
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 14, No.1 (Jun-24)

http://dx.doi.org/10.12785/ijcds/1501126

Classifying Critical Software Components Using Multi-Level
Formalization and Knowledge Graphs

D.Jeya Mala1 and A.Pradeep Reynold2

1School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India
2Department of Safety, ASET College of Science and Technology, Chennai, India

Received 3 May 2023, Revised 21 Jun. 2024, Accepted 22 Jun. 2024, Published 26 Jun. 2024

Abstract: When developing a high-quality software solution for industrial strength real-time systems, the critical software components
are indispensable. For such kinds of systems, compromising the testing time due to market competition, delivery due date and critical
time lines, will lead to hazardous impact to the cost and life of the end users. In particular, this overlooking of such crucial components
will usually happen due to non-identification of them during the analysis and design phases of the software. These critical components
are the ones that have high level of functionality and dependability when compared to other components. If these components are
left untested during testing, the recurrent effects will lead to catastrophic failure. Therefore, it is necessary to devise a mechanism for
discovering such critical components using information gathered early in the early phases of the development process. In this research
work, the application of artificial intelligence techniques and mathematical formal specifications during analysis and design phases of
the software development process are recommended. The identification of such critical components at the early phases of software
development helps in devising rigorous testing process to evaluate such components to avoid field failure. By applying knowledge
graphs that depict the software’s design embedded with design metrics calculated using Object Constraint Language (OCL) based formal
specification in order to classify the criticality level of the components is the major contribution of this proposed work. To achieve this,
a rigorous methodology of multi-level formalization to generate a more precise system specification along with graph embedding using
dependability and complexity metrics associated with each node in the knowledge graph is applied. Finally, a rigorous result analysis is
conducted to ensure that, the proposed work provides promising results for industrial strength applications.
Keywords: Knowledge Graphs, Critical Components, Formal Specification, Object Constraint Language (OCL), Unified Modeling
Language (UML), Metrics, Complexity, Criticality Index

1. Introduction
Generally, any system comprises of a number of compo-
nents. And so, a component is one of the system’s con-
stituent parts. It may be a component of single functionality
and may consist of other components too [1]. Critical
software components are those components of a software
system that may be responsible for major functionalities,
errors, costs, and rework [2]. They are essential for the
software system’s global operation. Consequently, these
components must be examined, created, and tested more
carefully and completely than other components.
The objectives of this proposed work are threefold:
• To reduce the cost of failure due to non-identification

of critical software components by means of applying
formal specifications during the early design phase of
SDLC

• To apply knowledge graphs to represent the real-time
software system with metric values to identify the
critical components

• To provide a novel mathematical and OCL specifi-

cation based representation for metrics calculation to
classify the components before actual development.

A. Motivation
Particularly, the real time systems that belong to health-

care, military and financial domains are highly complex in
nature and have their impact on cost and life of the people
who use them or being a part of them. Even a small flaw
in detected these systems during field operation, will lead
to hazardous impact to life and cost associated with them.
As these systems have more number of critical components
when compared to other software, if any of these critical
components are left undetected, inadvertent effects will
happen which will lead to erroneous operations, system
failure, high cost and resource wastage etc.
In reality, these components include the majority of flaws
uncovered during prerelease testing, and an even smaller
number of components contain the majority of flaws dis-
covered during operation [3].
This emphasizes the necessity for formal approaches to
identify essential software components early in the software
development process. According to Peter Bishop et al. [4],

E-mail address: jeyamala.d@vit.ac.in, pradeepreynold.a@gmail.com https:// journal.uob.edu.bh/

http://dx.doi.org/10.12785/ijcds/1501126
https://journal.uob.edu.bh/

1788 D.Jeya Mala et al.: Classifying Critical Software Components Using Multi-Level Formalization and Knowledge Graphs

the methodologies used to identify key software compo-
nents are design documentation, expert opinions, and source
code analysis.
When software is developed from specifications in a math-
ematically rigorous manner, development labor can be
repurposed for program testing [5]. Therefore, in order
to minimize design flaws and implementation failures, it
is necessary to verify the important software components
using a formal specification language such as OCL.
Cortelessa et al. [6] have presented a risk analysis technique
for identifying essential components early in the software
development process. The methodology uses design doc-
uments developed using UML to estimate the chance of
failure due to performance issues and combines it with an
estimate of severity of the failure derived from the Func-
tional Failure Analysis (FFA). Moreover, essential software
components would require rigorous analysis, design, and
implementation, as well as additional testing efforts.
In a similar manner, the important software components
are defined as those that have a greater impact on the
overall quality of the product and hence require precise
analysis, design, implementation, and testing. Ignorance of
problematic or fault-prone components during the analysis
and design phase results in costly, time-consuming, and
substandard development and testing efforts. Diagnosis,
for instance, is the key component of Patient Monitoring
System. Incorrect analysis of this component results in
erroneous diagnosis and a subpar medical report. Note that
the criticality of the components estimated in this paper is
not appropriate for hard real-time systems.
In this research work, a novel critical components identi-
fication framework is proposed. In which, the UML Meta
model namely the class model is first defined using the OCL
specification. It is followed by the creation of knowledge
graph with each node represents the objects (subsystems,
components, and classes etc.) in the Meta model and each
node is being assigned with a metric value namely criticality
index. This criticality index metric value is calculated using
selected design complexity criteria with severity analysis on
each component. This helps to identify the critical software
components from the software to be developed.
B. Background

1) Application of UML Class Model
This proposed work focuses on the development of
formal representation of the components to identify the
criticality measure of each of them. In order to generate
the OCL based formal representation, we need a static
model and not the dynamic model that represents the
behavioral aspects of the system [7]. As the behavioral
models such as sequence, collaboration and activity
diagrams provide the implementation guidelines for the
developers to proceed in their software development
and not the internal structure of the components and
their relationships [8].
The objective here is to identify the criticality measure
of each component based on the core functionality and
dependability measures. To get this value, it is essential

to depict the internal structure of each component and
its relationship with other components. Hence, this
research work uses UML class model which is the
Meta model of the system to be developed.
The system’s static structure can be represented via
the most prevalent UML class model, which depicts
classes, interfaces, collaborations, and relationships
in a component-based system. However, a software
system developed solely on the basis of class diagrams
will be flawed. In addition, the informal definitions and
unclear specifications of the majority of the available
metrics [9] result in varying interpretations and a
consequent lack of adoption.
To instill confidence in the final result, it is necessary to
examine and certify all important software components
using standard techniques and procedures. Modeling
and describing design constraints are required to en-
hance the logic of software architectures and hence
their quality [10]. OCL permits the explicit description
of extra constraints on the objects and entities of a
UML model. It is founded on mathematical set theory
and predicate logic, as well as other concepts [11].

2) Application of OO Metrics
Complexity of software design is directly proportional
to failure rate [12] In addition; object-oriented design
metrics play a crucial role as early predictors of prob-
lematic classes and components in an object-oriented
system [13]. Thus, software complexity measures can
be used to determine which software components are
crucial, since the component with the highest complex-
ity value is likely to be vital. Therefore, the complexity
metric values of the components are the essential data
required to assess the component’s criticality.
Our proposed methodology would correlate the overall
metric value of a component, which is derived from the
selected design complexity and dependability metric
values, to the component’s criticality index. In addi-
tion, software engineers can make software develop-
ment decisions and priorities the testing process, defect
identification, debugging, and testing efforts if they are
aware of the criticality of components early on.

3) Application of Formal Specification
Habib [14] has identified that, the application of formal
methods provide improved efficiency especially in the
field of avionics during the design and verification
processes. The formal methods help in providing the
formal languages, compilers and adapted methods to
establish the non-functional formal verification tech-
niques.

4) Application of Knowledge Graphs (KG)
In recent years, the knowledge graphs gained their
attention in representing real world problems as they
can be embedded with semantics which are used for
further analysis. Especially in Machine Learning, these
constructs are playing a crucial role.
Knowledge Graphs (KG) are graphs which represent a

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 14, No.1, 1787-1806 (Jun-24) 1789

network of real-world entities. In the knowledge graph,
entity descriptions are linked together. A knowledge
graph is a knowledge base that uses graph structure
and topology to display and integrate data. Compared
to other forms of databases, this enables more effective
querying and information retrieval. Additionally, by
spotting connections and patterns in the data that
would not be immediately obvious from individual data
points, knowledge graphs can be utilized to develop
fresh insights. In a variety of situations, this can
enhance decision-making and spur creativity. [15], [16]
In this research work, a novel methodology that com-
bines Knowledge Graphs embedded with metric values
of each object or component in the system. These
metric values are calculated using formal specifications
represented using OCL (Object Constraint Language)
in order to identify whether a component or object is
critical or not.
Further, the paper is divided into sections listed below:
Section 2 gives the literature survey with a summary of
the major contributions of the proposed work, Section
3 provides a summary of the proposed work with
our recommended methodology. The fourth section
includes a case study on E-Commerce application. The
conclusion is presented in Section 5.

