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Abstract: Despite the challenges in modern digital documentation, current research prioritizes computer-aided semantic segmentation
in underwater environments and temporal monitoring, particularly for the digital documentation of deep-sea sites. Using cutting-edge
technologies, exemplified by our automated archetype of archaeological sites (e.g., the Xlendi shipwreck), we present research on an
archaeological shipwreck known as Xlendi, located off the coast of Malta, aiming to facilitate digital model acquisition for professionals
and amateurs. This enhances archaeological insights and yields promising results across challenging sites, promoting virtual exploration,
awareness, and advocacy for underwater cultural heritage(UCH).
Indubitably, current 3D instance segmentation methods enhance archaeological site comprehension, but, they encounter challenges
such as computational complexity and labor-intensive annotation. This article addresses these issues by utilizing automated 2D object
detection extended to 3D through photogrammetry, minimizing human effort by focusing on ad-hoc 2D annotation methods seen in
previous research, and facilitating 3D segmentation through 2D 3D projection via photogrammetry.
intriguingly, the construction of this proposed model relies heavily on achieving precise 3D detection and identification. Its success
is contingent upon the performance of the 2D object detection and its projections in an end-to-end scene. In this study, we evaluate
the performance of YOLOv8 for object detection, focusing on underwater archaeological sites. Previous research using YOLOv4
reported an accuracy range of 78%-88% (mAP). Building on this, we assessed YOLOv8 using sensitivity, specificity, and mean average
precision (mAP), achieving mAP values ranging from 98.2% to 99.2%. Specifically, we measured mAP@0.50 and mAP@0.50:0.95 to
comprehensively evaluate model performance. Our findings demonstrate significant improvements over previous methods, highlighting
the efficacy of YOLOv8 in archaeological contexts. We have also included a future workflow to inspect further enhancements.

Keywords: underwater cultural heritage (UCH), AI, Deep Learning(DL), 3D Instance Segmentation, 2D Object Detection, Deep Sea
Photogrammetry.

1. Introduction
The discovery of the Xlendi shipwreck in Malta near

the coast of Gozo [1], dating back to the 7th century BC,
provides valuable insights into the maritime trade practices
of that era and sheds light on the trading relationships
between the western Phoenician and Tyrrhenian regions.
The excavation at such a depth of approximately 100 m is a
remarkable archaeological undertaking, offering a glimpse
into ancient seafaring practices and trade routes. The mixed
cargo of amphorae found at the site hints at the diverse
goods that were being transported across the Mediterranean
during that period, as illustrated in Figure 1.

The University of Malta’s initiative to enhance research
methods on the exceptional wreck involves long-standing
cumulative high-technology employments in 3D surveying
of archaeological excavations at greater depths. The en-

Figure 1. A remote operated vehicle (ROV) and stereo system were
deployed to discover a shipwreck dating back to the 7th century BC,
located approximately 100m deep.

tire dataset was pooled simultaneously with timelines of
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excavations through collaborative efforts from COMEX1

and CNRS2 in 2014. The project, funded by the French
Agence Nationale de la Recherche under the GROPLAN
project, marks a significant advancement in understanding
and preserving submerged archaeological sites [2]. The
University of Malta’s initiative to deploy a team of skilled
divers for excavating the site, triaging strata, as illustrated in
Figure 2, focuses on 3D photogrammetric documentation.
This effort has resulted in a substantial collection of 30,000
images that capture the archaeological site’s evolution over
a decade of distinct excavations. This meticulous approach
underscores the significance of comprehensive data integra-
tion and sharing for an in-depth analysis and understanding
of the site’s history. The extensive image collection obtained
through this audacious excavation serves as a valuable
resource for further research and exploration, demonstrating
the university’s commitment to advancing archaeological
knowledge.

