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Abstract: Missing data is a pervasive challenge in diverse datasets, often resulting from human error, system faults, and respondent 

non-response. Failing to address missing data can lead to inaccurate results during data analysis, as incomplete data sequences 

introduce biases and compromise the distribution of the synthesized data. Over the past decade, deep learning methods, particularly 

Recurrent Neural Network (RNN), have been employed to tackle the problem. This study aims to comprehensively evaluate recent 

RNN methods for missing data imputation, focusing on their strengths and weaknesses to provide a detailed understanding of the 

current landscape. A systematic literature review was conducted on RNN-based data imputation methods, covering research articles 

from 2013 to 2023 identified in the SCOPUS database. Out of 363 relevant studies, 70 were selected as primary articles. The findings 

highlight that Long Short-Term Memory (LSTM) is the most adopted RNN method for data imputation due to its adaptability in 

processing data of varying lengths as compared to Gated Recurrent Units (GRU) and other hybrid methods. Performance metrics 

such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Area Under the Receiver Operating Characteristic Curve 

(AU-ROC), Mean Squared Error (MSE), and Mean Relative Error (MRE) are commonly used to evaluate these models. Future 

development of a more robust RNN-based imputation methods that integrate optimization algorithms, such as Particle Swarm 

Optimization (PSO) and Stochastic Gradient Descent (SGD) will further enhance the imputation accuracy and reliability. 
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1. INTRODUCTION 

Grasping the complexities of data quality presents a 
significant challenge owing to its reliance on specific 
contexts and domains. The definition of data quality often 
revolves around its capability to fulfill user needs and its 
appropriateness for its designated purpose. These criteria 
resonate with established quality management principles 
[1], which underscore the criticality of defining and 
upholding quality standards to meet exacting consumer 
demands. Despite its paramount importance, the 
attainment of high data quality poses a formidable 
challenge due to the diverse quality dimensions of data 
across various applications. 

Data completeness, within the framework of data 
quality dimensions, denotes the quantity of accessible data 
in a given dataset [2], assessed by the ratio of available 
data to total records [3]. An examination of data 
completeness underscores the critical challenge posed by 
missing data, a mainly noteworthy issue in real-world 
datasets, particularly those involving time-series data. 
Time-series models in machine learning are prone to 

encountering missing data owing to a range of factors, 
including human errors during data collection, system 
malfunctions, respondents' refusal to answer specific 
questions, withdrawal from study participation, and the 
inadvertent merging of disparate data sources [4]. 

In time-series machine learning, forecasting and 
classification tasks often experience diminished 
performance due to the influence of missing data within 
the dataset. Therefore, the imperative of addressing 
missing data emerges as a critical consideration—one that 
is frequently underestimated—in the construction of a 
resilient time-series machine learning model [5]. Basic 
approaches like deletion can disturb the chronological 
continuity of the time-series dataset, leading to 
information loss and bias. Conversely, imputation entails 
more intricate procedures aimed at substituting missing 
data to uphold the integrity of the entire sequence [5]. 

Imputation method presents a means to fill in missing 
data within a dataset with the most pertinent value, 
potentially minimizing errors in subsequent time-series 
analyses. Recognizing that imputation has inherent 
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limitations, it necessitates meticulous consideration due to 
the risk of introducing biases and inaccuracies, thereby 
compromising the credibility of data analysis results. The 
selection of an imputation method requires a data-driven 
assessment of factors such as the mechanism of 
missingness, data distribution characteristics, and research 
objectives [6]. 

Conventional approaches to time-series imputation 
using machine learning often rely on feature extraction 
prior to making predictions. However, this approach is 
limited in its ability to fully exploit the valuable 
information inherent in raw time sequence data [5]. An 
example of this challenge can be seen in the complexities 
of implementing imputation with K-Nearest Neighbors 
(KNN). While KNN is a popular method for handling 
missing data, it is susceptible to drawbacks such as 
reduced accuracy and the potential introduction of 
spurious correlations, particularly in scenarios lacking 
genuine correlations [4].  

Furthermore, conventional methods for addressing 
missing data in time-series datasets face substantial 
challenges when confronted with datasets characterized 
by a multitude of features or variables. Li et al. [7] argue 
that conventional imputation method, such as KNN, begin 
to exhibit diminished performance and accuracy in high-
dimensional data scenarios, particularly those involving 
datasets with a substantial number of columns or 
attributes. This emphasizes the necessity for more 
sophisticated methods that can directly harness the 
richness of unprocessed time-series data to improve 
predictive precision and reliability. 

