
Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

 57

Complexity of Parallel Block Gauss Jordan Algorithm

Salman H. Abbas

 Department of Mathematics University of Bahrain P O Box 32038, Bahrain

ABSTRACT

In this paper the block Gauss-Jordan algorithm for solving linear systems of equations is

presented in the proposed for multitasking. The paper indicates how the availability of

more than one processor must change our approach to the problem of computing

solutions of linear systems.

KEYWORDS

Block Gauss-Jordan algorithm; multitasking; multiprocessor Sequent Balance, predicted

time.

1. INTRODUCTION.

The problem we want to consider is how to compute the numerical solution of the linear

system.

bxA = (1)

Where A is a dense matrix of size nn! and x , b are vectors of size 1n! . We consider

here parallel solution techniques, which are suitable for MIMD local memory,

architectures. On sequential machine the method requires)(
2

2
3

nO
n
+ multiplication and

divisions. On parallel machine with)MN)(1N(+! processors [Heller, 1978] shows

that the method required 1N3 + steps, where A is of size NM ! . If only N processors

are available [Quinn, 1988] shows that the Gauss – Jordan algorithm without pivoting

requires MNM2N
2

++ arithmetic steps.

In the present paper, we show that parallel block Gauss – Jordan algorithm is much faster

than parallel LU-decomposition and if the number of processors matches the number of

block rows q , then block Gauss – Jordan algorithm is better suited to parallel

implementation than any methods of Gaussian type in computing numerical solutions of

linear systems.

A comprehensive list of references is available in the recent study, see for example

[Abbas, (1990); 2000,2001; Bader, Gehrke (1991); Barrodale, Stuart, (1977),

Charmberlain (1987); Geist, Romine (1988); Heath, Romine (1988); Heller, (1978); Lord,

Kowalik, Kumar, (1983); Ortega et al (1988); Pease (1976); Purushotam et al, (1992);

Quinn, (1988); Rivers et al, (1990); Sameh, Kuck, (1978)].

2. THE ALGORITHM

 Our purpose in this section is to explain the idea of parallel algorithm for solving (1) on

multiprocessor computer. If we consider the above system (1), partition the matrix A into

blocks of size ww! and the vectors x , b into blocks of 1w! , where qi1 !! and q the

number of blocks rows ,
w

n
!
"

#
$
%

&
= then the system becomes:

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

 58

!
!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$
$

%

&

=

!
!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$
$

%

&

!
!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$
$

%

&

qqqqqq

q

q

B

B

B

x

x

x

AAA

AA

AAAA

AAAA

.

.

.

.

.

.

...

...

...

2

1

2

1

21

3231

2232221

1131211

L

L

In Gauss – Jordan algorithm every block is eliminated from each row of the matrix except

the diagonal block, which is made equal to unity. The algorithm consists of four stages:

Stage 1: Reduce the blocks below the diagonal to zero,

 For 1q...1i != loop

 Compute
1

iiA
!

;

 For q...1ij += loop

1
iijiji A*A:M !

= ;

 For q...1ik += loop

 ikjijkjk AMA:A !"= ;

 ikjikk AMB:B !"= ;

 end loop;

 end loop;

 end loop;

This involves getting zeros below the diagonal and updating the right hand side vector.

Stage 2: Reduce the blocks above the diagonal to zeros:

 For 2...qi = loop

 For 1..1ij != loop

1
iijiji AAM
!

"= ;

 For 1..ik = loop

 ikjijkjk AMAA !"=

 ijikk BMBB !"=

Stage 3: Reduce the blocks in the diagonal into unit blocks:

 For q..1i = loop

 ii

1

iiii AAA !=
"

i

1

iii
BAB !=

"

 end loop

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

 59

Stage 4: Solve the full set

 Solve for q,...,2,1i =

ii
Bx =

3. PARALLEL ALGORITHM

 In this section we consider the parallel implementation of block Gauss-Jordan algorithm

using multitasking. Assuming that P processors are available and ,qp < then the

updated blocks in each block row can be carried in parallel. Therefore, the following

procedures are needed:

1- procedure to compute the inverse block A;

2- procedure to multiply two blocks;

3- procedure to multiply a block vector by block;

4- procedure to subtract two blocks vectors.