The full paper will detail the entire pipeline and en-

Figure 2. Records showing outermost layer of excavated cargo as
progress continues

hancement of previous research. Using YOLOv4, an accu-
racy range of 78%-88% (mAP) was reported [3], focusing
on selecting the best 2D object detection algorithm for
consistent 3D instance segmentation through the 2D 3D
bidirectional relationship offered by photogrammetry. The
study will highlight recent methods of semi-supervised 2D
object detection, discussing the advantages of the latest
versions for higher accuracy and precision, and addressing
the limitations of older methods along with strategies to
overcome them. The dataset for this research was specif-
ically collected for this task, forming the foundation for
linking knowledge bases with VR SDKs (virtual reality
software development kits). Furthermore, the core of the
photogrammetric acquisition design includes a stereo sys-
tem mounted on an underwater scooter, which captures
around 30,000 images from various timelines. This setup
enables the use of the camera and various sensors present
in devices like smartphones or tablets, along with SLAM
(simultaneous localization and mapping). This technology
allows us to evaluate the user’s movements and adjust the
device’s point of view accordingly. These advancements

1https://comex.fr/
2https://www.cnrs.fr/

facilitate capturing isolated amphorae in 3D scenes through
the precomputed photogrammetry pipeline, an approach
already being implemented at the LIS Lab.
At present, cyber-archaeology[4] employs digital tools such
as virtual reality and pre-computed modelling to explore
archaeological sites, extending beyond basic object identi-
fication or metadata retrieval to enable deeper analysis and
interpretation of represented entities[5], illustrated in Figure
3.

Figure 3. This figure, referencing our published article[5], illustrates
that four amphorae were retrieved from the wreck before 2018,
facilitating a deeper analysis and interpretation of the represented
entities and their associated metadata.

In recent years, artificial intelligence, deep learning, and
semantic network approaches have facilitated the visual-
ization of complex data, supported educational initiatives,
and fostered interdisciplinary collaboration in archaeology.
This is particularly evident when these applications function
as dashboards, assisting in decision-making, guiding site
evolution, and revising existing knowledge [3]. The images
used for 2D 3D reconstruction and 2D object detection
models are captured synchronously, and the system is
calibrated to scale the survey. The utilization of the scooter3,
along with a powerful and unique continuous lighting sys-
tem, ensures fast acquisition speed to prevent motion blur
and consistent lighting for uniform photographic coverage.
Photogrammetric image processing is automated through
scripting4, and the resulting textured models are imported
into virtual and augmented reality5 tools developed for
further analysis.

The stereo system developed at Septentrion Environment
is based on extensive experience in underwater photography
and photogrammetric surveying. It consists of two full-
frame SLR cameras and a powerful continuous light system.

3https://www.septentrion-env.com/en/projet/photogrammetry-
submarine-and-subaquatic-caves/

4https://www.agisoft.com/
5https://www.unrealengine.com/
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The setup includes two Nauticam waterproof housings,
each equipped with a Nikon D700 camera and a 14mm
lens, fixed on a 60 cm long aluminium profile (40mm in
diameter) (Figure 4). The two cameras are synchronized
using a specific external cable, with the housings spaced 7
cm apart. A spherical joint in the middle of the aluminium
profile allows the stereo set to be attached to an underwater
scooter (DPV). Each housing is equipped with a float arm
and an external Ikelite DS160 flash.

This stereo system enables precise and synchronized im-
age capture for underwater photogrammetry. It has recorded
a total of 30,000 images across all excavation campaigns
since the first one. These categorized datasets form the
cornerstone of our research, and we have selected a subset
of 3,307 images to conduct this experiment.

Figure 4. Two Nauticam housings with Nikon D700 cameras on
60cm profile mounted on scooter.

This system is assembled underwater with a second
device for continuous remote lighting. It consists of two
LED projectors with a unitary power of 66,000 lumens
mounted on a 150 cm long aluminium profile (40mm in
diameter). The buoyancy of this second system is balanced
with specific incompressible foams to achieve slightly neg-
ative buoyancy. Finally, the two systems are coupled in the
water on a Suex xj37 underwater thruster using a specific
support.

This article is organized as follows: Section II delves
into object detection approaches, highlighting the short-
comings of traditional methods in fulfilling the task. Our
discussion extends to the decision-making process of ex-
cluding YOLOv4 from consideration and shifting our focus
to YOLOv8. Section III provides comprehensive details
about YOLOv8, starting from elucidating the fundamen-
tal principles of its functionality. It then proceeds with
the dataset labelling, training process, validation of the
results, and concludes by comparing the results using matrix

evaluation parameters. Section IV discusses the author’s
perspective on visualization of underwater cultural heritage
(UCH). Finally, Section V consists of the discussion and
conclusion of the research conducted.