Numerous studies have explored a paradigmatic shift 
that integrates the imputation and prediction (I&P) 
processes within a unified imputation framework using 
Recurrent Neural Network (RNN). This progressive 
approach is exemplified by models such as AJ-RNN and 
LIME-RNN, which strive to concurrently tackle 
imputation and prediction tasks. Nevertheless, it is 
important to note that these methods often disregard 
horizontal correlations present within time-series datasets. 
They primarily focus on the associations between an 
incomplete value and its nearest neighbors [8], 
overlooking the broader interrelationships among various 
variables at the same timestamp. 

This study presents a critical examination of the recent 
landscape of RNN-based imputation methods for missing 
data in time-series datasets. The central focus of this 
evaluation is to illuminate the existing gaps by 
highlighting the strengths demonstrated by recent RNN-
based imputation methods, while also addressing their 
limitations in handling missing data for time-series 
datasets. Through a comprehensive investigation, the 
objective is to provide a detailed understanding of the 
current landscape of RNN-based methods for missing data 
imputation in time-series datasets and contribute insights 
for advancing this field further. 

The paper adopts a structured approach. Section 2 
provides a review of related research to enhance 
comprehension of the field. Section 3 delineates the 
research methodology, offering a detailed overview of the 
study's execution. In Section 4, the empirical findings 
derived from the study are presented. Section 5 
consolidates the research outcomes and suggests potential 
avenues for future exploration. Finally, Section 6 offers a 
robust summary, encapsulating the key insights and 
implications gleaned from the study. 

2. RELATED WORKS 

Liu et al. [9] conducted a rigorous analysis of diverse 
methodologies employed for data imputation within 
healthcare environments. The study meticulously assessed 
how different data features exert a substantial influence on 
the selection and efficacy of the imputation algorithms. 
The effectiveness of imputation method is intricately 
linked to the degree of correlation among variables, 
highlighting the nuanced interplay between data structure 
and imputation performance. Deep learning imputation 
method such as RNN improve the ability to handle 
missing data specifically the imputation accuracy, time 
consumed and the computational cost [10].  

On the other hand, RNNs are susceptible to the 
vanishing gradient problem, a phenomenon that hinders 
its ability to effectively learn long-term dependencies 
during the imputation process. To address this limitation, 
a more advanced method known as the Long Short-Term 
Memory (LSTM) has been adopted in RNN. The LSTM 
method enhances the RNN architecture by incorporating 
memory cells, enabling it to better capture and retain 
sequential information over extended periods, thus 
mitigating the vanishing gradient issue in time-series 
imputation. Cui et al. [11] introduced an innovative 
stacked model that combines bidirectional and 
unidirectional LSTM networks to predict the state of 
network-wide traffic. This hybrid LSTM model markedly 
enhanced prediction accuracy compared to traditional 
recurrent neural networks (RNNs), demonstrating its 
superior capability in capturing complex traffic patterns 
and dependencies. Shen et al. [12] proposed a graph 
attention recurrent neural network (GARNN), an LSTM-
based imputation unit specifically designed for handling 
missing values in spatial-temporal data and outperformed 
other RNN-based imputation method. 

Sun et al. [13] review the performance of deep 
learning imputation methods in comparison to 
conventional machine learning imputation methods such 
as MissForest and Multiple Imputation by Chained 
Equations (MICE). The study concludes that deep 
learning approaches demonstrate superior accuracy for 
imputing data with high proportions of missing values. 
Furthermore, deep learning imputation methods are adept 
at handling both temporal and spatial missing data, 
offering a more robust solution for complex imputation 
tasks. In contrast, conventional imputation methods are 
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preferable for imputation in datasets with small sample 
sizes. 

Kazijevs and Samad [14] conducted a comprehensive 
survey of deep learning approach for imputing missing 
values in time-series data. The study indicates that deep 
learning imputation methods, particularly LSTM, 
significantly enhance imputation performance for time-
series datasets. Despite being more computationally 
demanding than conventional methods, LSTM-based 
imputation offers superior accuracy and robustness, 
making it a valuable tool for handling complex temporal 
data with missing values. 

3. METHODOLOGY 

Following the established methodology for systematic 
literature reviews as outlined by Kitchenham et al. [15], 
this study adopts a rigorous and transparent approach to 
critically evaluate the relevant literature. This 
comprehensive approach involves eight distinct stages, 
each meticulously designed to ensure thoroughness and 
reliability. These stages are summarized and illustrated in 
Fig. 1 below, providing a clear framework for the review 
process. 

 

 

Figure 1.  Framework for review process. 

The initial stage involves formulating research 
questions. These questions serve as the lens through 
which relevant data will be extracted and analyzed from 
the chosen primary studies throughout the review process. 
The subsequent stage revolves around developing a search 
strategy, encompassing two key elements: identifying 
study-related keywords and selecting reputable and 
esteemed research resources, such as journals and 
conference proceedings, to serve as sources for the 
relevant studies. Logical operators will also be employed 
to facilitate the search process.  