On this basis the major tasks are as follows:

(I) The first task is to reduce the blocks below the diagonal to zero;

Accept block row)i(, block row)j(, i ;

Call procedure to compute 1

iiA
! ;

Evaluate the multipliers
1
iijiji AAM
!

"! in parallel;

Call a task to update the blocks;

Compute .BMBB;AMAA ijikkjkjijkjk !"=!"=

Collect the results.

(II) The second task is to reduce the blocks above the diagonal to zero,

compute the multipliers :AAM
1
iijiji
!

"=

Update the blocks and the right hand side vector using the following formula:

;AMAA ikjijkjk !"=

.BMBB ijikk !"=

(III) The third task to transfer the diagonal into identity blocks;

Compute ii

1

ii AA
!

And
i

1

iii
BAB !=

"

Finally solve .q,...,1i;Bx ii ==

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

 60

For a Multiprocessor Sequent Balance having at least 10 processors, the sequence of

computation in case of reducing the blocks below the diagonal to zeros taking place in

each processor is described below. The computation can go in parallel in all processors.

Processor 1: Compute jiM

Eliminate the blocks in first block row. Communication of the update blocks between

processors.

Processor 2: Eliminate the blocks in second block row, communication of the update

blocks between processors, and soon until the 10
th

 processors.

Processor 10: Eliminate the blocks in the 10
th

 block row communication of the update

blocks between processors.

In our case ,qp < so the remaining blocks are waiting until the processors are free.

4. PREDICTED COSTS

In this section we give the sequential and parallel costs of the block Gauss – Jordan

algorithm.

4.1 Sequential Algorithm Cost. In the sequential mode the cost depends only on the

number of arithmetic operations required for the algorithm. So, reducing the blocks

below the diagonal to zeros requires:

()! ! !
"

= += += #
$
%

&
'
(

)
*

+
,
-

.
+++=

1

1 1 1

233

3

21

q

i

q

ij

q

ik

www
w

t

()()[]! !
"

= += #$

#
%
&

#'

#
(
)

"+++=

1q

1i

q

1ij

233
3

iqwww
2

w

!
"

= #
#
$

%

&
&
'

(
"++"+"+=

1q

1i

223
3

)iq(w)1iq)(1iq(w
2

w

)1q(qw
2

)1q(
qw2)1q(qw)1q(

2

w 32323
3

!+
!

!!+!=

)1q(qw
6

)1q2)(1q(
qw

2

)1q(q
w 2233

!+
!!

+
!

!

6

)1q2)(1q(q
w

2

)1q(q
w2 2

2
2

!

!!
+

!
!

)qq3q2(
6

w
)q3q3qq3q2(

6

w
)1q(

2

w 23
2

223
33

+!+!++!+!=

)qq3q2(
6

w
)q2q2(

6

w
)1q(

2

w 23
2

3
33

+!+!+!=

)qq3q2(
6

w
)q2q23q3(

6

w 23
2

3
3

+!+!+!=

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

 61

!
!

"

#

$
$

%

&
'+'

3

qw
O

3

qw

3

qw
333233

.

Similarly, reducing the blocks above the diagonal to zeros requires:

 () ()[]!! !!!
=

"

= =

"

==

++=#
$

%
&
'

(
++=

q

i

i

j

q

i

i

j

i

k

iwwwwwwt
2

1

1 2

1

1

233

1

233)(2

 []!
=

"+"+"=

q

2i

233)1i(iw)1i(iw)1i(w

[]!
=

"++"=

q

2i

23)1i(iw)1i)(1i(w

() ()
2

qw

2

qw
qq3q2

6

w
q5q3q2

6

w
222

23
2

23
3

+!+++!+=

!
!