2. Literature Survey
An essential step in processing the surveys is to localize

the artifacts in the captured images. The main problem is
that the artifacts, which are amphorae, are partially occluded
and covered with sediment, and some objects are damaged.
Traditional object detection approaches based purely on
color or spatial information may fail [2]. Recent advances
in machine learning, and more specifically in deep learning,
have resulted in robust end-to-end object detection methods,
also known as one-stage detectors, as illustrated in Figure
5. In particular, object detection algorithms [6] [7] have
shown significant improvements in this area. Deep learning

Figure 5. Example images of the underwater site displaying artifacts
(amphorae), with one image juxtaposed that requires automatic
detection. The detection of amphorae in the adjacent image is
indispensable.

has been widely applied to image classification for over a
decade, aiming to find the label of an image among several
learned labels. In object detection, multi-scale sliding win-
dows have been used to identify the position and bounding
box of objects within an image. Since 2015, several versions
based on object of interest (OOI) have evolved in state-of-
the-art (SOTA) methods[8][9][10][11]. The goal is to detect
and localize objects within an image accurately. Numerous
metrics are available for evaluating the performance of
object-detection algorithms[12][13], as illustrated in Figure
6.

Figure 6. matrix performance for prioritizing object detection algo-
rithms
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In the literature, numerous competitive methods exist, but
our focus is on earlier and more recent approaches that
have demonstrated higher accuracy and significantly faster
speeds. These approaches include:

• you only look once (YOLO) V4 [14]: This method
discretizes the output space of bounding boxes into
a set of default boxes over different aspect ratios
and scales per feature map location. At prediction
time, the network generates scores for the presence
of each object category in each default box and pro-
duces adjustments to better match the object shape.
Additionally, the network combines predictions from
multiple feature maps with different resolutions to
handle objects of various sizes naturally.

• you only look once (YOLO) V8 [15]: YOLOv4
features a sophisticated architecture with a CSPDark-
net53 backbone, SPP module, and PANet enhance-
ments for improved accuracy and speed. YOLOv8, an
evolution of YOLOv4, integrates focal loss, CSP at-
tention, and further PANet enhancements to enhance
performance, making it a promising advancement in
object detection algorithms.

Figure 7 illustrates the model results in detecting amphorae,
whereas mAP =

∑k
i=1 APi

K and variants of IoU, showing com-
petitive outcomes based on Yolov4 + AlexeyAB’s Darknet
6 and Yolov8 + Ultralytics 7. YOLO (single-shot object

Figure 7. The detection effect of two mainstream detection meth-
ods: (a) Original image, (b) YOLOv4+AlexeyAB’s Darknet with
mAP@0.50:0.95, (c) YOLOv8+Ultralytics with mAP@0.50, and (d)
YOLOv8+Ultralytics with mAP@0.50:0.95.

detection) prioritizes real-time performance and efficiency.
Designed to achieve high accuracy while maintaining fast
inference speeds, YOLO models are compatible with a
wide range of applications. They are particularly suitable

6https://github.com/AlexeyAB
7https://github.com/ultralytics/ultralytics

for deployment in resource-constrained environments and
applications requiring rapid processing of visual data.

YOLOv4 with AlexeyAB’s Darknet achieved 88% accu-
racy, 92% precision, and 95% recall, while YOLOv8 with
Ultralytics attained 93% accuracy, 95% precision, and 97%
recall. These results were obtained using a dataset of 3,307
labeled images for ad-hoc 2D annotation methods and an
on-demand evaluation process covering an overarching 3D
scene, as illustrated in Figure 8.

Figure 8. The first figure on the left shows the confusion matrix for
YOLOv4, while the second figure on the right shows the confusion
matrix for YOLOv8.

YOLO detection network has 24 convolutional layers
followed by two fully connected layers. Alternating con-
volutional layers reduce the features space from preceding
layers. Both methods have undergone several improvements
since the time they appeared. For instance, now we have
Yolo V8 that is much more precise and many times faster
than original. The overarching architecture of YOLO is
illustrated in Figure 9 . In this paper, we explore the

Figure 9. Overreaching architecture of YOLO. The network has 24
convolutional layers followed by two fully connected layers.

performance of two approaches for detecting OOI, specif-
ically amphorae in our dataset. We exclude YOLOv4 +
AlexeyAB’s Darknet from our analysis and concentrate
on improving the evaluation performance of YOLOv8 +
Ultralytics by increasing the number of epochs, as discussed
in the next section. Additionally, the selected best model
aids in generating a comprehensive 3D model of the site
using photogrammetry. We establish a bidirectional 2D to
3D association between the detected OOI in the images and
their representation in the 3D model. This process of isolat-
ing amphorae through a 2D 3D relationship is invaluable
for archaeologists attempting to correlate a 3D model of
an amphora with its corresponding images for topological

https:// journals.uob.edu.bh
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investigation. Subsequently, we construct a dense cloud for
mesh and texture modeling.

