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Abstract: The implementation of IoT devices in agriculture has transformed smart farming, enabling precise real-time monitoring 

and management of agricultural activities. However, traditional smart farming applications that rely on centralized cloud servers face 

significant challenges, including increased latency and network congestion, which hinder the timely processing of critical data. To 

address these issues, this research proposes a fog computing-based solution tailored for smart farming, focusing on optimized latency 

and energy management. We introduce a clustering algorithm to enhance the communication and collaboration between fog nodes 

and their corresponding Fog Controller Nodes (FCNs), ensuring efficient data processing within the fog layer. Additionally, an 

energy-aware algorithm is presented to improve the FCN's awareness of each fog node’s energy profile, allowing for adaptive power 

management strategies that optimize energy consumption. An optimal module placement algorithm is also proposed, prioritizing 

tasks based on their latency sensitivity and urgency, which ensures efficient resource utilization and timely responses to critical 

agricultural needs. The proposed approaches have been implemented and tested using the iFogSim simulator, demonstrating 

significant improvements in latency, network usage, and energy consumption compared to FCMSF and Agrifog models. This 

comprehensive evaluation underscores the potential of fog computing in revolutionizing smart farming by addressing key challenges 

and enhancing overall system efficiency. 
Keywords: IoT, Cloud, Smart Farming, Fog computing , iFogSim 

 

1. INTRODUCTION (HEADING 1) 

According to research findings, the adoption of IoT 

devices in the agriculture industry was projected to reach 

75 million by 2020, with an annual growth rate of 20%. 

By 2025, the global smart agriculture market is 

anticipated to triple in size, reaching an estimated $15.3 

billion [1]. Furthermore, estimates from the International 

Data Corporation (IDC) [2] predict that the volume of 

data produced by IoT devices will reach approximately 80 

zettabytes by 2025, with a significant portion originating 

from the agricultural sector. Presently, most smart farming 

applications are developed by integrating IoT devices with 

remote cloud servers. These servers provide crucial 

resources on demand for processing, storage, and analysis 

of the extensive data generated by IoT-enabled smart 

farming [3]. However, the centralized nature of cloud 

architecture presents significant challenges for the large-

scale implementation of smart farming applications due to 

increased response times as data volumes grow. 

Transmitting and processing vast amounts of data at 

remote cloud servers can lead to high latency and 

considerable network strain. In smart farming, timely 

responses are crucial for real-time data analysis, which 

encompasses applications such as agricultural robots, 

drones, and anti-hail systems [4]. These latency-sensitive 

applications require rapid data processing to effectively 

monitor soil moisture, weather conditions, crop health, 

and to operate machinery efficiently. This underscores the 

need for more localized data processing solutions. 

As shown in TABLE I, there are stricter quality of 

service (QoS) requirements when dealing with IoT-based 

applications in smart farming, particularly those that are 

latency-sensitive, such as agricultural robots, drones, and 

anti-hail systems. These applications demand real-time 

data processing and quick response times to function 

effectively. For instance, agricultural robots need 

immediate feedback to navigate and perform tasks like 

planting and harvesting. Drones require rapid data 

processing to accurately monitor crop health and manage 
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precision agriculture tasks. Anti-hail systems must react 

instantly to weather data to deploy protective measures. 

Therefore, the centralized nature of cloud architecture 

often fails to meet the stringent QoS requirements for 

these applications, necessitating the adoption of more 

localized processing solutions to ensure minimal latency 

and optimal performance. 

TABLE I.  LATENCY REQUIREMENTS OF SOME IOT APPLICATIONS 

IN SMART FARMING  

Smart Farming 

Applications 
Data Type Maximum Delay 

Agribots [5] Control signals for 

robotics 

<100 milliseconds 

round-trip time 

Agricultural Drones [6] Control and 
telemetry data 

<150 milliseconds 
round-trip time 

Livestock Monitoring 

[7] 

Biosignals from 

sensors 

<200 milliseconds 

one-way 

Precision Irrigation [8] Sensor data and 
control signals 

<250 milliseconds 
one-way 

Crop Monitoring [9] Image and sensor 

data 

<300 milliseconds 

one-way 

Soil Monitoring [10] Sensor data <300 milliseconds 
one-way 

 