2. Related Work and Contributions of
the Proposed Work
A. Literature Review

In this paper, a methodology that uses design documents,
formal specifications, and design metrics to determine the
critical software components is proposed. In this section,
some of the research works relevant to the proposed work
are summarized.
A number of authors [6], [17], [18] have developed a
reliability-based risk assessment technique for determining
which parts of software are indispensable. The researchers
employed design complexity measurements to pinpoint po-
tential points of failure.
To collect data on UML models, Goseva-Popstojanova et al.
[17] used the commercial modeling software Rational Rose
Real Time (RoseRT). In their method, a dynamic heuristic
risk factor is obtained for each component and connector
in software architecture, and the severity is evaluated using
a hazard analysis. Next, a Markov model is built to get the
potential dangers in different circumstances. The scenarios’
risk factors are used to estimate the use case’s risk factor
and the system’s risk factor as a whole.
Mitrabinda Ray and Durga Prasad Mohapatra [18] have
proposed a reliability- based risk assessment method at the
design level using the sequence and state chart diagram
of UML. They have identified high risk components after
taking into account the risks involved with the different
stages of a component, the importance of the messages
involved, and the risks to the business as a whole.
Some of the classification techniques that have been eval-
uated by Ebert Christof [2] for use in determining which

parts of software are most important for fault prediction.
Based on their findings, the fuzzy classification method is
the most effective for identifying crucial components. And
they concluded that the top 20% of the most important
software parts can be easily identified using Pareto analysis
(the ”80:20 rule”).
To help pinpoint the most important pieces of code in a
modular application, Suri. P K., and Kumar Sandeep [19]
developed a simulator (CBS). Component Execution Graph
(CEG) was used to portray the CBS as a network in their
proposed study. Each execution link in this graph has a
weight that represents the component’s final destination.
The total ’w[i]’ of all execution linkages along a path is
its weight, ’W’. Each heavily weighted execution path is
presumed to be the Crucial Path with all components in that
path being assumed to be critical software components.
Using a statistical and machine learning technique, Mal-
hotra Ruchika and Jain Ankita [20] tested a methodology
to evaluate the components’ criticality level, CK metrics
and QMOOD metrics are applied. In this study, they put
19 object-oriented metrics for class error prediction to the
test. Out of the 19 metrics they examined, they found that
only a subset of the metrics as reliable indicators of failure
propensity.
Janes, A., et al. [21], have used a real-time telecommuni-
cation software system as an example, to demonstrate that
early lifecycle data can be utilized to identify the most error
prone class components. To evaluate the relative merits of
the CK measure and the Lines of Code (LOC) metric, they
have used statistical models. Their research demonstrated
that inter-class communication-based measures, such as
RFC and CBO, are more accurate indicators of critical
software components than the LOC metric. In addition, their
research revealed that the zero-inflated negative binomial
regression model is found to be better than other applicable
statistical models.
A number of software measures, including CBO, CTA,
CTM, RFC, WMC, DIT, NOC, NOAO, NOOM, NOA,
and NOO, were shown to be useful in locating the critical
components by Shatnawi et al. [22].
Metrics used in Object-Oriented design have been analysed
by Zhou et al. [23] to determine their ability to foretell bugs
of varying degrees of severity. The NASA data set used
to generate their findings is freely available to the public.
The authors’ results indicated that, CBO, WMC, RFC, and
LCOM metrics used to predict the critical level of the
components and these metrics are able to find the severity
level too. They also claimed that the design metrics are
more accurate predictors of class defects with low severity
than of those with high severity.
Quality classification models for defect prediction in tradi-
tional and highly iterative, or agile, software development
processes for both initial delivery and for subsequent,
sequential releases are made possible by the CK and
QMOOD OO class metrics suites, as shown by Olague
et al. [24]. Class quality can be reliably predicted using
CK-WMC, CK-RFC, QMOOD-CIS, and QMOOD-NOM
(error-proneness). Studies have demonstrated that CK mea-

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

1790 D.Jeya Mala et al.: Classifying Critical Software Components Using Multi-Level Formalization and Knowledge Graphs

surements are more accurate and dependable predictors of
fault-proneness than MOOD or QMOOD metrics.
Object-oriented design metrics have been validated on a
commercial Java system by Emam et al. [25] to find bugs
in the code early on. Their research confirms that indicators
like OCAEC, OCMEC, OCMIC, and DIT all play an
important role in identifying potentially faulty groups. They
also demonstrated that the DIT and EC measures were
significantly linked to the forecasting of fault prone classes.
Fault prediction in open-source software like the web
browser and e-mail client Mozilla was the subject of an
empirical investigation by Gyimo’ thy et al. [26]. They have
looked at the CK metrics suite and LOC to inform their
strategy. According to the results of their research, the CBO
metric is the most effective in determining which classes
are likely to have problems. They use logical and linear
regression methods as well as machine learning techniques
like decision trees and neural networks.
Khoshgoftaar et al. [27] did a case study analysis in order
to classify error-prone software components. In their study,
regression trees and a set of specified rules were used to
segregate crucial error prone components.
According to Basili et al. [28], CK metrics seem to be
helpful in predicting class fault-proneness early in the
development process. The metrics such as WMC, DIT, RFC,
NOC, LCOM, and CBO were found to be the suitable
measures to find the error-prone components.
By building a Z language based meta-model, Meryem
Lamrani et al. [29] proposed a method for defining software
design quality measurements like the CK metric suite.
The formalisation effort of object-oriented design metric
definitions is described by Baroni et al. [30], and some
examples are presented, all of which are performed using
UML meta-model with OCL. Using OCL, they constructed
FLAME, an informal library meant to facilitate the extrac-
tion of metrics (OCL). Definitions of object-oriented design
metrics are codified in their method using OCL. In order
to verify the correctness of the UML and OCL models,
Gogolla et al. [31] used the USE tool.
Zhou et.al [32] have applied Knowledge Graphs to simulate
the warehouses in a supply chain so that complex informa-
tion of warehouse resources have been easily summarized
and provided as semantics in the graph. They have derived
a unified resource allocation method so that, the decision
making can be done in an optimized manner. Their model
has provided an integration of semantic information in the
workshops which are represented as nodes in the knowledge
graph representation. Then they have applied a machine
learning algorithm to find the resource information in order
to update the graph dynamically.
Ramzy et.al [33] have proposed semantic integration of
customer requests using Knowledge Graphs. They matched
the actual transition time and the planned transition time
using them as the mechanism.
Deng et. al [34], have applied Knowledge Graphs in supply
chain management. They have proposed an event logic
based knowledge graph to represent the events to maintain
high accuracy.

The literature study shows that, there has been considerable
work done on identifying critical software components
and there is no work provided for critical component’s
identification though formal specification. And the current
research works are focusing on applying Knowledge Graphs
for complex problems that involve multiple parameters in
decision making.
B. Major Contributions of the Proposed Research

Since the availability of architectural based models, for-
mal specifications and design metrics, the criticality of the
software components can be quantified. A precise program
design requires the semantics of the software model. Since
the well-formedness rules that are not expressible in the
UML meta-model, class diagrams are expressed using OCL.
Abreu et al. [35] study shows that formal definition is
used to avoid subjectivity of measurement and thus allows
replicability. This motivates the introduction of new concept
which addresses the need for formal specification in failure
prone components identification.
In this paper, we show that the OCL specification and de-
pendability and complexity metrics are enough to estimate
the criticality of the component. It is not our intent to
detect design flaws, reducing component’s complexity using
redesign, perform risk analysis or define the consequences
of critical software components failure in this paper. Instead,
our proposed work ranks the components based on their
severity which is estimated through formal specification and
design complexity metrics. This early knowledge can aid
the developers and testers in distributing efforts needed to
produce quality software product.
The key contribution of the methodology presented here
to the previous literature is to consider both the system’s
object model and its design metrics when determining
which software components are mission-critical. In some
cases, such as with safety-sensitive or complicated soft real-
time systems, a purely criticality-based approach to identi-
fying critical software components may not be adequate.
Therefore, the potentially critical parts must be tested using
either new testing tools or formal specifications and severity
analysis.
To the best of our knowledge, critical software components
identification based on OCL design documents and design
metrics are not been found in the existing research works.
The existing works have predicted failure prone compo-
nents at the early stage software development based on
risk assessment, simulation based techniques and design
metrics etc., without addressing the elements for the cross
verification of the identified critical software components
using formal specification.
The work flow and the interaction of users with the entire
system are given in Figure 1 using use case diagram.
The criticality analysis of the research is given in the Figure
2.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 14, No.1, 1787-1806 (Jun-24) 1791