The third stage entails establishing criteria for 
inclusion and non-inclusion, ensuring that only pertinent 
studies are selected. The fourth stage entails defining 
criteria for evaluating study quality. By adhering to this 
criterion, it ensures that selected studies have the requisite 

information to address the research question and minimize 
potential biases. 

The fifth stage involves selecting the primary studies, 
initially by examining their titles and abstracts to ascertain 
alignment with the outlined criteria before proceeding to a 
full-text evaluation. The subsequent stage entails 
extracting all essential data, which will then be subjected 
to analysis and synthesis to address all research inquiries. 
The final stage encompasses evaluating all selected 
primary studies against established quality standards. This 
systematic evaluation ensures adherence to predetermined 
standards and assigns dedicated marks to each criterion, 
ultimately leading to an overall quality evaluation for each 
study. 

A. Research Question 

This study provides a comprehensive review and 
evaluation of the adoption of RNN for imputing missing 
data in time-series datasets. The primary objective is to 
analyze and synthesize the effectiveness of RNN in 
addressing the challenges associated with missing data 
imputation. Emphasis is placed on identifying key 
performance metrics that contribute to achieving optimal 
imputation results. This systematic literature review aims 
to bridge existing research gaps by addressing the 
following research questions: 

RQ. 1 How have RNN imputation methods evolved in 
the last decade? 

RQ. 2 What are the most popular variants employed in 
RNN for handling missing data imputation? 

RQ. 3 What performance metrics are utilized for 
evaluating RNN imputation method? 

RQ. 4 What are the advantages and potential 
drawbacks of the RNN imputation method? 

RQ1 explores the emerging trends in the adoption of 
RNNs for imputing missing values, highlighting the 
frequency and prevalence of RNN usage compared to 
other imputation methods. RQ2 examines the 
implementation processes and categorizes the various 
RNN imputation methods employed. RQ3 investigates the 
metrics used to evaluate the performance of RNN 
imputation methods, providing insights into the key 
metrics that are essential for assessing their effectiveness. 
RQ4 focuses on identifying the strengths and limitations 
inherent in RNN methods, offering valuable guidance for 
future research and applications, particularly in the 
context of data imputation using RNNs. 

B. Search Strategy 

The search strategy is developed based on two primary 
components: the identification of relevant keywords and 
the selection of esteemed research resources. The 
selection of classifications and keywords for the search 
process is derived from a thorough examination of 
abstracts and research titles of sample literature deemed 
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pertinent to the research questions. This study employs 
two primary classifications: "missing values" and "RNN" 
which ensure a focused and efficient search, capturing the 
most relevant studies for the review. 

TABLE I.  PRIMARY CLASSIFICATIONS AND ASSOCIATED 

KEYWORDS 

Number Classification Associated Keywords 

PC01 RNN ‘RNN’, ‘recurrent neural network’, 
‘GRU’, ‘Gated Recurrent Unit’, 

‘Long Short-Term Memory’, 

‘LSTM’, ‘time-series’, 
‘sequential.’ 

PC02 Missing data ‘missing data’, ’data missingness’, 

‘missing value’, ‘imputation’ 
‘incomplete’ 

 

Table I provides a detailed categorization of the 
primary classifications used in this study, along with their 
associated keywords. To refine the search strategy, 
keywords related to ‘RNN' are included, acknowledging 
that 'RNN' may not be explicitly mentioned in all research 
titles and abstracts. Recognizing the diverse applications 
of RNN across various studies, a thorough identification 
of specific keywords relevant to missing data is 
conducted. This thorough approach allowed for the 
precise extraction of data from pertinent studies, thereby 
ensuring a comprehensive and focused analysis of the 
literature. 

The decision to utilize the SCOPUS database as the 
primary source for the reviewed articles was based on 
several key considerations. Firstly, SCOPUS is a widely 
recognized database known for its wider journal coverage 
compared to Web of Science [16] that have extensive 
collection of peer-reviewed research articles, ensuring a 
comprehensive and reliable source of information [17]. 
Secondly, articles indexed in SCOPUS are considered to 
meet high-quality standards, having undergone rigorous 
quality assessments. Moreover, SCOPUS offers advanced 
search capabilities, including the use of logical operators 
such as OR and AND, which facilitated the refinement of 
search criteria by the researchers. SCOPUS provides 
robust filtering features that allow for the narrowing down 
of search outcomes according to publication date, further 
enhancing the precision and relevance of the literature 
review. 

C. Inclusion and Exclusion Criteria 

A two-step process was thoroughly employed to 
identify relevant studies from the research database 
outlined in Table II. 

