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ABSTRACT 
We consider the effect of space dimension N, on the results predicted by two approximation 

techniques applied on physical quantum systems. In the first, we apply degenerate 

perturbation theory to perturbed N-dimensional infinite cubical well. It is found that the 

energy difference for splitting decreases as N increases and it vanishes in the infinite 

dimensional space. In the second, we apply the sudden approximation to the electronic 

structure change implied by beta-decay of the tritium nucleus. It is found that as N increases 

the ionization probability increases. 
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PACS: 03.65. Ta – Foundations 

 
 
INTRODUCTION 
Approximation methods are of great importance and widely used in quantum mechanics and 
have been enormously successful in obtaining approximate solutions to quantum systems. 
These methods, for both stationary problems and time-dependent problems, are usually 
applied to quantum systems in space dimension N ≤ 3. Over the past two decades, the 
generalization of the three-dimensional problems to higher  dimensions received a 
considerable development mathematical and theoretical physics. For example, the N-
dimensional analogy of the hydrogen atom has been investigated extensively over the years 
(Avery and Herschbach, 1992), (Kirchberg et al., 2003), ( Saelen et al., 2007). In addition, the 
generalization to higher dimensions is useful in random walks (Mackay et al., 2002), in 
Casimir effect (Bender et al., 1992), in harmonic oscillator (Oyewumi et al., 2008), (AL-
Jaber, 2008), (Rothos et al., 2009), and in mathematical physics (Bredies, 2009), 
(Szmytkowski, 2007), (Bouda and Ghabri, 2008), (Golovnev, 2006). It is interesting to 
expose  undergraduate students to simple, but illustrative, quantum systems in higher space 
dimensions. Therefore, it is tempting to apply specific approximation methods to certain 
quantum systems in N-dimensional space. It must be emphasized that our intention here is not 
to find approximate solutions but rather to expose the reader to higher dimensional problems 
and to examine the effect of the space dimension on the results of two well-known 
approximation methods in quantum mechanics. We choose two approximation methods, one 
for stationary quantum system and another for time-dependent one. For the first method, we 
consider the time-independent degenerate perturbation theory applied to N-dimensional 
infinite cubical well that is perturbed with some perturbation, H'. The reason behind the 
selection of degenerate perturbation theory lies on its  wide recent applications in various 
settings: In studying degeneracy breaking due to short-ranged impurities in atomically doped 
Carbon nanotubes (Bondarev and Lambin, 2005), (McCann and Fal'ko, 2005), in 



Al-Jaber, SM.,  Journal of the Association of Arab Universities for Basic and Applied Sciences, Vol. 9, 2010, 33-42 

 

34 
 

investigating the effects of magnetic anisotropy in magnetic molecules (Kostantinidis and 
Coffey, 2002), (Meng and Wessel, 2008), (Bialynicki and Sowinski, 2007), (Bergman et al., 
2007), in discussing quantum systems coupled to oscillators (Muthukumar and Mitra, 2002), 
(Hagelstein et al., 2008), in dealing with many-body interacting systems (Stauber et al., 
2000), (Morawetz, 2002), in studying degenerate atomic systems (Vilain et al., 2001), and in 
calculating relativistic corrections for low-lying excited states when a hydrogen atom is 
placed in a strong magnetic field (Poszwa and Rutkowski, 2004). For the second method we 
choose the sudden approximation and apply it to β -decay of Tritium atom. The sudden 
approximation has been widely used for describing abrupt change in the Hamiltonian of the 
system. For example, some workers used the sudden approximation in calculating photo-
ionization cross section of atoms induced by strong fields (Kazansky and Kabachnik, 2007), 
(Ydin et al., 2007). Others applied this method in the study of the multiple electron loss of 
heavy projectiles in fast ion-atom collisions (Matveev et al., 2009), (Voitkiv et al., 1999), 
(Salop and Eichler, 1979), (Richards, 1981), (Kapusta and Mocsy, 1999). In addition, there 
has been an investigation, using sudden approximation, on how hydrogen atoms respond to 
perturbation by intense ultrafast laser pulses of duration shorter than the inverse of the initial-
state energy (Lugovskoy and Bray, 2006), (Lugovskoy and Bray, 2005). More interestingly, 
the sudden approximation has been used in the calculations of transition probabilities of 
electronic excitations resulting from β-decay in atomic processes (Frolov and Talman, 2005), 
(Saenz and Froelich, 1997), (Froelich and Saenz, 1996), (Wauters and Vaeck, 1996), 
(Claxton et al., 1992). The organization of the present paper goes as follows: In section 1, we 
give an introduction. Section 2 deals with degenerate perturbation theory applied to a 
perturbed N-dimensional infinite cubical well. In section 3, the sudden approximation method 
is applied to the process of β-decay of Tritium atom in N dimensions. Section 4 is devoted 
for results and conclusions. 
 