"

#

$
$

%

&
'

3

qw
O

33

and the cost of reducing the diagonal to identity blocks is:

 [])(3

1

2323

3 qwOqwqwww
q

i

t =+=+=!
=

Hence, the total cost required in the sequential block Gauss-Jordan algorithm is

 !
=

=

3

1i

itt

 () ()q5q3q2
6

w
3qq2

6

w 23
3

3
3

!++!+"

 !
"

#
$
%

&
' 33

qw
3

2
O

Hence, the sequential running time for block Gauss-Jordan algorithm is !
"

#
$
%

& 33
qw

3

2
O

obtained from the above formula (2) which is more expensive than sequential LU-

decomposition obtained in [1].

4.2 Parallel Algorithm Cost. We give the predicted cost of the algorithm mentioned in

the previous section in terms of arithmetic operation count, communication cost and data

sending. A test program was written to measure these quantities. The estimate of the

cost of one arithmetic operation, ft , is 0.26 millisec, the time to set up one rendezvous,

r
t , is 2 millisec and the time to send one data item,

c
t , is 0.02 millisec.

The following table describes the number of multiplication and additions, and the number

of steps required for each operation. It is assumed that there are at least q processors.

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

 62

Table 1

Operation Number of

multiplications and

additions

Number of steps

Inverse jiA

2

3
w

1q !

Compute the

multipliers

3
w

1q !

Reduce the blocks

below the diagonal to

zero

3
w

2)1q(q !

Reduce the blocks

above the diagonal to

zero

3
w

2)1q(q !

Reduce the blocks in

the diagonal to identity

blocks

3
w

2)1q(q !

If we assume that the number of processors ,qp < then the total number of arithmetic

operations should be multiplied by pq [18]. Therefore, the total cost of arithmetic

operations is approximately ftpqw !
"

#
$
%

& 22

2

3
 .

At stage i , we have)(2 iq ! rendezvous and 2/)1(3 22
wqq ! data sent. Therefore,

!
"

=

"
1

1

2)(
q

i

iq which is equal to 3/)12)(1(!! qqq rendezvous and 3/)1(2 2
wqq ! data are

sent.

Hence, the predicted time for this algorithm is:

[] [] ptqwwqqqtqqq f
ct /

2

3

6
)417)(1(3/)1)(1(2 232

!"

#
$%

&
+''++' (()

The above formula shows that the arithmetic operations cost is of)/(23
pqwO where as

the arithmetic operations cost of parallel LU-decomposition depends on)/(33
pqwO .

This indicates that the parallel block Gauss-Jordan is much faster than parallel LU-

decomposition and if the number of processors matches the number of block rows, ,q

then block Gauss-Jordan algorithm is better suited to parallel implementation than any

methods of Gaussian type.

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

 63

REFERENCES

Abbas, S.H. Parallel Algorithms of Linear Systems and Initial Value Problems, Ph.D.

Thesis, University of Liverpool (1990).

Abbas, S.H. (2000) On the cost of sequential and parallel algorithms for solving linear

system of equations, Inter. J. Computer Math, 74, 391-403

Abbas, S.H. (2001) Pacallel solution of dense linear equations, Analele Universitatti din

Timisora, Seria Mathematics-Information, XXXXIX, No. 1, 3-12.

Bader G., Gehrke E. (1991) On the performance of transputer networks for solving linear

systems of equations, Parallel Computing, 17, 1397-1407.

Barrodale I., Stuart G. F. (1977) A new vaciant of Gaussian elimination, J. Ins. Maths.

Applics., 19, 39-47.

Charmberlain R.M., An Alternative View of LU Factorization with Partial Pivoting on

Hyper-cube Multiprocessor, Hyper-cube Multiprocessor, Hypercube Multiprocessors,

SIAM, Philadelphia (1987).