3. Materials andMethods
The primary challenge in our work is managing the size

of the dataset, which comprises over 30,000 images from
surveys conducted over the last decade. Supervised machine
learning requires a large number of manually labelled
images, entailing substantial human effort. To mitigate this,
we propose adapting a semi-supervised learning approach,
leveraging the sequential nature of the images to reduce
manual labelling.
Our approach involves measuring similarity between con-
secutive images and selecting one image per group of simi-
lar images. Only the selected images need to be labelled. We
then conduct an initial training phase using this subset of
labelled images. The resulting model is used to detect OOI
in the remaining unlabelled images. Detection is refined
using results from a sparse feature point matching approach
applied to labelled and unlabelled images within each image
group. Finally, a second training phase is conducted using
all images to obtain a robust final model.
Figure 10 illustrates the comprehensive approach to sketch-
ing models for enhancing the knowledge base in pho-
togrammetry. The process involves implementing 2D object
detection techniques for precise 3D model generation and
3D instance segmentation. This facilitates archaeological
enrichment by enabling the creation of accurate 3D models
turning to good use of 2D to 3D reconstruction. The subse-
quent sections will detail the practical workflows required
to achieve the goals of the proposed model.

Figure 10. Comprehensive approach to enhancing photogrammetry
knowledge base using 2D object detection and 3D instance segmen-
tation.

A. Labelling Dataset with YOLO Format
The model uses CVAT for image labelling and a CNN

for automated artifact localization and labelling. CVAT8 is
an open-source AI-powered tool for annotating 2D images,
compatible with PyQt4 and PyQt5, supporting various for-
mats, and extendable to semi-automatic annotation. Ultra-
lytics’ YOLO format compatibility suits our CNN model

8https://github.com/cvat-ai/cvat

for object detection tasks, appreciated for its user-friendly
interface (Figure 11).
Overall, image annotation plays a crucial role in object

Figure 11. (a) The top-left figure provides guides to help users align
and adjust the bounding box accurately around the object of interest
in the image. (b) The top-right figure displays the sequential number
of the bounding box within the overall annotation process. (c)
The bottom-left figure illustrates the entire annotation process once
completed, while the bottom-right figure shows the corresponding
text file for the annotated image in YOLO format.

recognition approaches by providing the necessary labelled
data for model training, evaluation, and dataset creation.
Adhikari et al. [16] introduce a semi-automatic method for
bounding box annotation, reducing manual effort by up to
75% across three datasets. Yoon et al. [17] address the chal-
lenge of sparsely annotated datasets in anchor-based object
detection, proposing anchor-less and single-object tracker
approaches. Their results demonstrate competitive perfor-
mance on the EPIC-KITCHENS 2020 dataset. Mundher et
al. [18] review automatic image annotation (AIA) methods,
focusing on deep learning models, and categorize them
into five types, emphasizing the importance of continued
research in this area. Russell et al. [19] developed a web-
based annotation tool to build a large dataset for object
detection research, enhancing labels with WordNet.

B. Decoding the Core Principles of YOLO: Modern Per-
spectives on its Workflow
In recent years, the development of various AI architec-

tures, notably the YOLO algorithm, has revolutionized ob-
ject detection via CNN-based regression. YOLO efficiently
determines object coordinates and classes in images. Thanks
to technological and scientific advancements, end-to-end
object detection approaches have become increasingly faster
and more accurate. The neural network processes entire
images at once, extracting object coordinates and classes
by dividing them into S∗S grids[20]. The YOLO algorithm
excels in real-time applications, also known as single-
shot detection, where input images undergo convolutional
layers to predict bounding boxes and class probabilities.
Each box includes coordinates (x, y), width (w), height
(h), non-maximum suppression (NMS), and confidence

https:// journals.uob.edu.bh
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(IoU). Thus, YOLO detects objects and their coordinates
simultaneously[21], as illustrated in Figure 12.