TABLE II.  RESEARCH DATABASE SELECTION 

Number Database  Web Address 

RN01 SCOPUS https://www.scopus.com 

 

The search process encompassed articles published 
between 2013 and 2023. Initially, a comprehensive search 
was conducted using predefined keywords and logical 
operators to ensure the inclusion of all potentially relevant 
articles. Subsequently, the titles and abstracts of these 
articles were meticulously screened and filtered to select 
studies that aligned with this research objectives. In the 
second iteration, full-text articles were reviewed in detail, 
and specific inclusion and exclusion criteria were applied 
to ensure rigorous final selection of studies. This 
methodical approach significantly enhanced the validity 
and reliability of the research findings. 

Inclusion criteria: 

a. The study must have been published exclusively 
between January 1, 2013, and December 31, 2023. 

b. The study's primary objective should revolve 
around resolving the problem of missing data within a 
dataset. 

c. The proposed RNN method must be evaluated 
against other machine learning imputation methods. 

d. The study must be composed in English to 
ensure clarity and accessibility for the research team. 

e.  The study must be published in a journal or 
conference proceedings indexed in SCOPUS, ensuring 
that it has undergone a rigorous peer-review process. 

Non-inclusion criteria: 

a) The study must not be a conference abstract or 
editorial, as these formats typically lack the 
comprehensive detail and rigorous methodology 
necessary for in-depth research analysis.  

b) The study must refrain from prioritizing 
conventional imputation methods over RNN-based 
imputation. 

c) The study's primary objective must be to 
improve data imputation performance, not to enhance 
other factors. 

d) The study must focus on imputing missing 
values, not predicting a particular case. 

TABLE III.  SELECTED DATABASE SEARCH QUERIES 

Database 

Name 
Search Query 

SCOPUS ("missing data" OR “missing value” OR “data 

missingness” OR incomplete OR “imputation”) 

AND ("recurrent neural network" OR “RNN” OR 
“GRU” OR “Gated Recurrent Unit” OR “Long 

Short-Term Memory” OR “LSTM”) AND (“time-
series”, “sequential”) 

 

This study employed a systematic search strategy to 
identify relevant articles for the review. Table III 
delineates a comprehensive search query particularly 
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crafted to harness the advanced search capabilities of the 
selected database. These queries were designed to 
incorporate relevant keywords and logical operators, 
thereby optimizing the search process to yield a precise 
and comprehensive selection of articles aligned with the 
research objectives. 

D. Quality Criteria 

Prior to delving into the research questions, this 
section systematically evaluates the selected studies to 
confirm the requisite depth and detail of the selected 
articles for a thorough analysis. Each evaluation criterion 
is denoted by the abbreviation 'QAC', which indicates 
Quality Assessment Criteria. These criteria encompass a 
set of evaluation questions outlined as follows: 

QAC.1 Does the study implement RNN method for 
missing data imputation? 

QAC.2 Does the study clearly explicate their 
methodology and research purpose? 

QAC.3 Is the recurrent neural network approach 
assessed through comparisons against another RNN or 
machine learning-based methods? 

QAC.4 Are the performance metrics employed in the 
study clarified and explained by the researcher? 

QAC.5 Does the study elaborate on the comparative 
strengths and weaknesses of the recurrent neural network 
approaches employed? 

E. Identification of Primary Articles Collection 

The automated search conducted on the SCOPUS 
online database yielded a total of 362 articles centered on 
the application of RNN for missing value imputation. 
After a thorough assessment of their titles and abstracts, 
only 89 articles were considered pertinent during the 
initial screening. The remaining 19 studies were excluded 
due to their lack of relevance to the current investigation. 
Adhering strictly to the predetermined inclusion and 
exclusion criteria, a final selection of 70 articles was made 
to specifically address the research inquiries, as depicted 
in Fig. 2. 

 

Figure 2.  Primary Studies Screening Process 

F. Data Extraction 

The process of selecting pertinent articles involved an 
intensive search across various platforms including 
selected online database, reputable journal publishers, and 
relevant conference proceedings. Each article identified 
underwent a stringent evaluation process, following the 
categorization and subcategorization framework 
delineated in Table IV. These categories were derived 
from the research questions to ensure harmonization with 
the study's primary objectives. The data extraction process 
employed a blend of automated and manual search 
techniques, emphasizing a comprehensive and thorough 
approach to gathering relevant information from the 
selected articles. 