Geist G. A., Romine C.H., (1988) LU-factorization algorithms on distributed memory

multiprocessor, SIAM J. Sci. Stat. Comput., 9.

Heath M., Romine C., (1988) Parallel solution of triangular systems on distributed

memory multiprocessors, SIAM J. Sci. Stat. Comput., 9.

Heller, (1978) A survey algorithum in numerical linear algebra, SIAM Review, 20, 740-

776.

Lord R. E., Kowalik J.S., Kumar S.P., (1983) Solving linear algebric equation on MIMD

computer, J. Assoc. Comput. Mach., 30. 103-117.

Ortega J.M., Romine C.H., (1988)The IJK forma of factorization methods, II, Parallel

System, Parallel Computing, 7, 149-162.

Pease M. C., (1976) Matrix inversion using parallel processing, J. Assoc. Complit. Mach.

, 14, 757-764.

Purushotam B.V. et al, (1992) Performance Estimation of LU factorization on message

passing multiprocessors, Parallel Processing Letters, 2. No. 1, 51-60.

Quinn M.J., (1988) Designing Efficient Algorithm for Parallel Computers, McGraw Hill

International Editions, Computer Science Series.

Rivers et al, (1990) Gaussian elimination with pivoting on hypercubes, Parallel

Computing, 14, 51-60.

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

 64

Pease M. C., (1976) Matrix inversion using parallel processing, J. Assoc. Complit. Mach.

, 14, 757-764.

Purushotam B.V. et al, (1992) Performance Estimation of LU factorization on message

passing multiprocessors, Parallel Processing Letters, 2. No. 1, 51-60.

Quinn M.J., (1988) Designing Efficient Algorithm for Parallel Computers, McGraw Hill

International Editions, Computer Science Series.

Rivers et al, (1990) Gaussian elimination with pivoting on hypercubes, Parallel

Computing, 14, 51-60.

Sameh, D.J. (1978), On stable linear system, J. Assoc. Comput, Mach., 25 81-89.

Abbas S., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 57-65

!"#$%&!!"&"'%(")#*+, -+", .$/0*"+1(" .$0"+!/("

-"2&)"/(-

!"#$%&' (!"#$%&')*+', -'".'"#&' +/0

31(/("

.'#*-/' +- (1$%&' '23 "4)"+5#'67 !8#6, /6',)+69!+ &$&
)"5'6-+&' -'%/'$&' +'87-/'%)":7&' -'&8'*+&' #1;' #46- 8!*
&'),+#%&' "4 8$'6 ,&'*+ !+ 8',"< "4 '!-#9!#"= 80)"+5#'67
&6&$)+69!+&&)":7&'

تعقيدات القطاعات المتوازية الخوارزمية جاو�س جوردن
�سلمان عبا�س

ق�ضم الريا�ضيات جامعة البحرين ، البحرين

الملخ�س
في هذا البحث ، تم ا�ستعرا�س خوارزمية جاو�س جوردن لحل منظومة المعادلات الخطية با�ستخدام الحا�سبات

المتوازية)عند توفر اكثر من معالج واحد في البرمجة الخوارزمية قد غيرنظرتنا في اإيجاد حلول للمنظومة
الخطية(.

 65

!"#$%&!!"&"'%(")#*+, -+", .$/0*"+1(" .$0"+!/("

-"2&)"/(-

!"#$%&' (!"#$%&')*+', -'".'"#&' +/0

31(/("

.'#*-/' +- (1$%&' '23 "4)"+5#'67 !8#6, /6',)+69!+ &$&
)"5'6-+&' -'%/'$&' +'87-/'%)":7&' -'&8'*+&' #1;' #46- 8!*
&'),+#%&' "4 8$'6 ,&'*+ !+ 8',"< "4 '!-#9!#"= 80)"+5#'67
&6&$)+69!+&&)":7&'