     Substantial delays, high network traffic, and excessive 

energy consumption are critical challenges hindering the 

widespread deployment of cloud-based IoT applications 

in smart farming. In traditional setups, cloud servers 

process the received data, enabling real-time decision-

making and action-taking capabilities through a web 

application. However, this direct sensor-to-cloud 

configuration creates significant latencies, making it 

inadequate for operations requiring timely intervention, 

such as precision irrigation, pest management, and the 

operation of automated machinery. Furthermore, many 

works have proposed using fog computing in smart 

farming to decentralize processing and reduce response 

times. However, relying on the traditional hierarchical 

architecture of fog and cloud without establishing 

connections between fog nodes poses several challenges. 

To address these issues, we propose adopting optimized 

latency and energy management algorithms for fog-based 

smart farming systems. This approach significantly 

reduces latency, enhances network efficiency, and 

optimizes energy consumption, which are crucial for 

effective real-time agricultural management. 

   The key contributions of this work are outlined as 

follows: 

 

 Proposed Clustering Algorithm for Fog 

Nodes: This paper introduces a clustering 

algorithm to establish connections between each 

fog node and its corresponding Fog Controller 

Node (FCN) in a fog-based smart farming 

architecture. 

 

 Energy-Aware Fog Controller Algorithm: An 

algorithm is introduced to enhance the Fog 

Controller Node's awareness of each fog node’s 

energy profile in the smart farming system. 

 

 To Optimal Module Placement Algorithm: 

An algorithm is proposed for the optimal 

placement of application modules within the fog 

layer of a smart farming ecosystem. The 

algorithm prioritizes module placement based 

on latency sensitivity and urgency, ensuring that 

critical tasks are handled with minimal latency, 

moderate tasks balance latency and energy 

consumption, and normal tasks focus on energy 

efficiency. 

 

 The Implementation and Testing: The proposed 

approaches have been implemented and 

rigorously tested using the iFogSim simulator. 

Extensive simulations demonstrate the 

effectiveness of the proposed algorithms in 

reducing execution cost, latency, energy 

consumption, and network usage compared to 

traditional cloud computing models. 

 

The remainder of this document is structured as follows. 

Section 2 reviews related works in cloud and fog 

computing architectures. Section 3 introduces the 

proposed optimized latency and energy management 

system for smart farming Section 4 outlines the 

performance evaluation methodology and presents the 

findings of this study. Finally, the paper concludes with a 

summary of the research in the Conclusion section. 

 

2. RELATED WORKS  

 
The fog computing paradigm has garnered significant 

attention from researchers in recent years, particularly in 
the field of IoT-based smart farming. In their work [11], 
the authors introduced a cost-effective fog computing 
platform designed for soil moisture management. This 
platform leverages IoT and edge computing to monitor 
soil moisture through sensors and data communication. It 
features an Analytics-as-a-Service cloud component, 
which provides soil moisture density maps to facilitate 
better irrigation decisions. Small-scale evaluations 
conducted in a rural area demonstrated that this approach 
achieves accuracy comparable to conventional methods, 
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all without necessitating human presence. Alharbi et al. 
[12] proposed a new integrated edge-fog-cloud 
architecture for smart agriculture to enhance energy 
efficiency and reduce carbon emissions. This approach 
processes real-time agricultural data at the edge and fog 
layers, reducing cloud load, overall energy consumption 
by 36%, carbon emissions by 43%, and network traffic by 
up to 86%, as demonstrated through mixed-integer linear 
programming (MILP) and heuristic algorithms. Artetxe et 
al. [13] proposed using AI and edge/fog/cloud paradigms 
to manage water in agriculture. They combined fuzzy 
logic and LoRa technology, achieving a 23.1% reduction 
in water loss, with an additional 4.07% reduction using 
weather forecasts. Fog and cloud computing concepts are 
included to better scale the control scheme for multiple 
plants. Kalyani et al. [14] highlighted the potential of 
digital twin (DT) technology in agriculture, emphasizing 
its role in improving management through real-time data 
and simulations. They noted that integrating DTs with 
fog computing enables effective, decentralized 
agricultural management and monitoring, offering 
significant benefits and addressing key challenges. 

