.
e Total pore volume at P/Po = 0.99.
f Mean pore radius at the peak of the distribution curves.
g Obtained from XRD data.

Figure 3 Nitrogen sorption isotherms for xSTO in comparison

with TO; Va is measured at STP.

Figure 4 Pore size distribution curves for xSTO in comparison with TO catalysts; rp true radius and DVPÆDrP
�1/cm3 g�1 Å�1 is the ratio

between the volume decrease (DVP) in cm3 g�1 and the decrease in pore radius (Dr�1p ) in Å�1.
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(II) where M is Sn ion (Jin et al., 1986; Bensitel et al., 1988). The
only effect of sulfate loading resulted in increase in the band

intensities of sulfate group.

S

O O

OO
S

O

O OO

M M M MMM
O O

Structure I Structure II

3.5. Acidity of the catalysts

Total number of acid sites and their relative strength, for the
catalysts under investigation, can be measured by means of a
potentiometric titration with 0.1 N n-butylamine. To explain

the obtained results, it was suggested that the initial electrode
potentional (Ei) indicates the maximum acid strength of the
sites. The value of meq amine/g solid, where the plateau is

reached in titration curves (Fig. 6), indicates the total number
of acid sites (El-Sharkawy et al., 2007; Cid and Pecci, 1985).
Table 2 shows the potentiometric titration results for all sam-
ples. From these results one can conclude that the TO sample

has weak acid sites and its maximum strength is equal
�65 mV. The addition of sulfate to SnO2 can increase the
acidic strength and create strong and very strong acid sites

on the surface of SnO2 to become +47, 112 and 144 mV for
the samples 6STO, 12STO and 18STO, respectively.

4. Conclusion

The obtained results show that the SnO2 gel has at least two
molecules of water to give the formula SnO2Æ2H2O and the

addition of sulfate has no effect on the crystalline phase of
SnO2 (tetragonal phase) but decreases the crystallite size and,
consequently, increase the specific surface area. The specific
surface area is increased by increasing the loading of sulfate.

FT-IR spectra expose that sulfated SnO2 has two different
structures of sulfates. Moreover, the incorporation of sulfate
onto SnO2 can increase its acidity and creates strong acidic

sites.
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