Figure 12. YOLO:single network principle predicts bounding boxes
and class probabilities. [20].

Various versions of the YOLO algorithm have demon-
strated remarkable success in object detection applica-
tions within the realm of artificial intelligence in recent
years[22][23][24]. In this study, training and testing of
the YOLOv8 Ultralytics algorithm were conducted using
Python 3.10.13 within a virtual environment. The setup in-
cluded dependencies and an NVIDIA GeForce Quadro RTX
6000 graphics processor, operating as a multi-GPU system,
alongside a computer featuring an Intel Core i7-9750H 2.60
GHz processor, 16 GB DDR5 RAM, and 512 GB SSD. The
system ran on a Linux-based operating system (Ubuntu) and
utilized CUDA and cuDNN to accelerate the workflow.

C. Training a Labelling Dataset with YOLOv4 and Ultra-
lytics
In this study, we utilized a labelled dataset focusing

on a single class, previously employed in generating a 3D
orthomosaic through photogrammetry. Our objective was
to assess the efficacy of YOLO algorithms, particularly
YOLOv8, on the same set of 2D images. The dataset
comprises a total of 3,307 images, including high-resolution
(HR) and low-resolution (LR) images. To facilitate 3D
instance segmentation using YOLOv8, we developed
specific Python scripts to accurately project 2D labelled
instances. This process aimed to establish a probability
area indicating the presence of amphorae in 3D space. By
aligning labels depicted in photos with the corresponding
3D amphorae instances, we achieved a comprehensive
3D model capturing visible portions of amphorae and
surrounding sediment.
Our future efforts will focus on proposing methodologies
for determining the typology of isolated amphorae. To
achieve this goal, we first need to train the network on the
labelled dataset and achieve high detection accuracy. We
propose dividing the dataset into 70% for training, 20% for
testing, and 10% for validation, as illustrated in Algorithm
1.

The study utilized YOLOv8 algorithms with a dataset

Algorithm 1 Dataset Splitting

1: N ← total number of samples
2: Ntrain ← 0.7 × N ▷ 70% for training
3: Ntest ← 0.2 × N ▷ 20% for testing
4: Nval ← 0.1 × N ▷ 10% for validation
5: Shuffle the dataset randomly

for i← 1 to N do
i ≤ Ntrain

6: Add sample i to training set
7: i ≤ Ntrain + Ntest
8: Add sample i to testing set else
9:

Add sample i to validation set
10:
11:

comprising 3,309 images to detect objects, using 7,941
bounding boxes in the 2D survey. Seventy percent of
the dataset’s images were allocated for training, and 20%
for testing. Each YOLO algorithm underwent training and
testing across 100, 200, and 300 epochs, as illustrated in
Algorithm 2. Figure 13 shows the snippet used for training
YOLOv8.

Figure 13. The installation of YOLOv8 version 2.2 is demonstrated
for Python 3.10.13, using a CUDA Tesla T4. The model configu-
ration consists of 225 layers and 3,011,043 parameters required to
commence network training.

The YOLOv8 algorithm was trained and tested using a
dataset containing labelling for a single class. The algorithm
was executed for 100 and 300 epochs, with results recorded
for each epoch with mAP@0.50:0.95 to comprehensively
evaluate model performance. Numerous experimental anal-
yses were conducted to evaluate the training and testing of
the algorithm, yielding successful findings.

Comparative assessments, including confusion matrices
illustrated in Figure 14, were made. For 100 epochs, the
results indicate TP=7757, FP=357, and FN=184, with pre-
cision at 95% and recall at 97%. For 300 epochs, the results
reveal TP=7897, FP=228, and FN=44, with precision at
97% and recall at 99%. Figures 15 and 17 illustrate that the
YOLOv8 algorithm demonstrates the most effective learn-
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Algorithm 2 Install Ultralytics and Train

1: Install Ultralytics:
2: !pip install ultralytics
3:
4: Import Necessary Libraries:
5: import os
6: import shutil
7:
8: Define Directories:
9: DATA DIR = "path/to/data"

10: MODEL DIR = "path/to/model"
11:
12: Prepare Dataset:
13: ... ▷ Code to prepare your dataset
14:
15: Train the Model:
16: !python train.py --data $DATA DIR --cfg
yolov5s.yaml --weights ’’ --batch-size 16
--epochs 100, 200, and 300

17: # Note: Adjust parameters as needed

Figure 14. Comparative success graphs obtained as a result of
training and testing YOLOV8 (a) graph on the left side shows the
confusion matrix at 100 epochs (b) graph on the right side shows
the confusion matrix at 300 epochs

ing overall, despite showing the least favourable outcomes
after certain epochs. A review of Figure 16 and 18, indicates
that after 300 epochs, the YOLOv8 algorithm achieves the
lowest average loss value, while the earlier epochs register
a significantly higher average loss value. Additionally, all
numerical results from training and testing YOLOv8 are
presented comparatively in Table I.