 

Ortiz-Garcés et al. [15] proposed using fog computing to 

improve IoT applications, specifically for emergency 

vehicles. Their prototype uses in-vehicle beacons to 

enable green traffic lights and fog nodes with a long-

range wide area network protocol to reduce response 

times and limit data sent to the cloud. They also 

compared the response times of fog computing and cloud 

computing. Sajid et al. [16] proposed a fog computing-

based smart farming framework to enhance precision 

agriculture using UAVs for data collection from IoT 

sensors. The framework offloads data to fog sites at the 

network edge and uses a charging token system for 

UAVs, which receive tokens from fog nodes to recharge. 

An intrusion detection system with machine learning at 

the fog nodes classifies UAV behavior and reduces 

tokens for malicious UAVs, effectively eliminating them. 

The system demonstrated 99.7% accuracy in detecting 

intrusions and efficiently conserved energy through 

token-based elimination, ensuring reliable data collection 

despite attacks. Alaty et al. [17] proposed a smart 

agricultural system integrating IoT, cloud, and fog 

computing technologies. The system consists of three 

interacting layers to manage, monitor, and control the 

agricultural environment. Deployed and tested on a small 

farm, it enables remote monitoring of soil humidity and 

timely alerts to users about potential hazards such as fire, 

demonstrating its practical application and effectiveness 

in enhancing agricultural management. 

Sucharitha et al. [18] proposed an IoT-Fog based farm 

management system to enhance farming activities by 

reducing latency and improving real-time decision-

making through proximity-based data processing. Their 

study showed that traditional cloud models are 

inadequate for handling the vast and diverse data from 

IoT devices, whereas fog-based models optimize 

bandwidth usage and offer lower latency. Their 

simulation using iFogSim demonstrated superior 

scalability, responsiveness, and efficiency compared to 

cloud-based systems. 
In this work [19], the authors proposed a fog 

computing model for smart farming to address high 
latency and data volume issues associated with traditional 
cloud-based systems. By processing data closer to its 
source, the model reduces latency and network usage. 
Simulated using iFogSim, the architecture demonstrated 
improved performance in bandwidth usage, computing 
resources, and latency. compared to cloud-only 
implementations. 

The reviewed fog-based solutions aim to reduce latency, 

optimize network utilization, and enhance overall system 

performance. However, these approaches have several 

notable limitations. 

Firstly, the reliance on the traditional hierarchical 

architecture of fog and cloud, without creating 

connections between fog nodes, presents a significant 

challenge. This approach can lead to less effective 

communication and collaboration among fog nodes. 

Secondly, many studies have not addressed the critical 

issue of module placement within the fog computing 

framework. Proper distribution of application modules 

across fog nodes is essential for efficient resource 

utilization and latency reduction. 

Thirdly, some prior works do not include Fog Controller 

Nodes (FCNs), which are vital for managing fog clusters. 

FCNs are crucial for coordinating modules and tasks, 

allocating resources, balancing loads, and optimizing 

energy within fog-based systems. 

Lastly, previous research often lacks a focus on energy 

consumption optimization within the fog layer. Key 

aspects such as monitoring the energy profiles of 

individual fog nodes, incorporating energy-aware FCNs, 

and considering energy efficiency before task distribution 

are frequently overlooked. 