TABLE IV.  CATEGORY AND SUB-CATEGORY FRAMEWORK 

Category Sub-category RQ 

Paper 
Information 

Article’s Title RQ1 

Published year 

Author 

Publisher 

Research focus Objective RQ2 

Methodology 

RNN method Proposed method RQ2 

Selection method 

Performance 

evaluation 

Evaluation 

metrics 

RQ3 

Evaluation 
methods 

Findings Limitation RQ4 

Strength 

Future work 

 

The data extracted under the “Paper Information” 
category was instrumental in addressing RQ1, which 
aimed to ascertain whether the articles were published 
within the past decade. This categorization, based on the 
publication year, offered valuable insights into the current 
trends and advancements in RNN-based missing data 
imputation, thereby significantly contributing to the 
resolution of RQ1. Moving on to the “Research Focus” 
and “RNN Method” category, a detailed examination of 
the specific RNN methods employed in the articles was 
conducted. Through the analysis of subcategories within 
this category, RQ2, which sought to identify the 
predominant RNN methods utilized for missing data 
imputation, could be effectively addressed, enriching the 
study's overall findings. The "Performance Evaluation" 
category played a pivotal role in addressing RQ3 by 
evaluating the metrics used to assess the effectiveness of 
the proposed RNN methods. This critical assessment of 
performance factors contributed significantly to 
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understand the efficacy and reliability of RNN-based 
methods in handling missing data, aligning with the 
objectives of RQ3. Lastly, the "Findings" category 
provided a comprehensive overview of the strengths and 
limitations of the proposed methods. These insights were 
crucial in addressing RQ4, which aimed to identify 
research gaps and potential avenues for future work in the 
domain of missing data imputation using RNNs. By 
pinpointing these gaps, the study not only contributed to 
the existing body of knowledge but also provided valuable 
guidance for researchers looking to advance this field 
further. 

G. Data Synthesis 

In the data synthesis phase, the extracted data from the 
preceding stages are combined to provide a 
comprehensive analysis. This integration employs two 
distinct approaches: quantitative descriptive analysis 
(QDA) and narrative synthesis. QDA is utilized to present 
a deeper understanding to research questions 1, 2, and 3. 
In contrast, Research Question 4 is addressed through a 
narrative synthesis approach, which involves summarizing 
and integrating insights from various articles. 

H. Data Quality Assessment 

After applying rigorous inclusion and exclusion 
criteria, each article selected for inclusion underwent a 
comprehensive assessment using Quality Assessment 
Criteria (QAC). This step ensured that the selected articles 
aligned with the research questions and that any low-
quality articles, which might introduce bias into the 
results, were systematically excluded [18]. This quality 
scoring framework assigned numerical values from 0 to 1 
to assess the sufficiency of information available to 
address key domains outlined in the Quality Assessment 
Criteria: A marks of 1 suggest that an article completely 
fulfilled the criteria in question and provided abundant 
salient details; 0.5 denoted that the article only partially 
met the criteria or omitted some relevant information; and 
0 signified that the article failed to address the criteria or 
research considerations at all. By tallying the quality 
scores achieved across all Quality Assessment Criteria 
dimensions, an aggregated quality benchmark could be 
calculated for each selected source. 

Once evaluation of quality is performed, it can be 
observed that the total score for each Quality Assurance 
Criterion (QAC) is predominantly greater than 80%, as 
illustrated in Fig. 3. This signifies that the chosen relevant 
articles sufficiently cover the necessary information 
regarding the imputation of missing values using RNN. 

4. RESULT AND DISCUSSION 

This study places particular emphasis on articles 
concerning missing data imputation using the RNN 
method. Each selected article underwent a thorough 
analysis and data synthesis process, as detailed in the 
preceding section. The findings from this systematic 

literature review will be summarized to provide 
comprehensive answers to the research questions that are 
previously identified. 

 

Figure 3.  Total score for each QAC. 

A. RQ1. How Have RNN Imputation Methods Evolved in 

The Last Decade? 

Fig. 4 depicts the annual publication count of research 
articles employing RNNs for missing value imputation. 
Interestingly, between 2013 and 2017, research remained 
very low and stable, with publication counts hovering 
between 0 and 1 paper per year. However, from 2018 to 
2021, a remarkable increase was observed from 2018 to 
2021, reaching 22 papers in 2021. As deep learning 
continues to gain traction, so does the adoption of RNNs 
for data imputation, with research in this area seeing a 
significant surge. The rise in deep learning research can 
be attributed, in part, to the emergence of high-level 
neural network Application Programming Interfaces 
(APIs) like TensorFlow and Keras. These user-friendly 
interfaces have addressed the computational hurdles of 
training deep learning models, as outlined by Ma et al. 
[19]. Their functionalities, such as automatic 
differentiation and efficient memory management, align 
with recommendations for optimizing training, including 
learning rate scheduling [20] and high-performance 
computing (HPC) communication techniques. In support 
of this, a SCOPUS database search reveals a substantial 
increase in studies in 2018 mentioning TensorFlow and 
Keras which are 500 and 111 articles respectively. Yet, 
the count has dipped slightly to less than 22 articles in 
2022 and 2023, raising questions about the recent shift. 