Figure 1. Use case diagram of the proposed work

Figure 2. Use Case Diagram – Criticality Analysis

3. Proposed Methodology for the Crit-
ical Software Components Identification
In the proposed methodology given in Figure 3, the criti-
cality estimates for UML class diagram-modeled software
components are proposed. Using OCL specification, the
UML class model is formalized and an analysis of the re-
sulting object model is conducted. Following formalization,
criticality estimation and severity analysis are performed
on the object model, to locate the most likely sources of
failure. It is possible to gauge the component’s seriousness
by looking at its normalized complexity.
This paper demonstrates that estimating the component’s

Figure 3. Methodology for critical software components identifica-
tion

criticality is possible using only the OCL specification and
complexity measurements. In Figure 3, the stages of the
proposed methodology and the process for locating the
critical software components are given.
A. OCL Transformation

Defining the software model’s semantics is crucial to
achieving a clear design for the software. An OCL expres-
sion is typically used to describe it. Class diagrams benefit
from OCL expressions, a specification language used to
specify formal expressions in the diagrams drawn using
UML [36]]. This language helps to improve the diagrams’
semantic qualities, precision, documentation, and readabil-
ity. Because of its declarative and typed nature, OCL does
not make use of variables or state. Additionally, expression
validity can be checked when modelling. It permits the
expression of invariants, preconditions, and post-conditions,
three types of constraints on components of object-oriented
models.
Using OCL syntax, the UML meta model can be trans-
formed into an object model. The UML object diagrams’
OCL notation is used to label objects and their relationships,
which is why this transformation was developed. To probe

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

1792 D.Jeya Mala et al.: Classifying Critical Software Components Using Multi-Level Formalization and Knowledge Graphs

internal organization, object diagrams are drawn. A UML
object diagram may be the best choice when attempting to
describe intricate inter-class interactions. Whenever there
are operations and Invariants in the system under study that
cannot be represented graphically using the class diagram,
an OCL specification is utilized to represent them. In a
class, each operation has its own set of requirements, such
as initial and final states. Object-oriented modelling tools
have the following parts.

i. Class hierarchy - It represents the relationship be-
tween the classes, methods invocation between classes,
properties or attributes of a class being shared with
other classes given in terms of association, inheritance,
aggregation and composition.

ii. Class -The basic component of UML meta-model. It
provides a common template that can be used to create
a collection of similar objects. The definition of a
class in UML diagram includes the specification of
its attributes as the properties and responsibilities as
operations.

iii. Attributes – It represents the property of a class and
has a variable name and a data type.

iv. Operations - Class definition includes the specification
for operations. They represent the functionalities of
the objects. OCL specification is used to represent
operations and invariants related to the system under
study. Invariants indicate the structure of a system. Each
operation in a class is associated with a specification
such as pre and post conditions. Pre and post conditions
denote the system behavior. An operation can have
parameters or non-parameters and can have return types
or no return type.

v. Associations - The structural relationship between two
classes can be described using association. An associ-
ation indicates one class is related to another class by
means of either 1 to 1 or 1 to many or many to many
kind of relationship.

vi. Role Names - When a class is associated with more
than two classes it plays different roles in each class.
Thus there is a need to assign a role to each class in
an association. They are used in navigation expression
of OCL. All role names must be distinct.

vii. Generalization - Generalization relationship is applied
when one class property is based upon another class
property. It indicates inheritance relationship between
two or more classes.

B. Proposed Algorithm
The proposed algorithm to achieve the goals of the

proposed work is given below:

Step 1: Formalize UML Meta model using OCL
specification, build an object diagram as a Knowledge
Graph (KG)

Object-oriented analysis and design relies on the
UML class diagrams. It serves as an example of the
system’s structural view. To illustrate the system’s classes,
their properties, operations, and relationships (such as
inheritance, aggregation, and association), a UML class
diagram is drawn. The static nature of the system is also
emphasized. However, the complexity of integrated OCL
expressions should be considered when evaluating UML
models because it has a direct impact on the complexity
required to manage the UML models, for example, for
verification, validation, and code generation [37].
Following is a representation of the backbone of the UML
meta-model, as extracted and reconstructed as a knowledge
graph with each node holds the criticality metric value
associated with that node. It is given in Figure 4. Step

Figure 4. UML Meta Model

2: Select a set of complexity metrics M = m1, m2. . .
which contribute to identify critical components in a
system

When compared to hardware failure, it is much more
difficult to predict a software component failure.
Components prone to failure must be quantified in
order to determine their severity. The complexity of
software is a reflection of how challenging it is to learn
and use [37], [38]. Moreover, the more complicated
a module is, the more likely it is to have bugs [39].
As a result, design metrics are essential in creating a
cost-effective software product, as the design phase is a
significant cost driver in the software development life
cycle.
The proposed methodology relies on four sets of object-
oriented design complexity metrics. The complexity and
reliability of a programme are both affected by these
metrics, which are also used to determine the criticality of
individual components during the design phase. Chidamber
and Kemerer (CK) [40] proposed three of these measures
(DIT, NOC, WMC), Bansiya et al [41], [42] proposed two
(DCC, and DAM), and Fan-In and Fan-Out metrics are used
to find the dependability between classes. The information
flow metric is calculated as (Fan-In * Fan-Out)2 [43].

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 14, No.1, 1787-1806 (Jun-24) 1793

Zimmermann et al. [44] mentioned NOCL, NOI, NOF,
NOP, as complexity measures that are associated with field
failures and dependencies.
The NSMF metric is suitable for Java-based applications.
There is no foolproof way to determine the coupling metric
using class diagrams alone. Whenever a method in one
class calls a method in another class, it means there is a
coupling between them [44].
In the subsequent discussions, the metrics chosen for the
proposed study are defined together with their appropriate
OCL syntax along with mathematical notation that will
be utilized to extract complexity and dependability
measurements from the object diagram.

• NOCL metric (Number of Classes) Definition 1:
It indicates the number of classes in the given
software system which includes the current class and
sub classes.

Goal: NOC metric measures the complexity
of the component. Higher the number of classes
defined; larger is the complexity of the class.
Let a system contains classes C=Ci. Cn and
each class contains subclasses S=Sj. . . .Sn then the
number of classes is given as NOCL. This NOCL
finds the total number of sub classes along with its
contained class. So, it will have the total number of
sub classes + 1. Thus, NOCL is given by,

• NOI metric (Number of Interfaces) Definition 2:
It provides the number of interfaces.

Goal: NOI metric is a complexity measure. If
the number of interfaces defined are more, the
complexity of the class will also be higher. Let a
class Ci contains interfaces F=Fj. . . Fn then number
of interfaces in a class is given by,

• NOF metric (Number of Fields) Definition 3:
This metric count all attributes defined in a class.

Goal: NOF metric is a complexity metric. If
the number of attributes defined in a class is higher,
the criticality of the class will also be higher.
Let a system contains classes C=Ci. Cn and
each class contains attributes A=A1. . . An, then the
number of attributes in a class is given by,

• WMC metric (Weighted method per class)
Definition 4:
It gives the number of methods defined in a class.

Goal: This is used to measure the complexity
of a class, since the larger the number of methods
defined, the higher is the criticality of it.
Let a system contains classes C=Ci. . . Cn and each
class contains methods M=M1.Mn, then number
of method per class is given by,

• NOP metric(Number of Parameters) Definition 5:
This metric count the total number of parameters
defined in each methods of a given class.

Goal: It is the measure of class complexity.
If the number of parameters for a given class is high,
it in turn maximizes the complexity of the class.
Let a system contains classes C=Ci. . . ,Cn and each
class contains methods M=Mj. .. Mn, and each
method contains attributes A=Ak. . . An then the
number of parameters in a class is given by,

• DOI metric (Depth of Inheritance) Definition 6:
This metric is used to determine the extent to which a
certain class is in the system of inherited properties.
Accordingly, the class name to which we navigate

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

1794 D.Jeya Mala et al.: Classifying Critical Software Components Using Multi-Level Formalization and Knowledge Graphs

allows us to derive a tree to represent navigation. The
name of the class itself represents the node’s starting
point.
Each expression always begins with the self variable,
and then each path results in a new branch in which
the classes visited are individual nodes. Roles which
are used for navigation, link nodes together.
The number of predecessors of node i is counted to
determine the depth of the inheritance tree if there
exists a path from node i to node j and node j is the
successor of node i.
Goal: DOI metric is the measure of dependability
and complexity of the class. If the depth of inheri-
tance tree is higher, the class dependability will also
be higher.