3. PROPOSED  OPTIMIZED LATENCY AND 

ENERGY MANAGEMENT SYSTEM 

A. Clustering Fog Nodes 

In the initial phase of this work, we propose 
enhancing the effectiveness of fog-based smart farming 
architecture by introducing a clustering approach for fog 
nodes within the fog layer. This strategy optimizes the 
distribution of computational resources, thereby 
increasing the overall efficiency of the smart farming 
system. By grouping fog nodes based on proximity and 
resource availability, we can achieve more efficient load 
balancing, reduced latency, and improved energy 
consumption across the network. 
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Each cluster is managed by a Fog Controller Node 
(FCN), which plays a crucial role in enhancing system 
efficiency. The primary objective is to improve the 
distribution of computational resources through this 
clustering approach. Our defined Algorithm 1 groups fog 
nodes (FNs) into clusters to enable efficient 
communication and collaboration. The FCN in each 
cluster is responsible for managing resource allocation, 
load balancing, and executing the module placement 
algorithm. By linking fog nodes to their respective FCNs 
using predefined delay thresholds, our clustering 
algorithm promotes effective communication and 
resource sharing within clusters. This strategy maximizes 
resource utilization and reduces delays between nodes 
and their FCNs. 

Moreover, inter-cluster communication facilitated by 
the FCNs allows fog nodes to share critical information, 
such as workload status and available resources, further 
optimizing the performance of the fog layer. This 
interconnected approach ensures that resources are 
utilized effectively and that delays are minimized, 
leading to a more robust and efficient smart farming 
system. In addition to the primary components of the Fog 
Node, the Fog Controller Node (FCN) includes: 

 The Resource Manager within the FCN is 

pivotal for the effective management and 

optimization of computational resources across 

the fog nodes. It oversees the allocation and 

utilization of essential resources such as CPU, 

memory, and storage. This dynamic allocation is 

crucial to ensure that resources are used 

efficiently, adapting to the varying demands of 

the smart farming system. By continuously 

monitoring resource usage, the Resource 

Manager can make real-time adjustments to 

optimize performance, prevent resource 

bottlenecks, and maintain a balanced load across 

all fog nodes. This ensures that the system 

remains responsive and capable of handling the 

complex tasks associated with smart farming, 

such as data processing from IoT sensors, real-

time analytics, and decision-making processes. 

 

 The Module Scheduler is a critical component 

of the Fog Controller Node (FCN), responsible 

for the efficient coordination of real-time smart 

farming application modules across distributed 

fog nodes (FNs). It dynamically assigns tasks 

based on factors such as urgency, resource 

requirements, and current workload. By closely 

collaborating with the Resource Manager, the 

Module Scheduler ensures the optimal use of 

computational resources, including CPU, 

memory, and storage. This coordination allows 

for efficient task execution and streamlined 

resource utilization within the fog layer. The 

Module Scheduler employs advanced algorithms 

to prioritize tasks according to their urgency and 

importance, ensuring that critical operations, 

such as immediate data processing or real-time 

decision-making, are handled promptly. For 

example, in a smart farming scenario where 

real-time monitoring of soil moisture levels is 

essential, the Module Scheduler can prioritize 

tasks related to data collection from IoT sensors 

and immediate analysis to determine irrigation 

needs. By dynamically adjusting task 

assignments in response to changing conditions, 

such as varying moisture levels or weather 

forecasts, the Module Scheduler enhances the 

overall efficiency and responsiveness of the 

smart farming system. This leads to improved 

performance, reduced latency, and optimized 

resource utilization, ultimately supporting the 

complex and dynamic needs of modern 

agriculture. This approach not only ensures that 

high-priority tasks receive immediate attention 

but also helps prevent resource overloading on 

any single node, promoting a balanced 

distribution of tasks throughout the fog layer. 

 

 The Load Balancer in the Fog Controller Node 

(FCN) plays a pivotal role in managing 

computational workloads within smart farming 

applications. It ensures the efficient operation of 

the fog computing infrastructure by dynamically 

distributing tasks and modules across the 

network of fog nodes. By continuously 

monitoring resource utilization and processing 

capabilities, the Load Balancer aims to achieve a 

balanced distribution of workloads, preventing 

any single fog node from becoming overloaded 

or underutilized. This dynamic task distribution 

is critical in a smart farming environment, where 

diverse and resource-intensive processes, such 

as real-time sensor data analysis, predictive 

modeling for crop management, and automated 

control of irrigation systems, are constantly at 

play. For instance, if one fog node is processing 
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Input: Set of Fog nodes F, Set of Fog Controller Nodes FCN 
Output: Clustered Fog nodes 