 

Figure 4.  Year of publication of using RNN for data imputation. 
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A large number of articles across 27 countries reveals 
a growing interest in RNNs for data imputation. As 
illustrated in Fig. 5, the top five contributing nations stand 
out: China spearheads the field with 28 published journal 
articles and conference papers, closely followed by the 
United States with 23 articles. Australia and South Korea 
have 8 and 7 articles respectively, while Canada 
contributes 4 articles. This geographically diverse 
landscape of research underscores the increased 
popularity and efficacy of RNNs as a data imputation 
method, capturing the attention of researchers worldwide. 

 

Figure 5.  Top 5 Countries in RNN data imputation research. 

Fig. 6 illustrates the distribution of article types among 
research exploring missing data imputation using RNNs. 
Journal articles and conference papers emerge as the most 
prevalent form of publication, both accounting for 34 
papers (49%) of the analyzed articles. Conference reviews 
and Review article constitute a smaller portion, with 1 
paper (1%) and 1 paper (1%), respectively. Fig. 7 offers a 
more granular view, detailing the annual distribution of 
each document type. 

 

Figure 6.  Document type of the primary studies. 

Fig. 7 illustrates the distribution of article types over 
the past decade for the RNN data imputation method. The 
data shows that prior to 2017, only conference articles 
were published, and in very low numbers. From 2018 to 
2020, the number of conference articles increased and was 
higher than journal articles.  However, starting in 2021, 
the number of journal articles has equaled or exceeded 
that of conference articles. This shift aligns with the 
findings from surveys conducted by Yang et al. [21] 
revealing that researchers prioritize submitting to journal 

publications due to perceived reputation, prestige, and the 
assurance of undergoing a peer-review process—a crucial 
element in upholding research quality standards. Despite 
the abundance of articles and conference papers on this 
topic, there is a notable shortage of review papers. Only 
one review paper has been published, indicating a gap in 
the synthesized understanding of the existing literature. 

 

Figure 7.  Document type trends of the primary studies. 

Fig. 8 depicts the top 5 subject areas (out of a total of 
18) that encompass articles employing RNNs for data 
imputation. Within these top 5, computer science emerges 
as the predominant field, comprising 66 documents of the 
analyzed articles. Engineering follows with a substantial 
32 articles, while mathematics contributes 20 articles. 
Medicine and decision sciences, with 14 articles and 11 
articles respectively, round out the top 5. 
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Figure 8.  Top 5 subject area of data imputation using RNN. 

B. RQ2.What are the Most Popular Variants Employed 

in RNN for Handling Missing Data Imputation? 

Fig. 9 illustrates the distribution of RNN variants 
employed for missing data imputation. LSTM variant 
dominates, accounting for 42% of utilized RNN variants 
across 30 articles. Following closely are GRU, 
commanding 35% of the landscape, represented by 25 
articles. Twenty-three percent (16 papers) are categorized 
as hybrid, that combines two or more types of RNN 
variants [22] including Saad et al. [23] which utilized 
LSTM and GRU for missing data imputation. It is 
noteworthy that LSTM is the most popular variant in 
missing data imputation using RNN as it can handle data 
with varying length [24]. Although GRU has a simpler 
architecture with fewer gates than LSTM, making it faster 
to train, it is deemed suitable primarily for small datasets 
[25]. 

 

Figure 9.  Prevalence of RNN variants in missing data imputation. 

Table V shows the distribution of 14 articles that 
incorporate bidirectional RNN approach. Bidirectional 
RNNs is able to analyze temporal dependencies in both 
directions and grant them an advantage in handling 
sequential data, enabling them to effectively impute 

missing data by considering the broader context of the 
surrounding data points. This advantage is particularly 
beneficial compared to unidirectional RNNs, which only 
consider context from one direction. This trend is 
reflected in several recent studies employing bidirectional 
LSTMs for imputation tasks [26], [27], [28], [29], [30], 
[31], [32]. Bidirectional GRU architectures have also 
gained traction, as evidenced by several research [7], [33], 
[34], [35]. In line with Yang et al. [25], bidirectional 
approaches hold potential for accurate data imputation due 
to their ability to capture long-range context in sequential 
data.  

TABLE V.  NUMBER OF BIDIRECTIONAL APPROACH USED IN EACH 

TYPE OF RNN 

RNN 

Variants 
Number of Bidirectional Approach 

LSTM 7 

GRU 4 

Hybrid 3 

 

C. RQ3.What Performance Metrics are Utilized for 

Evaluating RNN Imputation Method? 