TABLE I. A resizable table with 5 columns and 6 rows.

epoch Gpu mem box loss cls loss mAP@0.50:0.95
50 2.78G 1.165 0.5285 0.985
62 2.51G 1.153 0.5209 0.986

100 2.68G 1.123 0.4816 0.99
200 3.18G 1.052 0.4333 0.991
228 3.01G 1.009 0.4159 0.991
300 2.33G 0.9476 0.3588 0.992

According to the experimental analyses for the
training and testing of the YOLOv8 algorithm, the best
results were observed at epoch 240, with the algorithm

successfully detecting amphorae at a mean average
precision (mAP@0.50:0.95) rate of 99.2%. Consequently,
training was halted prematurely due to no improvement
was observed in the last 70 epochs.

Figure 15. Adjacent figures sequentially display the results of train-
ing for 100 epochs, including the loss function for both training and
validation, as well as the mAP@0.50:0.95 curve, precision curve,
and recall curve.

Figure 16. Adjacent Figures sequentially display the results of
training for 300 epochs, including the loss function for both training
and validation, as well as the mAP@0.50:0.95 curve, precision
curve, and recall curve.

To validate the success rates obtained from experimental
analyses with the YOLOv8 algorithm trained with different
epochs, a performance test was conducted separately for
each epoch. Each type of training was tested using real-
life images. Detailed examples of the success rates of each
epoch in real-image performance are illustrated in Figures
16 and 18.

D. Assessing Trained Network Performance with Real-Life
Images
To assess the validity of the success rates obtained

from experimental analyses using YOLOV8 trained with
100 epochs and 300 epochs, a performance evaluation
was conducted for each training phase independently. Each
phase was tested using real images. Examples of the success
rates achieved by each algorithm in real-world scenarios are
depicted in Figure 19, and Algorithm ?? shows the steps

https:// journals.uob.edu.bh
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Figure 17. Photo segments of performance testing when the training
dataset has epochs = 100

Figure 18. Photo segments of performance testing when the training
dataset has epochs = 300

to test the real-world scenarios. Additionally, Figures 20
and 21 illustrate the real predictions made by the networks
trained with 100 epochs and 300 epochs, respectively, along
with the corresponding label correlation graphs, revealing
their spatial dependencies and relative distribution patterns
among object detection.

Upon careful examination of Figures 20 and 21, which
represent the results of network training with varying num-

Figure 19. Real-world scenarios featuring photos captured from
deep-sea expeditions.

bers of epochs (100 and 300 epochs of mAP@0.50:0.95),
the final training achieves tangible results in distinguishing
amphorae more accurately and precisely. This is observed in
the network’s enhanced capability to identify the necessary
features and correlation coefficients of instances.

Figure 20. Detected amphorae along with correlogram of instances
(height, width) at 100 epochs.

Figure 21. Detected amphorae along with correlogram of instances
(height, width) at 300 epochs.
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Algorithm 3 Testing YOLO on an Image

1: Input: Image to be tested, Trained YOLO model
2: Output: Detected objects with bounding boxes
3: Load the trained YOLO model
4: Load the image to be tested
5: Preprocess the image (resize, normalization, etc.)
6: Pass the preprocessed image through the YOLO model
7: Obtain predictions for detected objects
8: Post-process predictions (filtering, non-max suppres-