Perturbed N-dimensional infinite cubical well 
We consider an infinite cubical well of side a in N space dimensions whose potential is given 
by 
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We introduce the perturbation 
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While the off-diagonal elements are calculated as follows: 
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Since the Nx integral in the above equation vanishes, we have 
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The other off-diagonal elements are 
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Equations (11) and (13) reduce to the three-dimensional values (N=3), namely, ( 4/0V ) and 

)9/16( 2
0 πV respectively (Griffiths, 1995). Defining k
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The eigen-values, λ are easier to find for the matrix W
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The characteristic equation of eq. (15) can be found by using (Hohn, 1973) 

)(

                                 

.   

.   

.............                

.............                

 det 1 anxa

axxxx

xxaxx

xxxax

n

nn

+=

+

+

+

−

×

                                       (16) 

 
The identification 1 andk 1 ,k −→−−→→ Nnax λ , yields the characteristic equation for 
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where 0
1E is the (common) unperturbed energy given by eq. (6). We note that the 

perturbation H ′ lifts partially the degeneracy N to )2( −N , and splits 0
1E into three distinct 

energy levels. It is interesting to note that the amount of splitting decreases as the space 
dimension N increases and it vanishes in the infinite dimensional space ( ∞→N ). This can 
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be easily checked by taking the limit of the second terms in eq. (18) as ∞→N . This shows 
that 0V becomes weaker and hence the amount of splitting becomes smaller as the space 

dimension gets higher. 
 
Sudden approximation for β-decay in N dimensions 
In order to investigate the effect of space dimension on the results of the sudden 
approximation method, we consider an N-dimensional tritium atom consists of a nucleus 

H3 (containing one proton and two neutrons) and an electron. It is an unstable nucleus, since 
by β emission it decays into the nucleus He3 (containing two protons and one neutron), an 
electron −e and an antineutrino −v via the reaction  veHeH ++→33 . The purpose here is to 
investigate the influence of β decay on the atomic electron in N-dimensional space. We 
assume that initially the tritium atom is in the ground state. In β decay process, the emitted 
electron from the tritium nucleus has an energy which, in most cases, is of the order of 
several keV. Therefore, the velocity v  of the emitted electron is usually much larger than the 
velocity .137/0 ccv ≈= α  of the atomic electron in the ground state of tritium. Thus, if the 

0a denotes the first Bohr radius, the β-electron will traverse the atom in a time va /0≅τ , 

which is much less than the periodic time 00 /2 vaT π= of the circulating atomic electron. 

Therefore, when tritium nucleus H3 decays by beta emission into He3 , the nuclear charge 
'seen' by the atomic changes instantaneously from ze to ez′ , with 1=z  and 2=′z . For time 

0  〈t , the initial H3  atom has the Hamiltonian 
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and for 0  〉t , the final He3  atom has the Hamiltonian 
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The eigen functions of 0H and 1H are the hydrogenic wave functions corresponding to 1=z  

and 2=′z  respectively. The tritium atom is initially in the ground state ( 0 , 0 , 1 === mn l ) 

and thus the probability amplitude mnd ′′′l
)1( of finding the atomic electron in a discrete 

eigenstate )( mn ′′′l of the He3 hydrogenic Hamiltonian 1H at 0  〉t  is 
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nl are the normalized radial hydrogenic wave function in N dimensions and 

),( ϕθ imlΥ are the hyperspherical harmonics that form orthonormal set, namely 
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The substitution of eq.(22) into eq.(21) and the use of eq.(23) show that the only non-
vanishing probability amplitudes mnd ′′′l

)1( are those corresponding to s-states ( 0=′=′ ml ), 
therefore 
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The radial solutions are given by (AL-Jaber, 1998)  
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For 1=n  and 0=l , eq.'s (25) and (26) become 
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 Upon substituting 1=z  and 2=′z  in the constants zA10  and zA
′

10  we get 

3

2/2
10

1
100

])!2)[(1(

1

)1( 

4
2 

−−








−
=

NNNa
AA

N

N ,                                          (30) 

and with the help of the formula 
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the integral in eq. (29) yield )(
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 which simplifies to 
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The above equation clearly shows the dependence of the probability amplitude on the space 
dimension N, and it reduces to its well-known value for the three-dimensional case (Bransden 

and Joachain, 2000), namely 
27

216)1(
100 =d  for N=3. 