Fig. 10 provides a visual representation of the top 5 
performance metrics employed in evaluating the 
effectiveness of the proposed RNN-based imputation 
method. Among these metrics, Mean Absolute Error 
(MAE), recognized as a widely adopted criterion for 
quantifying prediction error [36], emerged as the most 
prevalent, utilized in over 50% of the articles (n=38). 
Following MAE, the Root Mean Squared Error (RMSE), 
utilized to assess the variability of error [36], was 
employed in 24 articles. Additionally, the Area Under the 
Receiver Operating Characteristic Curve (AU-ROC) was 
identified in 14 articles, particularly in tasks involving 
classification. Other commonly utilized performance 
metrics include Mean Relative Error (MRE), featured in 
12 articles, and Mean Squared Error (MSE), utilized to 
gauge the accuracy of the proposed method [36], found in 
9 articles. It is worth noting that in the evaluation of 
RNN-based data imputation methods, error metrics such 
as MAE, RMSE, MRE, and MSE are frequently 
employed to quantify the reliability and accuracy of the 
imputed data. 

 

Figure 10.  Top 5 Performance metrics used in proposed RNN method. 
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Table VI provides an intricate breakdown of each 
article and its corresponding performance metrics, 
encompassing a diverse range of categorizations such as 
error metrics and classification metrics. Within the error 
metrics category, examples include MAE, RMSE, MSE, 
MRE, Mean Absolute Percentage Error (MAPE), 
Symmetric Mean Absolute Percentage Error (SMAPE), 
R-squared (R2), Absolute Difference Error (ADE), Final 
Displacement Error (FDE), Median Absolute Error 
(MEDAE), Normalized Mean Squared Error (NMSE), 
Normalized Root Mean Squared Deviation (NRMSD), 
and Root Mean Square (RMS). Conversely, classification 
metrics encompass metrics like Accuracy, AU-ROC, Area 
Under the Precision-Recall Curve (AUPRC), F1 score, 
Recall, and Precision. 

TABLE VI.  TOTAL NUMBER OF PERFORMANCE METRICS OF 

IMPUTATION METHODS USED 

Performance 

metric 

Total used 

in studies 
References 

MAE 38 

[7], [8], [12], [23], [27], [28], [29], 

[30], [31], [32], [34], [35], [37], 

[38], [39], [40], [41], [42], [43], 
[44], [45], [46], [47], [48], [49], 

[50], [51], [52], [53], [54], [55], 

[56], [57], [58], [59], [60], [61], 
[62] 

 

RMSE 24 

[7], [12], [23], [28], [34], [40], 
[43], [46], [47], [53], [54], [55], 

[56], [57], [63], [64], [65], [66], 

[67], [68], [69], [70], [71], [72] 
 

AU-ROC 13 

[26], [30], [39], [44], [48], [50], 

[63], [68], [69], [71], [72], [73], 
[74] 

 

MRE 12 

[8], [27], [30], [31], [35], [44], 

[47], [49], [50], [52], [59], [61] 
 

MSE 9 

[35], [44], [49], [58], [59], [73], 

[75], [76], [77] 
 

MAPE 6 
[12], [28], [55], [56], [64], [70] 

 

Accuracy 5 [26], [63], [68], [78], [79] 

AUPRC 5 [44], [48], [50], [69], [71] 

F1 3 [26], [68], [78] 

Recall and 

Precision  
3 [26], [74], [78] 

R2 2 [56], [57] 

ADE 1 [80] 

FDE 1 [80] 

MEDAE 1 [70] 

NMSE 1 [56] 

NRMSD 1 [81] 

Performance 

metric 

Total used 

in studies 
References 

RMS 1 [82] 

SMAPE 1 [7] 

 

Studies conducted by [26], [74], [78] exclusively 
utilized classification metrics such as F1 score, Recall, 
Precision, Accuracy, and AU-ROC for their evaluations, 
focusing on assessing imputation methods beyond just 
RNN and LSTM for handling missing data. In contrast, Li 
et al. [7] opted for an error-based evaluation approach to 
assess the effectiveness of their proposed RNN-based data 
imputation method. The proposed method aimed at 
evaluating the recovery of missing data by measuring the 
similarity difference between imputed values and true 
values. This distinction highlights the importance of 
aligning evaluation metrics with the specific objectives 
and focus areas of the respective research, ensuring a 
robust and relevant assessment framework tailored to the 
research goals. 

D. RQ4. What are the Advantages and Potential 

Drawbacks of the Proposed RNN Imputation 

Method? 

One notable strength of the RNN-based data 
imputation method is its capability to generate highly 
accurate results, as highlighted in several scholarly 
articles [8], [42], [56], [63], [66], [71], [73], [75], [83]. 
Previous studies have also indicated that the variance of 
RNN-based data imputation methods, such as LSTM and 
GRU, consistently outperforms the baseline established 
by conventional RNN and machine learning imputation 
methods, as evidenced in works by researchers [7], [26], 
[29], [57], [59], [78], [79]. For instance, Li et al. [7] 
reported in the study that their attention-based RNN 
method surpassed other machine learning models, 
including ARIMA and KNN, achieving notably lower 
average MAE values of 0.083, 0.171, 0.055, and 0.105 
across various real-world time-series datasets. This 
superior performance not only highlights the efficacy of 
RNN-based methods but also underscores their 
adaptability in handling diverse data types and imputation 
tasks, consistently delivering reliable imputation results 
across a spectrum of datasets. 