 

function clusterFogNodes(F, FCN): 
    clusteredFogNodes = List<Pair<FogNode, FCN>> 

    for each fogNode in F: 

        closestControllerNodes = 
findClosestControllerNodes(fogNode, FCN) 

        for each (controllerNode, delay) in closestControllerNodes: 

            if delay < DelayThreshold: 
                clusteredFogNodes.add(Pair(fogNode, 

controllerNode)) 

            end if 
        end for 

    end for 
    return clusteredFogNodes 

end function 

data from soil moisture sensors while another is 

managing drone surveillance footage, the Load 

Balancer will ensure that neither node becomes 

a bottleneck. By redistributing tasks as needed, 

the Load Balancer maintains optimal 

performance across the entire fog layer, 

enhancing the reliability and efficiency of the 

smart farming system. This not only improves 

overall system responsiveness but also ensures 

that all fog nodes are utilized effectively, 

maximizing the computational resources 

available and supporting the seamless operation 

of various agricultural processes. 

 

 The Energy Monitor within the Fog Controller 

Node (FCN) is dedicated to optimizing and 

managing the energy consumption of fog nodes 

(FNs) in the fog layer. It continuously monitors 

the energy profiles of individual FNs, 

considering factors such as power consumption, 

activity levels, and resource utilization. By 

comprehensively understanding the current state 

of each fog node, the Energy Monitor can make 

informed decisions about how to optimize 

energy usage without compromising operational 

efficiency. This is particularly important in 

smart farming environments, where energy 

efficiency is crucial for sustainability and cost-

effectiveness. For example, if certain fog nodes 

are underutilized or consuming more power than 

necessary, the Energy Monitor can redistribute 

tasks or adjust processing loads to balance 

energy consumption across the network. This 

proactive management helps to reduce overall 

energy usage, extending the lifespan of fog 

nodes and reducing operational costs. By 

ensuring that energy consumption is aligned 

with the actual workload and operational 

demands, the Energy Monitor enhances the 

sustainability of the smart farming system, 

supporting continuous and efficient agricultural 

operations while minimizing environmental 

impact. 

B. Proposed algorithms 

In the proposed fog-based smart farming network 
designed for IoT applications in greenhouses, the set 
                    (1) represents fog nodes allocated 

for IoT sensors. Each fog node    has finite resources 
including CPU, RAM, and bandwidth, denoted as 
                             . (2) 

Algorithm 1    Fog Node Clustering Algorithm 

 

 

 

 

 

 

 

 

 

 

 

Smart farming applications (A) are composed of 
modules (M) essential for data processing, given by 

   = {  } (3) 

 The IoT application (A) can be comprehensively 
defined as 

   = {  ,    }  (4) 

where     describes the data dependency 
relationships among these modules, with 

   = {      ,        } (5)  

Each module    must meet specific resource 
requirements                                  (6) 
and adhere to a deadline      ≤              (7) for 
timely processing on fog nodes within their capacity: 

      ≤            ,        (8) 

Furthermore, consider   as the set of energy profiles 

within a fog cluster. For each fog node    in   let       

represent the specific energy profile associated with   . 
The energy efficiency     of a fog node    is determined 

by calculating the ratio of its computational output     to 

its energy consumption    :   

    = 
   

   
         

To optimize the energy usage of fog nodes in fog-based 

smart farming, we introduce a binary variable   . This 

variable indicates whether a fog node    is underutilized 

(    =1) or not (    =0). 

When     =1, indicating that the fog node    is 

underutilized, the FCN initiates adaptive power 

management strategies. These strategies involve 

adjusting the power state of the fog node by transitioning 
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     Input: 
   M: Set of application modules 

   F: Set of fog nodes 

   E: Energy profiles for each fog node 
   FCN: Set of Fog Controlled Nodes 

 

Output: 
   Rsp: Selected fog node 

   OE: Optimized energy usage 

 
function enhancedModulePlacementWithClustering(M, F, E, FCN): 

    clusteredFogNodes = clusterFogNodes(F, FCN) 