• NOC metric (Number of Dependent classes as
Children) Definition 7:
Using this metric, we can determine how many other
classes a target class has as children.

The OCL technique of association specification
can be used to infer this. The number of classes that
come after Ci can be used as a rough estimate.

Goal: It is a Measure of Class Complexity and
Depdenability. The complexity and dependability of
a class increases as its dependent children classes
grow larger. Let us consider a class Ci has ‘n’
immediate successor classes and is represented as
ImmSucc=j. . . .n.

• DAM metric (Data Access Metric) Definition 8:
The ratio of private (protected) attributes to all
attributes specified in the class constitutes this
measure.

Goal: DAM metric is the complexity metric. Higher
the call by the defined function to other function in

a system more is the dependability of the given class.

If this metric value is lesser, it indicates that
the amount of dependability will be lesser. In that
case, the class is more of a self resilient class.
Let a system contains classes C=Ci. Cn and
each class contains attributes A=Aj. . . An which
includes private attributes Ap=P1. . . .Pn, then the
ratio of private (protected) attribute to the total
number of attribute is given by,

• NSMF metric (Number of Static Methods and
Fields) Definition 9:

It provides the number of static methods and
fields in a class.

Goal: NSMF metric is the dependability metric.
Higher the call by the defined function to other
function in a system more is the dependability of the
given class.
Let us consider a class that contains static methods
SM= SM1. . . SMn and static fields SF= SF1. . . .SFn,
then total number static methods and fields in a class
is given by,

• DCC metric (Direct Class Coupling) Definition 10:

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 14, No.1, 1787-1806 (Jun-24) 1795

It is a measure of how many other classes are
referred to by a given class.
In addition, it’s a tally of the classes to which the
class belongs but which are not related by inheritance.

The class itself, an instance of the class, or a
variable associated with the class are all valid points
of reference for a class.
The OCL technique of association specification can
be used to infer this.

Goal: DCC metric is both dependency and
complexity metrics.

Excessive coupling increases sensitivity to changes
in other parts of the design and makes a module
more critical.
Let us consider a class Ci associated with other
classes Cj=Cj. . . Cn then class coupling is given by,

• Fan-In metric Definition 11:
It is used to measure the number of classes referring
the given class.

Goal: Fan-In metric is dependability metric. Higher
the call to function in class by other functions, more
is the dependability and complexity of the given class.

Let us consider ‘a’ is the number of class components
that calls A, ‘b’ is the number of parameters passed
to A from component higher in the hierarchy, ‘c’
is the number of parameters passed to A from
component lower in the hierarchy, and ‘d’ is the
number of elements read by component A. Then the
value of Fan-In of component ‘A’ is a+b+c+d. If
number of classes R=Rj. . . Rn references a Class Ci
then summation of all these measures have to be
calculated to provide the Fan-In metric value of Ci.

• Fan-Out metric Definition 12:
It is used to find the number of classes referenced by

a class.
Goal: Fan out metric is the dependability metric.
Higher the call by the defined function to other
function in a system, more is the dependability of
the given class. Let us consider ‘e’ is the number
of components called by ‘A’, ‘f’ is the number of
arguments passed from ‘A’ to component higher in
the hierarchy, ‘g’ is the number of arguments passed
from ‘A’ to component lower in the hierarchy and ‘h’
is the number of data elements return by ‘A’. Then
Fan-Out of component ‘A’ is calculated as e+f+g+h.
If the class Ci refers other classes R=Rj. . . Rn , then
this metric is given as below:

Step 3: Estimate each design metric (m € M) value
for each component in object model and analyze its
criticality

The UML object diagram investigates both the objects
in a system and their connections to one another. Object
models given in OCL, a formal specification language,
can be mined for design complexity metrics that can
be used to assess a component’s criticality. This allows
for a holistic understanding of the module’s complexity,
from which error-prone components can be measured and
analyzed. By estimating the design complexity metre for
each component in an OO system, we are able to derive the
criticality index for the entire system. When the criticality
analysis is complete, the data is captured in a table with
columns for the component list and the complexity metrics
associated with each component. It is calculated using
formulas given in eqn. (1) to (4) as given below:

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

1796 D.Jeya Mala et al.: Classifying Critical Software Components Using Multi-Level Formalization and Knowledge Graphs

In f ormationFlow(Ci) = (FANIN ∗ FANOUT) (1)

ComplexityMetric1 = NOCL + NOI + NOF + NOM + NOP + NS MF (2)

ComplexityMetric2 = DOI + DAM + DCC (3)

CriticalityIndex = ComplexityMetric1 +ComplexityMetric2 + In f ormationFlow
(4)

Step 4: Conduct severity analysis. Identify high risk
components

The most crucial component poses the most risk in the
event of a failure. The recommended methodology we’ve
laid out helps pinpoint a group of high-threat parts that
need extra attention during the design, development, and
testing phases. It is possible to determine the relative
severity of each component in a component-based system
by considering the two criteria below:

• Analyze component’s criticality which is estimated in
step 3.

• Estimate normalized complexity of each component
using the formula given in eqn. (5).

Normalized complexity of Ci is given by,

NormalizedComplexity(Ci) =
Criticalityindex(Ci) − Min(Criticalityindex(Ci))

Max(Criticalityindex(Ci)) − Min(Criticalityindex(Ci))
(5)

Where, i=1 to number of components in the given software.
The normalization enables us to assign severity ranking for
the components, that is, to identify fault-prone software
components from real time software systems.
The severity classification suggested in [45], such as critical,
major, and minor, to rank the severity of components is
applied in this research work. The output of severity
analysis is documented in a tabular column containing a
list of components, their normalized complexity, and their
severity ranking.

Step 5: Methodology verification using USE tool
In this case, meta-models are generated with the help of
USE [46], an information system specification system. It
is useful for analyzing requirements. It borrows concepts
from the Object Constraint Language (OCL) and a subset
of the Unified Modeling Language (UML). In the early
phases of software development, the USE tool’s [31]
primary goal is to animate, test, and validate a UML class
diagram and its OCL constraints. From the OCL spec,
a ’.use’ file will be generated. This file will be run and
checked by the USE tool.

4. Results and Discussion
The case study is implemented in real time and the results
derived are given below along with the discussion on the
outcome received.
A. Case Study Implementation

In this section, an E-Commerce application is taken as
a case study to show the critical component identification

process. The objective of E-Commerce application is
to facilitate online interactions between customers and
vendors. The case study mostly includes information on
order, inventory, billing, shopping, authorization, product
and customer information, etc. In these types of systems,
a relatively small number of faulty components, as a
result of bad specification, analysis, or design, may cause
application failure or alter the behaviour of the entire
system. In addition, testing components such as inventory,
order, and product has a high failure rate and is the most
challenging. Obviously, the severity of a failed critical
component depends on the nature of the programme.
Generally speaking, an E-Commerce application enables a
customer to browse among the many catalogues provided
by the seller, choose the required item, and place an
order. The order is validated by making sure the client
has a contract with the supplier and one or more bank
accounts through which payments can be made. If the
goods are in stock, the supplier confirms their availability
and ships them. Following the receipt of the package, the
customer replies with an acknowledgment. An electronic
transfer of money from the customer’s bank account to
the supplier’s bank account completes the processing of
the invoice [47]. The methodology described in Section
3 is gradually applied to the system under study in the
remaining paragraphs of this section. Then, based on our
findings, we come to a conclusion.

Step 1: Formalize UML meta-model using OCL
specification, build an object diagram Od

Figure 5 is a class diagram of the E-Commerce application.
The system is broken down into thirty-four components as
indicated in table II. In Figure 5, we see the E-Commerce
application class diagram revised as an object diagram.
The transition was motivated by the fact that OCL
specifications give a more detailed and accurate description
of the semantics of the UML model. Object diagrams can
also be used to visually verify that an OCL standard has
been met. When investigating the framework of a model,
object diagrams are a useful tool. In an object diagram,
each individual component is depicted by a square box, and
the connections between them are shown by connecting
lines.
Step 1.1: Convert the object model into a Knowledge
Graph (KG) to represent each object as a vertex or node
in the graph and the relationship between them as links or
edges. Each node is then associated with a weight value
calculated from steps 2 to 5

Step 2: Select a set of complexity metrics M =
m1, m2. . . which contribute to filter risky component
in a system
Suites of design complexity metrics used for the proposed
methodology are enumerated in Table I. The WMC, DAM,
NOCL, NOI, NOP, NOF, and NSFM metrics address
the component’s design complexity, whereas the DOI,

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 14, No.1, 1787-1806 (Jun-24) 1797

Figure 5. UML class diagram as Knowledge graph for E-Commerce
application

NOC, DCC, Fan-in, and Fan-out metrics examine the
component’s dependability in an object-oriented system.
Both complexity and dependability metrics are adequate
measures of the components’ criticality. The criticality of
a component Ci in an object-oriented system is determined
by eqn. (6).