The probability, )1(
100P  that the )(3 eHe +  ion be found in its ground state is 
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which gives the expected result [42], 
729

512)1(
100 =P  for N=3. The total probability for excitation 

and ionization of the )(3 eHe + ion is therefore  
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Eq.'s (33) and (34) clearly show that as the space dimension N increases )( )1(
100 totalPP decreases 

(increases), and if ∞→N , then )( )1(
100 totalPP )1( 0 → . This means that when tritium atom 

undergoes a β-decay, the higher the space dimension the higher the probability of excitation 
and ionization of )(3 eHe + ion and the lower to be in the ground state. 
 
 
CONCLUSIONS AND RESULTS 
In the present paper, the role of the space dimension N on the results obtained by 
approximation methods has been investigated. This gives an opportunity for involving 
students in an in-depth study of quantum systems in higher space dimensions, To that end, 
two approximation methods were applied to quantum systems in N-dimensional space. In the 
first method, degenerate perturbation theory was employed for a perturbed N-dimensional 
infinite cubical well. It was found that the perturbation H ′ lifts partially the degeneracy N, of 
the unperturbed system, to (N-2). It was also observed that the perturbation splits the 

unperturbed energy 0
1E , into three distinct energy levels with one of them being (N-2) 

degenerate. It is remarkable to notice that the amount of energy difference for splitting 
decreases as the space dimension increases and it vanishes in the infinite dimensional space. 
The decrease of the matrix elements with N seems to be due to the multiplicative effect of 
factors smaller than 1, the number of which increases with N. In the second method, the 
sudden approximation method was applied to the process of β-decay of tritium atom in N 
dimensions. Assuming that the tritium atom is initially in the ground state, it was found that 
the probability that the )(3 eHe + ion to be in the ground state depends on the space 
dimension N. In addition, this probability decreases as N increases and it vanishes as 

∞→N . This means that the total probability of excitation and ionization increases as N 
increases and approaches unity in the infinite dimensional space. One may argue that the 
results come from the fact that as N increases, the eigenvalues of the attractive 1/r potential 
get closer to zero. Thus, the ionization becomes easier, and it becomes even a spontaneous 
transition in the limit of infinite N. 
Therefore, our results clearly show the effect of the space dimension on the   results predicted 
by approximation methods when applied to quantum systems. 
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  K�X�`7ت UO| �9ق =d`�@e �59o آ`:Ei d أKGyد �Gyd:7KO d:gK;i ا

  
9w�7ا EMKr*  

  
TU`cXت اTtراhXوا }V`cXا ��_Xا hUVv  

dU^syXا �U�[`� dckTl - ريb��  

  �`]�qWXb – �Uم 
* }V`v غq|� زةTlء: �{ إTm�U|Xا Z[\-dU^ bXح اTo^Xا dckTl - 7. ب.ص - Ã`jT� - �U�[`�.  

  

 

  `U_^ا7

 hc_Xا qU£Ë� ضqc� }�T�|XاN dUVآ dU�Tm�U� dVأ�� r`v Ömqs� }ysmq  ÂU_�� �k dc\byVXا ¤�Ty^Xا r`v . ÖmqsyXا }�
 }�T�� hcj }� بq��k }�T��� }_cWk ×mbo� r`v }X¹اب ا���q�±ا� dmq�� Â_�^t ،ا�ولN  . قq� أن hlو hsX

 dVU\ hmا�y� Tkh^v �\T^ym مT[s�¹X d\T�XاN hcj }� قq|Xه�ا ا rº¹ymو }�T��� }�T�� . Â_�^t ،}�TÅXا ÖmqsyXا }�
dUXTv دTcjم �{ أbUymqyXاة اb^X TyUj ¹ل�V±ا r`v ØlT|VXا ÖmqsyXا dsmq  . dVU\ زادت TV`أ�� آ hlو  N  لTVyن ا�T�

hmا�ym �mËyXل اTVyن ا�T� }XTyXTjو �\T^ym ¹ل�V±ا�    .      
  
  
  
  
  
  
 