    Rsp = null 
 

    for each fogNode in F: 

        if not isOverloaded(fogNode) and capacity(fogNode) >= 
requirement(M): 

            delay = calculateDelay(fogNode) 

            arrangeDelaysInAscendingOrder() 
            Rsp = fogNode 

            updateCapacityAndEnergyUsage(fogNode) 

            break 
 

    if Rsp == null: 

        if isUrgentSmartFarmingApplication(M): 
            while true: 

                fogNode = selectRandomFogNode(F) 
                if hasNoUrgentTasks(fogNode): 

                    Rsp = fogNode 

                    break 
        else: 

            Rsp = Cloud 

 
    OE = optimizeEnergyEfficiency(F, E) 

    return Rsp, OE 

 
end function 

Input: 

    F: Set of all fog nodes 
    E: Energy profiles for each fog node 

Output: 

    OE: Optimized energy usage for each fog node 
 

function optimizeEnergyEfficiency(F, E): 

    for each fogNode in F: 
        energyProfile = E[fogNode]    

        currentEnergyEfficiency = 

calculateEnergyEfficiency(energyProfile)          
identifyEnergySavingOpportunities(fogNode)   

    for each fogNode in F: 

        if isUnderutilized(fogNode):   
            activateLowPowerMode(fogNode)   

         else if isNearingMaxCapacity(fogNode): 

           redistributeModules(fogNode)                                                                                                   
        continuouslyMonitorEnergyConsumption(fogNode)  

    return getOptimizedEnergyUsage(F)   

 
end function 

it to a low-power mode or deactivating specific 

components. Consequently, the fog node    reduces the 

allocation of computational resources, including CPU, 

memory, and other processing units. This approach aligns 

the fog node's resource utilization with the current 

workload, ensuring efficient allocation and minimizing 

unnecessary power consumption. 

 

           Algorithm 2   Energy Optimization for Fog Nodes  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When     =0, indicating that the fog node    is not 

underutilized, the FCN enhances energy efficiency by 

activating a low-power mode. This involves measures 

such as temporarily putting certain components of the 

node into a sleep state. These strategies ensure that even 

when the fog node is operational, it consumes minimal 

energy, contributing to overall energy efficiency.   

Our proposed Algorithm 2 effectively manages and 

optimizes the energy consumption of fog nodes. It 

dynamically adjusts power states and resource allocations 

based on real-time workloads and energy profiles, 

ensuring optimal energy usage in the fog layer of a smart 

farming ecosystem. 

4. PERFORMANCE EVALUATION 

In this section, we validate the proposed scheme by 
implementing it in an IoT-based smart greenhouse 
application. Additionally, the algorithm was simulated 
using iFogSim to evaluate its performance with real data. 

A. Implementation of IoT-based Smart Greenhouse 

System 

Our scenario involves a greenhouse equipped with 
harvesting robots and a network of distributed sensors and 
actuators. These sensors continuously monitor specific 
environmental conditions such as temperature, humidity, 
and soil pH, and report these measurements to the fog 
nodes. This setup ensures efficient management and 
timely response to varying conditions within the 

greenhouse. The collected data is classified based on 
latency sensitivity, allowing for prioritized processing and 
optimal resource utilization. 

           Algorithm 3   Module Placement with Clustering and 

Optimized Energy Efficiency for Fog-based smart farming 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 1: Regular Monitoring of Soil Moisture 
Levels 

   If the analysis of soil moisture levels indicates optimal 

conditions for plant growth, the system can reduce the 

frequency of data collection and analysis. This 

adjustment conserves energy and processing resources. 

The aggregated soil moisture data is then transmitted to 

the fog layer's database for record-keeping and future 

reference, demonstrating the system's ability to adapt to 

changing conditions and optimize resource usage. 

Case 2: Immediate Response to Critical Irrigation 

Needs 

   When soil moisture analysis reveals drought conditions 

in certain areas of the greenhouse, the system prioritizes 

this data and sends it immediately to the fog scheduler. 