CriticallityIndex(Ci) = TotalComplexityValue(Ci) + Totaldependabilityvalue(Ci)
(6)

TABLE I. Design complexity metrics selected for the proposed
methodology

Metric Suite Design Metrics
(Class Level)

Measure Of

Complexity Dependability

CK Metric
Depth of Inheri-
tance (DOI)
Number of Chil-
dren (NOC)
Weighted method
per class (WMC)

X

QMOOD Direct Class
Computing
(DCC)

X

Data Access Met-
ric (DAM)

X

Hendry et al. Fan-In X
Fan-Out X

Zimmer mann et al. [ref]

Number of
classes (NOC)

X

Number of Inter-
faces (NOI)

X

Number of fields
(NOF)

X

Numbef of Pa-
rameters (NOP)

X

Number Static
Fields and
Methods (NSFM)

X

Step 3: Estimate each metric (m € M) value for each
component in object model and analyse its criticality
Using the section 3-discussed metric definitions, OCL
syntax, and mathematical notations, the complexity and
dependability metric values for each component in the
E-Commerce case study are extracted from the object
diagram. Sample is given in Figure 6.
Figure 6 depicts the OCL expression for E-Commerce
application components such as person, user, guest,
customer, and supplier. It indicates that the class PERSON
has two immediate successors, namely GUEST and USER.
Therefore, its NOC and NOCL are 2 and 3. Similarly,
the class USER has two direct descendants, namely
CUSTOMER and SUPPLIER. NOC of class USER is
therefore 1 and NOLC equals 3. Because classes like
GUEST, CUSTOMER, and SUPPLIER have no direct
successors, their NOC is 0 and their NOCL is 1. Class

Figure 6. Example of DOI, NOC, NOCL metrics extraction

CUSTOMER and SUPPLIER have two forerunners, namely
USER and PERSON, as described by the preceding OCL
expression, hence their DOI is 2.
Class USER and GUEST are descended from PERSON,
hence their DOI is 1. The PERSON root class does not
have a predecessor, hence its DOI is 0. Sample is given in
Figure 7.
According to the above OCL syntax, the variable sid is
incremented with each call to the sid function in class
stock. The attribute sid is therefore considered a static
variable. Also, static variables can only be utilized by
static methods; hence, method sid() and attribute sid are
deemed static. So NSMF of class stock equals 2.
The syntax above defines seven characteristics for the class
stock, including sid, opstock, date, receivedqty, issueqty,
minimumqty, and itemcost. Therefore, its NOA is 7 In
addition, two of the nine attributes defined for the class
stock are private, including minqty and opstock. Therefore,
its DAM of class stock is 4.5. Its representation is given in
Figure 8.
The above OCL expression shows that reorderlevel is the

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

1798 D.Jeya Mala et al.: Classifying Critical Software Components Using Multi-Level Formalization and Knowledge Graphs

Figure 7. Example of NOF, NOP, NSFM metrics extraction

Figure 8. Example of NOI metric extraction

abstract class and contains final variable reorderqty hence,
class reorderlevel is considered to be an interface which is
implemented by class stock. Hence NOI of class stock is
1. An example is given in Figure 9.
The above OCL expression illustrates the relationship
between the class stock and the classes salesdept and sales
by defining the role names checkstock and updatestock
with approvesales being used between sales and salesdept.
This means the DCC value of stock class is 2+2+1=5.
And the DCC for sales and saledept is also 5.
Now, the information passing through class component
(Ci) is defined by the formula given in eqn. (7).

Figure 9. Example of DCC, Fan-In and Fan-out metrics extraction

In f ormationFlow(Ci) = (FANIN ∗ FANOUT)2 (7)

OCL syntax and Figure 9 suggests that, for the class
component ‘stock’, the classes ‘salesdept’ and ‘sales’ are
both the calling components and thus a =2. The two
descendant classes namely, salesdept and sales, each passes
a single argument named ‘pid’ to stock class and thus b=2.
Consequently, the total number of parameters passed from
‘stock’ class to the above components is also 1 for each
and so, c=2. The two referenced classes each take in one
of two parameters, such as availqty or pid. So, we have
d=2. Hence Class stock has a Fan-In metric value of 8.
To compute Fan-Out, as discussed in section 3, the value
e=2 refers to the fact that the classes stock and sales are
both referenced by the salesdept class. Class Stock receives
the parameter name ‘pid’ with a a value of f=2, because it
is higher in the hierarchy than class Sales, which receives
the parameter name ‘pid’ with a value of g=2, since it
is lower in the hierarchy. Here, the value of h=2 that
indicates the return of two separate pieces of information
(in this case, ‘pid’ and ‘salesstatus’), and as there are two
such items, the Fan-Out metric value is 8.
Class ‘stock’ is related with ‘salesdepartment’ and sales.
For this reason, we know that a=e=1. As there is only one
component higher in the hierarchy that receives the ‘pid’
argument, the value of b=f=1. When separating ‘sales’

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 14, No.1, 1787-1806 (Jun-24) 1799

by product category, only one piece of information is
requested and returned (ie, pid). Therefore, d=h=1 is the
correct value. As a result, the class component ‘sales’, has
the fan-in and fan-out metric values as 5.
Consistent with what has been said thus far, we provide
predictions about the value of the information flow measure
across the given case study in Table II. The values of the
extracted metrics and the relative criticality index of each
component of the E-Commerce case study are summarized
in Table II, which was generated in light of the preceding
discussion.
According to the data in the Table II, class ’sales’ has
a criticality index of 27225 in the E-Commerce case
study, followed by Payment at 17424. The next part
provides an explanation of how this criticality index value
can be utilized to determine the normalized complexity.
The criticality index of the E-Commerce case study’s
components is depicted in a bar chart shown in Figure 10.
In Table II, it is observed that, the NOI metric is 0
for almost all the components as this particular case
study didn’t have more number of interfaces associated
with each component. It is purely based on the design
decisions taken by the analyst and designer of the software.
Also, it is observed that, the Fan-out metric of some of
the components are higher which indicates that, these
components invoke other components’ functionality based
on the need of their service.

Step 4: Conduct severity analysis to identify high
risk components
Using normalized criticality analysis, the severity of
the component can be determined. In the aforementioned
illustration, we first identify the related components of each
class and then aggregate their metric value. A system’s
normalized complexity is calculated using the formula
given in eqn. (5). Normalized complexity values for the
preceding example are given in Table III.
When evaluating the probable consequences of a failure,
the components were classified as either ”critical,” ”major,”
or ”minor” [45].
In this work, we use a linear scale to rate the severity
of potential failures; more specifically, we assume that
components with a normalized complexity greater than or
equal to 0.9 are to be treated as mission-critical. If the
normalized complexity of a component is less than 0.9 but
greater than or equal to 0.19 (approx. 0.2), then we classify
it as having a major level of severity and the severity of a
component will be deemed low or minor if its normalized
complexity is less than 0.19. The normalized complexity
is calculated as per eqn. (5) given in section 3.
From Figures 11 and 12, we can identify high-risk
components of the given system. This information
is valuable for managing error prone components
identification and prioritization. By identifying components
that are crucial for software development can help
distribution of effort by prioritizing the components based
on their criticality index value.

Step 5: Methodology verification using USE tool
The object diagram of a given system can be realized
using OCL specification with USE tool. The next section
deals with the OCL syntax described in the USE tool

Step 5.1: Define class, associations and constraint
using OCL expression and derive class diagram in USE
Tool:
The OCL specification contains definitions for each
class. The definition of a class includes the pattern of its
attributes and operations. The following is the sample OCL
specification of class Order of E-Commerce application.