sion, etc.)
9: Display the original image with detected objects and

bounding boxes

4. Discussion and Future work (underwater cultural her-
itage (UCH))
The photogrammetric technique is well-established

for virtualizing cultural assets. Digital twins support
archaeological analyses, scientific dissemination,
monitoring, and preservation. These models are used
in various forms, including web viewers, physical replicas,
and virtual/augmented/mixed reality. Technological
advancements and increased heritage fragility have boosted
the popularity of underwater site virtualization.
A test pilot has demonstrated the efficiency of using 3,307
2D images projected into a 3D orthomosaic. The autocoder
successfully isolated vertices of the OOI, specifically
amphorae, by leveraging the bidirectional relationship
between 2D and 3D data. This approach enabled the
establishment of 3D instance segmentation using YOLOv8.
Figure 22 Plots isolated vertices from camera references
165 to 170, captured in PLY file format.
Surveying and digitizing through photogrammetry is
now standard for aerial and underwater applications.
While improvements in automation, acquisition, and
processing speed continue, challenges like underwater
color correction and temporal monitoring in dynamic
environments remain active research areas. Obtaining
digital models for dissemination is straightforward with
photography and basic surveying skills. Our research aims
to enhance 3D scenes by applying an extendable version
of photogrammetry from 2D to 3D reconstruction. This
allows for automated coding to isolate vertices of OOI,
such as amphorae, within the 3D orthomosaic deposit.
Ultimately, rebuilding the model using texture and mesh
enables the visualization of 3D instance segmentation
while exploring non-invasive underwater sites.
Similarly, the role and importance of virtual reality for
archaeology and cultural heritage has been well established
for over 30 years [25][26]. The development of these
techniques has enabled the possibility of being immersed
in the archaeological site, not only reproducing the current
state of the heritage, but also allowing the simulation of
the past, a process defined as cyberarcheology by Forte
et al. [27]. Virtual and augmented reality techniques for
underwater sites have been explored in several projects
aimed at allowing virtual visits to non-divers [28],

Figure 22. Plotting isolated vertices from camera references 165 to
170, captured in PLY file format

increasing awareness, and promoting underwater cultural
heritage (UCH) through serious games [29], as well as
studying and analyzing complex excavations and their
evolution over time [30].
We plan to create a seamless virtualization solution
from photogrammetric survey to virtual and augmented
reality tools for underwater sites, visualizing amphorae
and other site components. Our automated and optimized
steps ensure a comprehensive and robust photogrammetric
survey, safe for divers at great depths, and easily integrated
into developed virtual and augmented reality tools.
At the heart of the 3D instance segmentation is a
pre-computed model integrated with photogrammetry.
Photogrammetric image processing is performed
automatically through scripting, and the generated
textured models are imported into virtual and augmented
reality tools.
We anticipate providing more technical details of the
developed solution from survey to virtual and augmented
reality applications, which will be expanded in upcoming
work.
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5. Conclusion
The workflow is part of a series of mainstream efforts

conducted under the auspices of the LIS UMR. This project,
along with others, is based on a long-standing cooperation
since 2009 between the University of Malta and Aix-
Marseille University. In recent years, the University of
Malta, under the direction of Prof. T. Gambin, conducted
excavations of the Xlendi wreck at a depth of over 100
meters. Utilizing semantic web technology and 3D tools,
this article showcases a decade-long excavation monitoring
at Xlendi, employing ontology and AR/VR [5].
Additionally, Mohamed et al. [31] propose integrating cul-
tural heritage (CH) data with domain-specific knowledge for
intelligent visualization, fostering semantic interoperability
and user-friendly querying. Ben et al. [32] propose using
semantic web technology to enhance access and visualiza-
tion of diverse CH resources, demonstrated with the Xlendi
shipwreck dataset, available on the Google Play Store app.
Our work aims to enhance 3D scenes for VR/AR ex-
ploration, building on previous efforts [3] to seamlessly
integrate exploration with the latest hardware, leveraging
extendable photogrammetry and advancements in 3D docu-
mentary development to enable robust 2D object detection
algorithms to interact with 3D scenes. Subsequently, recon-
structing 3D scenes with dense clouds, mesh, and texture
vividly virtualizes immersive, lifelike environments, enrich-
ing archaeological insights and exploration of the Xlendi
site. Accurate 3D instance segmentation using 2D object
detection approaches is crucial for maintaining consistency
and precision in projecting 3D objects like amphorae.
Evaluating YOLOv8 and YOLOv4 on a dataset of 3,307
labeled images, YOLOv8 achieved a recognition rate of
99.2%, while YOLOv4 achieved 87.94%. Successful tests to
recognize and detect amphorae in 3D scenes using YOLOv8
validate its effectiveness in 3D instance segmentation-based
applications and its importance in isolating vertices within
targeted 3D objects.
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