The fog computing algorithm classifies this task as high 

priority, ensuring that the irrigation system is activated 

promptly to address the water deficiency. The response is 

executed at the fog node with the lowest possible latency, 
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mitigating potential damage to the plants and showcasing 

the system's capability to handle critical tasks efficiently. 

Case 3: Monitoring and Response to Agricultural 

Robot Alerts 

   When an agricultural robot detects signs of pest 

infestation or plant disease, such as Bayoud disease, the 

data is classified as latency-sensitive. If the robot 

identifies a critical issue that could spread quickly, the 

information is processed with high priority at the nearest 

fog node to ensure rapid intervention. For less critical 

issues, the data is still processed promptly but with 

medium priority, allowing the management system to 

schedule appropriate interventions without delay. This 

demonstrates the system's flexibility and responsiveness 

to varying levels of urgency in smart farming 

applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  IoT-based monitoring system prototype  

B. Result 

The evaluation was conducted using the iFogSim 

simulator to assess the effectiveness of our proposed 

module placement algorithm. iFogSim is designed to 

simulate IoT, edge, fog, and cloud computing 

environments. 

The evaluation of this implementation was carried out on 

a Dell computer featuring an Intel Core i5 processor and 

8 GB of memory, running Windows 10 64-bit. During 

the simulation, specific parameters, including CPU 

length, RAM, and bandwidth for each node in the fog 

layer, were configured as detailed in TABLE II. 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Main components of IoT-based monitoring system 

TABLE II.  CONFIGURATION DETAILS OF IFOGSIM SETUP  

Parameter Cloud Proxy FCN Fog 

node 

Senso

r 

CPU length (MIPS) 44800 23,800 23800 18500 500 
RAM (MB) 40000 6000  6000  4000 1000 

Uplink bandwidth 

(MB) 
100 10000 

10000 10000 10000 

Download 

bandwidth (MB) 
10000 10000  

10000 10000      - 

Level     0     1     2     3      4 

Rate/MIPS   0.01     0     0     0       0 

Busy power (Watt) 16*103 107.33 107.33 107.33 87.53 

Idle power (watt) 16*83.25 83.43  83.43 83.43 83.43 

      

 

The computational capabilities of the devices were 

categorized into five distinct levels. The first level 

includes various sensors and actuators used in smart 

greenhouse. The second level consists of Fog Nodes 

(FNs), followed by the third level, which comprises Fog 

Controller Nodes (FCNs). The fourth level includes the 

proxy that connects the cloud to the FCNs, and the fifth 

level is dedicated to the cloud server. 

In the first step of this experimental test, we configured 

the simulator with one Fog Controller Node, three fog 

nodes, and nine IoT sensors. The results were averaged 

over 400 iterations. Figures 3-5 illustrate the outcomes 

for key performance metrics, including average latency, 

average network usage, and energy consumption. 

 

 

 

 

 

 

 

Figure 3.  Average latency 

 

 

 

 

 

 

 

 

Figure 4.  Average network usage 
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Figure 5.  Average energy consumption 

The simulation results demonstrate that our proposed 
module placement algorithm for fog-based smart farming 
applications significantly outperforms the Agrifog [18] 
and FCMSF [19] models across key performance metrics, 
including latency, network usage, and energy 
consumption. This improvement is largely due to the 
intelligent placement of modules within appropriate fog 
nodes, as coordinated by fog controller nodes (FCNs). 

The proposed algorithm for module placement 
optimization in fog-based smart farming applications 
ensures that fog nodes are selected based on the priority 
and latency sensitivity of each module. For example, 
when soil moisture analysis reveals optimal conditions for 
plant growth, the data collection and analysis frequency is 
reduced to conserve energy and processing resources. 
This normal module is strategically placed to minimize 
power consumption while adhering to deadline 
constraints. In contrast, if the soil moisture analysis 
detects drought conditions, the system prioritizes this data 
for immediate processing to activate the irrigation system 
promptly. This critical module, requiring immediate 
action, is allocated to the fog node with the lowest 
possible latency to minimize potential damage to the 
plants. Similarly, when an agricultural robot detects signs 
of pest infestation or plant disease, the data is classified as 
latency-sensitive. For critical issues that could spread 
quickly, the information is processed with high priority at 
the nearest fog node to ensure rapid intervention, such as 
activating pesticide systems. This priority-driven 
approach ensures that each module is assigned to the most 
suitable fog node, thereby enhancing overall system 
efficiency and performance. 