– Class definition

model e-commerce

class order

attributes

orderid:Integer

productId: Integer

qty:Integer

date: String

deliveryterms: String

paymentterms: String

deliverymode:String

status: String

povalue: Real

operations

orderid(orderid:Integer)

orderinfo(orderid:Integer)

end

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

1800 D.Jeya Mala et al.: Classifying Critical Software Components Using Multi-Level Formalization and Knowledge Graphs

TABLE II. Criticality estimation for components of E-Commerce Case Study

S.No Component
Name

DOI NOC WMC NOCL NOF NOP NOI NSFM DAM DCC Information flow
(Fan − in ∗ Fan − out)2

Criticality
Index

1 Admin 0 0 4 1 2 5 0 0 0 4 64 80
2 User 1 2 2 3 4 1 0 2 0 0 576 591
3 Customer 2 0 1 1 2 1 0 0 0 8 256 271
4 Supplier 2 0 1 1 2 1 0 0 0 5 81 93
5 Bank 0 0 2 1 5 1 0 2 0 1 1296 1308
6 Order 0 2 2 3 10 1 0 2 0 0 17424 17448
7 Purchase

Order
1 0 1 1 2 2 0 0 0 2 1764 1773

8 Salesorder 1 0 1 1 2 2 0 0 0 2 4900 4909
9 Transaction 0 4 1 5 3 0 0 2 0 0 64 79
10 Purchase 1 0 2 1 7 2 0 2 0 5 12100 12120
11 Sales 1 0 2 1 9 4 0 2 0 5 27225 27245
12 Purchasereturn 1 0 2 1 7 3 0 0 0 1 5184 5199
13 Salesreturn 1 0 2 1 7 3 0 0 0 1 5184 5199
14 Stock 0 0 2 1 9 1 1 2 4.5 5 12100 12125.5
15 Shipment 0 0 1 1 6 2 0 2 0 2 12100 12114
16 Confirmshipment 0 0 2 1 4 5 0 0 0 2 3969 3983
17 Product 0 0 2 1 7 1 0 2 0 2 8100 8115
18 Payment 0 2 2 3 8 2 0 2 0 0 17424 17443
19 Invoice 1 0 1 1 4 2 0 2 0 2 2401 2414
20 Receipt 1 0 1 1 4 2 0 2 0 2 900 913
21 Report 0 5 1 6 1 0 0 2 0 0 16 31
22 Purchasereport 1 0 1 1 4 1 0 0 0 1 2025 2034
23 Salesreport 1 0 1 1 4 1 0 0 0 1 2025 2034
24 Purchaseorderreport 1 0 1 1 6 1 0 0 0 1 5929 5940
25 Stockreport 1 0 1 1 3 1 0 0 0 1 2304 2312
26 Salesorderreport 1 0 1 1 6 1 0 0 0 1 5184 5195
27 Department 0 2 1 3 2 1 0 2 0 0 9 20
28 Purchasedept 1 0 2 1 3 2 0 0 0 6 576 591
29 Salesdept 1 0 3 1 3 3 0 0 0 6 576 593
30 Accessbank 0 0 2 1 7 3 0 0 0 6 14641 14660
31 Guest 1 0 1 1 0 0 0 0 0 0 0 3
32 Person 0 2 1 3 4 0 0 0 0 0 16 26
33 Reorderlevel 0 0 1 1 2 1 0 0 0 1 0 6
34 Employee 0 0 2 1 7 1 0 2 0 1 0 14

Figure 10. Criticality analysis of E-Commerce application

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 14, No.1, 1787-1806 (Jun-24) 1801

TABLE III. Normalized complexity estimation and severity estima-
tion for components of E-Commerce Application

Components Normalized
Complexity

Severity Severity value
in Numeric
Form

Admin 0.002827 Minor 0
User 0.021584 Minor 0
Customer 0.009838 Minor 0
Supplier 0.003304 Minor 0
Bank 0.047904 Minor 0
Order 0.640371 Major 4
Purchase Order 0.064973 Minor 0
Salesorder 0.18009 Minor 0
Transaction 0.00279 Minor 0
Purchase 0.444791 Major 4
Sales 1 Critical 5
Purchasereturn 0.190735 Major 4
Salesreturn 0.190735 Major 4
Stock 0.444993 Major 4
Shipment 0.444571 Major 4
Confirmshipment 0.146098 Minor 0
Product 0.297775 Major 4
Payment 0.640188 Major 4
Invoice 0.088503 Minor 0
Receipt 0.033404 Minor 0
Report 0.001028 Minor 0
Purchasereport 0.074554 Minor 0
Salesreport 0.074554 Minor 0
Purchaseorderreport 0.217936 Major 4
Stockreport 0.084759 Minor 0
Salesorderreport 0.190588 Major 4
Department 0.000624 Minor 0
Purchasedept 0.021584 Minor 0
Salesdept 0.021658 Minor 0
Accessbank 0.53803 Major 4
Guest 0 Minor 0
Person 0.000844 Minor 0
Reorderlevel 0.00011 Minor 0
Employee 0.000404 Minor 0

Figure 11. Normalized Criticality Analysis of E-Commerce applica-
tion

Step 5.2: Representation of dependency between
components:

The relation between the components can be represented
using OCL as follows.

– Associations

association getorderid between
order[*]
salesorder[*]
end

Step 5.3: Representation of invariants and operations:

Invariants indicate the system structure whereas pre

Figure 12. Visualization in terms of normalized Complexity

and post conditions denote the system behavior.
- Constraints

contextorder

invinv1 : sel f .qty > 0

invinvr2 : order.allInstances− > isUnique(orderid)

-Pre and post condition

contextorder :: orderid(orderid : Integer)

pre : orderId > 0

post : sel f .orderId = sel f .orderId@pre + orderId

Step 5.4: Derive the object diagram: The following USE
command is used to derive object diagram in Figure 13
based on the OCL syntax discussed in section 3
!insert (customer,order) into orderproduct
!insert(customer,product) into viewproduct

Figure 13. Object diagram of E-Commerce application

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

1802 D.Jeya Mala et al.: Classifying Critical Software Components Using Multi-Level Formalization and Knowledge Graphs

B. Result Analysis
1) Artificial Fault Injection based Critical Components

Identification- Ground Truth Verification
Here, for ground truth verification, this work has
applied an artificial fault injection based analysis on
the extracted components. The affected components list
due to faults injected in the components is collected
using dynamic code execution based analysis. The
impact level of each of the components is calculated
and is given in the range of 1 to 10. It is shown in
Table IV. Based on dynamic execution of all the mu-
tated/ artificially fault injected components the impact
value of each component over the other components is
calculated and is shown in Table IV. The higher impact
components are extracted and showcased in figure 14.
From the Tables III and IV, it is inferred that, the
proposed formal specification based metric analysis
and the artificial fault injection based dynamic code
execution based impact analysis are yielding the same
result of the components’ criticality level. Hence, it
is concluded that, even before coding, the proposed
technique can be applied to extract all the critical
components from the given software so that, they can
be rigorously tested during the testing phase.

TABLE IV. Components with affected components list with the
invoked method

Pid Component
Name

Component Affected Impact
Level

Ecom Admin Purchase, Stock, Sales, Purchase Order 4
Ecom User Supplier, Salesdept 2
Ecom Customer Product, Purchase, Purchase Return, Order, Trans-

action, Sales Order
6

Ecom Supplier User, Product, Bank, Delivery, Shipment, Pur-
chasedept

6

Ecom Bank Salesdept, Supplier, Transaction 3
Ecom Order Purchaseorder, Salesorder, Product, Purchase, Pur-

chase Return, Transaction, Shipment
8

Ecom Purchase Order Product, Order, Purchasedept, stock, admin, pur-
chaseorderreport

6

Ecom Salesorder Order, Customer, admin, Product, Purchase, Pur-
chase Return, Order, Transaction, Sales Order,
Bank, Transaction, Receipt

10

Ecom Transaction Sales, Purchase, Salesreturn, Purchasereturn 3
Ecom Purchase Stock, Purchasedept, Purchaseorderreport, receipt,

transaction, admin, Purchase Return, Order, Trans-
action

8

Ecom Sales Stock, transaction, Salesdept, Invoice, Salesreport,
Order, Customer, admin, Product, Purchase, Pur-
chase Return, Order, Transaction, Salesorder, Bank,
Transaction, Receipt

10

Ecom Purchasereturn Stock, Purchase, Transaction, Order,, Purchaseorder,
Bank, Transaction, Receipt

8

Ecom Salesreturn Stock, Sales, Order, Transaction, Salesorder, Bank,
Transaction, Receipt

8

Ecom Stock Product, Sales, Purchase, Salesreturn, Purchasere-
turn, stockreport, salesorder, purchaseorderorder

8

Ecom Shipment Customer, Supplier, Purchaseorder, Salesorder,
Salesreturn, Purchasereturn, Invoice, Receipt

8

Ecom Confirmshipment Supplier 1
Ecom Product Stock, Customer, Purchaseorder, Salesorder 4
Ecom Payment Customer, Supplier, Receipt, Sales, Purchase,

Salesreturn, Purchasereturn, Product, Order, Trans-
action, Salesorder

9

Ecom Invoice Sales, Receipt 2
Ecom Receipt Purchase, Invoice 2
Ecom Report Stockreport, Salesreport, Purchaseorderreport 3
Ecom Purchasereport Purchase, Report 1
Ecom Salesreport Sales, Stock, Report 1
Ecom Purchaseorderreport Purchase, Stock, Purchasereturns, Product, Order,

Transaction, Bank, Report
8

Ecom Stockreport Stock, Report 2
Ecom Salesorderreport Sales, Stock, Salesreturn, Product, Order, Transac-

tion, Bank, Report
8

Ecom Department Purchasedept, Salesdept 2
Ecom Purchasedept Purchaseorder, Supplier 2
Ecom Salesdept Sales, Customer 2
Ecom Accessbank Purchase, Sales, Customer, Purchaseorder, Salesor-

der, Product, Sales, Purchase, Transaction, Admin
8

Ecom Guest User, Person 2
Ecom Person User, Guest, Customer, Supplier 4
Ecom Reorderlevel Stock, Admin 2
Ecom Employee Person, Admin, User 3

Figure 14. Extracted High Impact Components

2) Statistical Analysis - Ground Truth Verification To
examine the correlation between the complexity
metric calculated for each component and the actual
critical software components identified by means of
artificial fault injection based analysis is done using
the statistical analysis. This correlation based analysis
indicates that, the complexity value associated with
each component is correlated with the classification
of the actual critical components. There is a positive
correlation between these two and hence, the proposed
work rightly finds out the critical components from
the given set of components based on the severity
value. The same is plotted in Figure 15. The same is
given in Table V.

TABLE V. Statistical Value based Analysis

Parameter Value
Pearson correlation coefficient (r) 0.8077
P-value 7.744e-9
Covariance 1.9891
Sample size (n) 34
Statistic 7.7502

The ‘r’ value is r = 0.8077 ↑

r = Sxy / SxSy = 1.9891 / (1.259)*(1.956) =
0.8077 p-test

Figure 15. Line Fit Plot on Complexity Value (x) Vs. Component
Classification (y)

stat = 0.8077-0/0.1042 = 7.7502
p = p (x ≤ 7.7502) = 1

p−value = 2∗Min(p, 1− p) = 7.744e−9 = 0.0000000007744

The distribution test is shown in Figures 16(a),(b) and (c).

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 14, No.1, 1787-1806 (Jun-24) 1803

Figure 16. (a), (b), (c) – t-Distribution test for Correlation Analysis

a) H0 Hypothesis
From the p-test conducted on the case study application, it
is observed that the value of p-value is less than α (0.01),
and so, the hypothesis H0 is rejected and hypothesis H1
is accepted. That is, there is a close correlation between
the severity value and the normalized complexity value
calculated.
The correlation analysis of the given case study applica-
tion states that, the difference between the correlation of
the case study and the expected correlation value is bigger
to be considered as statistically significant.

b) p(x≤7.7502) = 1; the p-value is 7.744e-9. It indicates that
there is a low probability of making a type I error : 7.744e-
9 (7.7e-7%). As the p-value is very less, it indicates that,
the hypothesis H1 is strongly supported.

Residual’s Normality
The Shapiro-Wilk Test, with a value of as 0.05, is used to
test the hypothesis of the relationship between the normalised
complexity metric value generated using formal specification
and the severity value calculated using dynamic code execu-
tion based effect analysis.

Figure 17. Residual Histogram

Given the p-value, it is assumed that the distribution of
the residuals follows a normal distribution. The graphs
below demonstrate that we cannot disprove the normalcy
assumption. The residuals’ normality may be a sign of a
bivariate normal distribution. This indicates that the model’s
inference such as confidence intervals, model predictions,
etc. should be accurate given that the assumption is true.
Figures 17 and 18 illustrate it.

Figure 18. Residual QQ- Plot

C. Discussion and Limitations
The above results have indicated that, the proposed work

on the application of Knowledge Graphs and OCL based
formal specification to identify the critical components
from the given software has yielded promising results.
The application of mathematical formal specification will
definitely be an opportunity for the development team to
identify the critical software components early in the SDLC.
This will help them to focus more during the development
as well as testing phases so that, the impact of failure due to
the improper testing of these components will be reduced.
However, it has to be understood that, if the design doc-
uments are not prepared with complete analysis of the
requirements, the accuracy in the identification of critical
components will be reduced as this work heavily depends
on the design documents.
Also, the OCL formal specifications are the key to the major
success of this proposed work. If the OCL specifications
are prepared with less care and omitted some of the crucial
dependability and complexity aspects of the requirements,
the approach may not provide the expected outcome.
Hence, it is advisable to have the Software Requirements
Specification (SRS) must have been prepared with at most
care so that, the proposed work will provide the expected
outcome with high level of accuracy.

5. Conclusion and Future Work
In this research, a novel approach to identify the critical
software components by combining mathematical formal
specification with knowledge graphs representation derived
from UML design documents with design metrics based
analysis is proposed. Here, the criticality of each compo-
nent in the software was analyzed at the early stages of
development through the formal definition of UML design
document utilizing OCL and design metrics encoded in
Knowledge Graphs (KG). Novel and effective approaches
for identifying important software components in a real-
time, component-based system, as well as supplementary
data for severity analysis, are provided by this study. The

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

1804 D.Jeya Mala et al.: Classifying Critical Software Components Using Multi-Level Formalization and Knowledge Graphs

validity and ground truth verification are also done by
conducting statistical analysis with artificial fault injection
based dynamic impact analysis.
Therefore, this paper relies solely on an analytical approach
to identify critical components using formal specification
documents with design metrics. Starting with a UML class
diagram and an OCL-based formal specification, Knowl-
edge Graphs are used to estimate the complexity value
associated with the components. The normalized complexity
value is then used to evaluate the severity of each com-
ponent. This allows for more accurate critical component
prediction and sensitivity analysis, as well as the develop-
ment of a tool for automating the identification of essential
components.
The limitation of this research work is that, it has the
preliminary assumption that, the UML meta model has no
design flaws and is thoroughly validated for its correctness.
As a future research work, the proposed approach will
be automated to create a tool that automatically calculate
metrics based on formal expressions, analyze the findings
for complexity and severity, and automate the formal OCL
representation of design models in accordance with the
UML meta model.

References
[1] I. Terminology, “Ieee standard glossary of software engineering

terminology,” IEEE Std 610.12-1990, pp. 1–84, 1990.

[2] C. Ebert, “Metrics for identifying critical components in software
projects,” in Handbook of Software Engineering and Knowledge
Engineering: Volume I: Fundamentals. World Scientific, 2001,
pp. 401–436.

[3] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system,” IEEE Transactions on
Software engineering, vol. 26, no. 8, pp. 797–814, 2000.

[4] P. Bishop, R. Bloomfield, T. Clement, and S. Guerra, “Software
criticality analysis of cots/soup,” in International Conference on
Computer Safety, Reliability, and Security. Springer, 2002, pp.
198–211.

[5] I. J. Hayes, “Specification directed module testing,” IEEE transac-
tions on Software Engineering, no. 1, pp. 124–133, 1986.

[6] V. Cortellessa, K. Goseva-Popstojanova, K. Appukkutty, A. R.
Guedem, A. Hassan, R. Elnaggar, W. Abdelmoez, and H. H. Ammar,
“Model-based performance risk analysis,” IEEE Transactions on
Software Engineering, vol. 31, no. 1, pp. 3–20, 2005.

[7] S. A. El Hayat, F. Toufik, and M. Bahaj, “Uml/ocl based design
and the transition towards temporal object relational database with
bitemporal data,” Journal of King Saud University-Computer and
Information Sciences, vol. 32, no. 4, pp. 398–407, 2020.

[8] M. Gogolla and T. Stüber, “Metrics for ocl expressions: develop-

ment, realization, and applications for validation,” in Proceedings of
the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems: Companion Proceedings, 2020,
pp. 1–10.

[9] A. L. Baroni and F. Abreu, “An ocl-based formalization of the
moose metric suite,” in Proc. 7th ECOOP Workshop on Quantitative
Approaches in Object-Orietend Software Engineering, 2003.

[10] A. Tang and H. Van Vliet, “Modeling constraints improves software
architecture design reasoning,” in 2009 Joint Working IEEE/IFIP
Conference on Software Architecture & European Conference on
Software Architecture. IEEE, 2009, pp. 253–256.

[11] C. Avila, A. Sarcar, Y. Cheon, and C. Yeep, “Runtime constraint
checking approaches for ocl, a critical comparison,” 2010.

[12] S. Luke, “Failure mode, effects and criticality analysis (fmeca) for
software,” in 5th Fleet Maintenance Symposium, 1995, pp. 731–735.

[13] C. H. Loh and S. P. Lee, “Towards cohesion-based metrics as early
quality indicators of faulty classes and components,” in Proceedings
of International Symposium on Computing, Communication, and
Control (ISCCC 2009), 2009.

[14] A. Brahmi, M.-J. Carolus, D. Delmas, M. H. Essoussi, P. Lacabanne,
V. M. Lamiel, F. Randimbivololona, J. Souyris, and A. O. SAS,
“Industrial use of a safe and efficient formal method based software
engineering process in avionics,” Embedded Real Time Software and
Systems (ERTS 2020), 2020.