C. Changing the number of the IoT devices  

In this step of the test, we configured the simulator 
with one Fog Controller Node, three fog nodes, and nine 
IoT sensors. We systematically expanded the topology 
configuration by incorporating additional connected 
sensors, aiming to evaluate their impact on latency, 
energy consumption, and network usage. The number of 
connected sensors was increased to 12, 16, 20, 24, 28, 32, 
and 36. Figures 4-7 illustrate the outcomes for key 

performance metrics, including average latency, average 
network usage, and energy consumption. 

 

 

 

 

 

 

 

 

Figure 6.  Latency 

 

 

 

 

 

 

 

 

Figure 7.  Network usage 

 

 

 

 

 

 

 

 

Figure 8.  Energy consumption 

Figures 6-8 provide a comprehensive comparison of 
latency, network usage, and energy consumption among 
the cloud, fog, and our proposed approach. With an 
increase in the number of connected sensors in smart 
farms, latency significantly rises in the cloud due to the 
considerable distance data must traverse for processing. In 
fog-only architectures like CMFC and Agrifog, the 
absence of Fog Controller Nodes (FCNs) leads to 
overloaded Fog Nodes and increased delay, negatively 
impacting latency-sensitive applications. Our proposed 
approach mitigates this by distributing the computational 
load effectively. 
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In terms of network usage, our algorithm places 
modules near sensors on fog nodes, reducing network 
congestion. The fog-only approach without FCNs pushes 
modules to use cloud resources, further congesting the 
network and impacting response times. The proposed 
FCNs manage load distribution within the fog layer, 
significantly reducing network usage and intelligently 
routing data to the cloud only when necessary. 

Regarding energy consumption, our model outperforms 
the FCMSF and Agrifog models by optimizing module 
placement based on urgency and energy needs. Critical 
modules are processed with minimal latency, moderate 
modules balance energy consumption and latency, and 
normal modules focus on minimizing energy consumption 
while meeting deadlines. This prioritization reduces 
overall energy consumption, enhancing the efficiency and 
sustainability of the smart farming system. 

 

D. Changing the number of the fog  

 
In this phase of the experimental test, the number of 

agricultural IoT devices was set to 18, and the number of 
fog nodes was varied between 8, 10, 12, and 14. This 
variation allowed for an assessment of how different 
numbers of fog nodes impact the system's performance 
metrics, such as latency, energy consumption, and 
network usage. 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Latency 

as shown in Figures 7-9, the simulation results indicate 
that as the number of fog nodes increases, there is a 
significant reduction in latency, energy consumption, and 
network usage across all models. This improvement is due 
to the enhanced ability to select the most suitable fog 
nodes for module placement, which minimizes the need to 
offload tasks to the cloud. Consequently, this leads to 
lower latency and decreased energy consumption and 
network bandwidth. Moreover, the increased number of 

fog nodes allows for better distribution of computational 
load, ensuring more efficient resource utilization in fog-
based smart farming ecosystem. 

 

 

 

 

 

 

 

 

 

Figure 10.  Network usage 

 

 

 

 

 

 

 

 

 

Figure 11.  Energy consumption 

 

5. CONCLUSION 

   This paper presents and evaluates three distinct 

approaches: FCMSF, Agrifog, and our proposed scheme, 

using simulations conducted with iFogSim. The 

performance evaluation focuses on overall latency, 

network usage, and energy consumption. Our proposed 

algorithm improves latency and optimizes network 

utilization by executing modules close to the data source 

while accounting for resource limitations within the fog 

layer. This enhancement is achieved through the creation 

of clusters, each containing multiple fog nodes led by a 

Fog Control Node. Future work will explore adaptive 

algorithms for dynamic module placement, utilizing 

machine learning techniques to enhance decision-making 

based on real-time changes in the smart farming 

environment. 
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