[15] Y. Zou and Y. Liu, “The implementation knowledge graph of air
crash data based on neo4j,” in 2020 IEEE 4th Information Tech-
nology, Networking, Electronic and Automation Control Conference
(ITNEC), vol. 1. IEEE, 2020, pp. 1699–1702.

[16] B. Abu-Salih, “Domain-specific knowledge graphs: A survey,” Jour-
nal of Network and Computer Applications, vol. 185, p. 103076,
2021.

[17] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Abdelmoez,
D. E. M. Nassar, H. Ammar, and A. Mili, “Architectural-level risk
analysis using uml,” IEEE transactions on software engineering,
vol. 29, no. 10, pp. 946–960, 2003.

[18] M. Ray and D. P. Mohapatra, “A novel methodology for software
risk assessment at architectural level using uml diagrams,” SETLabs
Briefings, vol. 9, no. 4, pp. 41–60, 2011.

[19] P. Suri and S. Kumar, “Simulator for identifying critical compo-
nents for testing in a component based software system,” IJCSNS
International Journal of Computer Science and Network Security,
vol. 10, no. 6, pp. 250–257, 2010.

[20] R. Malhotra and A. Jain, “Fault prediction using statistical and
machine learning methods for improving software quality,” Journal
of Information Processing Systems, vol. 8, no. 2, pp. 241–262, 2012.

[21] A. Janes, M. Scotto, W. Pedrycz, B. Russo, M. Stefanovic, and

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

Int. J. Com. Dig. Sys. 14, No.1, 1787-1806 (Jun-24) 1805

G. Succi, “Identification of defect-prone classes in telecommunica-
tion software systems using design metrics,” Information sciences,
vol. 176, no. 24, pp. 3711–3734, 2006.

[22] R. Shatnawi and W. Li, “The effectiveness of software metrics in
identifying error-prone classes in post-release software evolution
process,” Journal of systems and software, vol. 81, no. 11, pp. 1868–
1882, 2008.

[23] Y. Zhou and H. Leung, “Empirical analysis of object-oriented
design metrics for predicting high and low severity faults,” IEEE
Transactions on software engineering, vol. 32, no. 10, pp. 771–789,
2006.

[24] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum,
“Empirical validation of three software metrics suites to predict
fault-proneness of object-oriented classes developed using highly
iterative or agile software development processes,” IEEE Transac-
tions on software Engineering, vol. 33, no. 6, pp. 402–419, 2007.

[25] K. El Emam, W. Melo, and J. C. Machado, “The prediction of faulty
classes using object-oriented design metrics,” Journal of systems and
software, vol. 56, no. 1, pp. 63–75, 2001.

[26] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of
object-oriented metrics on open source software for fault predic-
tion,” IEEE Transactions on Software engineering, vol. 31, no. 10,
pp. 897–910, 2005.

[27] T. M. Khoshgoftaar, E. B. Allen, and J. Deng, “Using regression
trees to classify fault-prone software modules,” IEEE Transactions
on reliability, vol. 51, no. 4, pp. 455–462, 2002.

[28] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Transactions on
software engineering, vol. 22, no. 10, pp. 751–761, 1996.

[29] M. Lamrani, Y. Amrani, and Y. Ettouhami, “Formal specification of
software design metrics,” in In Proceedings of the 6th International
Conference on Software Engineering Advances, 2011, pp. 348–355.

[30] A. L. Baroni and F. B. Abreu, “A formal library for aiding
metrics extraction,” in International Workshop on Object-Oriented
Re-Engineering at ECOOP, 2003.

[31] M. Gogolla, J. Bohling, and M. Richters, “Validating uml and
ocl models in use by automatic snapshot generation,” Software &
Systems Modeling, vol. 4, pp. 386–398, 2005.

[32] B. Zhou, J. Bao, J. Li, Y. Lu, T. Liu, and Q. Zhang, “A novel
knowledge graph-based optimization approach for resource alloca-
tion in discrete manufacturing workshops,” Robotics and Computer-
Integrated Manufacturing, vol. 71, p. 102160, 2021.

[33] N. Ramzy, H. Ehm, S. Durst, K. Wibmer, and W. Bick, “Knowgraph-
tt: Knowledge-graph-based transit time matching in semiconductor
supply chains,” INFOCOMMUNICATIONS JOURNAL, vol. 14,
no. 1, pp. 51–58, 2022.

[34] J. Deng, C. Chen, X. Huang, W. Chen, and L. Cheng, “Research
on the construction of event logic knowledge graph of supply
chain management,” Advanced Engineering Informatics, vol. 56, p.
101921, 2023.

[35] F. B. e Abreu and W. Melo, “Evaluating the impact of object-
oriented design on software quality,” in Proceedings of the 3rd
international software metrics symposium. IEEE, 1996, pp. 90–
99.

[36] L. Reynoso, M. Genero, and M. Piattini, “Measuring ocl expres-
sions: a “tracing”-based approach,” Proceedings of QAOOSE, vol.
2003, 2003.

[37] J. Cabot and E. Teniente, “A metric for measuring the complexity of
ocl expressions,” in Model Size Metrics Workshop co-located with
MODELS, vol. 6. Citeseer, 2006, p. 10.

[38] K. Magel, R. M. Kluczny, W. A. Harrison, and A. R. Dekock,
“Applying software complexity metrics to program maintenance,”
1982.

[39] W. W. Eric, “Identify fault-prone software modules in telecommuni-
cations systems,” in Motorola 2006 System, Software and Simulation
Symposium, Chicago, 2006.

[40] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object ori-
ented design,” IEEE Transactions on software engineering, vol. 20,
no. 6, pp. 476–493, 1994.

[41] B. Jagdish and D. Carl, “Automated metrics and object oriented
development,” Dr. Dobb’s Journal December, 1997.

[42] C. C. A. Erika and K. Ochimizu, “Quality prediction model for ob-
ject oriented software using uml metrics,” IEICE Technical Report;
IEICE Tech. Rep., vol. 107, no. 505, pp. 49–54, 2008.

[43] S. Henry and D. Kafura, “Software structure metrics based on
information flow,” IEEE transactions on Software Engineering,
no. 5, pp. 510–518, 1981.

[44] T. Zimmermann, N. Nagappan, L. Williams, K. Herzig, and
R. Premraj, “An empirical study of the factors relating field failures
and dependencies,” in Proceedings of the 4th International Con-
ference on Software Testing, Verification and Validation, 2010, pp.
71–80.

[45] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl,
and M. A. Vouk, “On the value of static analysis for fault detection
in software,” IEEE transactions on software engineering, vol. 32,
no. 4, pp. 240–253, 2006.

[46] U. R. T. Force, “Omg unified modeling language specification, v.
1.3. document ad,” 99-06, Tech. Rep., 1999.

[47] H. Gomaa, “Designing concurrent, distributed, and real-time ap-
plications with uml,” in Proceedings of the 28th international
conference on Software engineering, 2006, pp. 1059–1060.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

1806 D.Jeya Mala et al.: Classifying Critical Software Components Using Multi-Level Formalization and Knowledge Graphs

Dr.D.Jeya Mala is currently working as
ASSOCIATE PROFESSOR SENIOR in the
School of Computer Science and Engineer-
ing (SCOPE), Vellore Institute of Technol-
ogy, Chennai, Tamil Nadu, India. She has
received a design patent from IP, Govern-
ment of India and has published more than
60 research articles. She is a member of
several professional societies such as IEEE,
ACM, Indian Science Congress Association,

Computer Society of India, i-Soft, an invited member of Machine
Intelligence Research Labs etc. She is listed in the Who’s Who
list of SEBASE repository of University College of London, UK
for her research work. Her research interests include Artificial

Intelligence, Software Engineering, Software Test Optimization,
Machine Learning, Cyber Security and Block Chain.

Mr.A.Pradeep Reynold has completed his
Masters in Technology. He has published
more than 10 articles in reputed international
journals, conferences and hook chapters. He
has received several laurels and awards from
various national level bodies. He is a life
member of Quality Council of India (QCI,
Government of India). His research inter-
ests include: Real time complex systems
analysis, Safety assessment, Environmental

Sustainability, Software Engineering and Security.

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/

	Introduction
	Motivation
	Background

	Related Work and Contributions of the Proposed Work
	Literature Review
	Major Contributions of the Proposed Research

	Proposed Methodology for the Critical Software Components Identification
	OCL Transformation
	Proposed Algorithm

	Results and Discussion
	Case Study Implementation
	Result Analysis
	Discussion and Limitations

	Conclusion and Future Work
	References
	Biographies
	Dr.D.Jeya Mala
	Mr.A.Pradeep Reynold