Prior studies have delved into the realm of 
optimization algorithms to bolster the performance of 
RNNs for missing data imputation. For instance, Liang et 
al. [51] introduced a dynamic task weighting scheme 
grounded in dynamic gradient magnitude adjustments. 
This innovative approach aims to autonomously achieve 
balanced training across tasks, thereby addressing the 
challenges posed by the multi-task learning paradigm. 
Similarly, Li et al. [65] advocated for a smoothing 
regularization term to optimize the selection of 
hyperparameters in the RNN model. The integration of 
such optimization algorithms has led to a significant 
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enhancement in the performance of RNN-based 
imputation methods, showcasing tangible improvements 
in their efficacy and accuracy. 

A remarkable limitation observed in many proposed 
RNN-based imputation methods is their substantial 
computational cost, as evidenced by articles such as [37], 
[40], [44], [56], [60], [83]. Furthermore, several RNN-
based imputation methods encounter limitations due to 
their inherent model complexity, as indicated in articles 
[8], [12], [26], [37], [51], [62], [71], [73]. For instance, 
Zhou et al. [8] bi-directional recurrent structure, 
characterized by a multitude of parameters, significantly 
increases the model's complexity, resulting in extended 
training times and potentially restricting its applicability 
to large-scale datasets. Additionally, it is noteworthy that 
a majority of the articles included in this study primarily 
focus their evaluation on a single problem domain and 
dataset. Only a limited number of studies, exemplified by 
[7], [27], [40], [49], [59], [62], [67], [72], [73], have 
conducted robust evaluations of their proposed RNN-
based imputation methods using multiple datasets from 
different problem domains. This delineation underscores 
the need for broader and more diverse evaluations to 
comprehensively assess the generalizability and 
robustness of RNN-based imputation methods across 
various contexts and datasets. 

5. FINDINGS 

In this section, a comprehensive examination of the 
findings and analyses presented in the preceding section is 
undertaken. Our aim is to provide a detailed discussion on 
the current landscape surrounding the utilization of RNNs 
for the purpose of missing data imputation. 

The surge in the adoption of RNNs since 2018 
signifies a significant shift in the data analysis landscape, 
particularly in addressing the challenges posed by missing 
data. This trend is not merely a fleeting phenomenon but 
rather a reflection of the inherent capabilities and 
adaptability of RNNs in handling complex data scenarios. 
One of the key strengths of RNNs lies in their ability to 
capture temporal dependencies and sequential patterns, 
making them particularly well-suited for imputing missing 
data within time-series datasets. This capability has 
garnered considerable attention from both academic 
researchers and industry practitioners, leading to a notable 
uptick in RNN utilization. 

The concurrent advancements in deep learning APIs, 
such as TensorFlow and Keras, have played a pivotal role 
in fuelling the surge in RNN adoption. These robust 
frameworks have democratized the implementation of 
RNN-based solutions, making them more accessible and 
feasible for a broader range of applications. Moreover, the 
symbiotic relationship between the surge in RNN 
adoption and the availability of deep learning APIs is 
evident in their collaborative impact on research and 
practical applications. These APIs have not only 

streamlined the integration of RNNs into existing data 
analysis pipelines but have also catalyzed research by 
enabling researchers to explore novel methodologies and 
architectures. 

The versatility of RNNs extends beyond mere data 
imputation; they have proven instrumental in a myriad of 
tasks, including natural language processing, time-series 
forecasting, and pattern recognition. This multifaceted 
utility positions RNNs as a cornerstone technology in the 
arsenal of deep learning tools, heralding a new era in data-
driven decision-making and predictive modelling across 
diverse domains. However, it's crucial to note that the 
dominance of specific RNN variants, such as LSTM, in 
the realm of missing data imputation is also a result of 
their inherent advantages, notably their adaptability to 
data with varying lengths and their proficiency in 
capturing long-range dependencies within sequences. On 
the other hand, while the GRU presents a simpler 
architecture and faster training times on smaller datasets, 
its limitations become apparent when dealing with larger 
and more complex datasets, highlighting the nuanced 
trade-offs inherent in selecting an appropriate RNN 
variant for specific missing data scenarios. 

In evaluating the performance of RNN-based 
imputation methods, the selection and utilization of error 
metrics like RMSE, MAE, MSE, and MRE, along with 
classification metrics such as AU-ROC, are contingent 
upon the specific objectives and focus of the research at 
hand. These metrics serve as crucial tools for quantifying 
the accuracy, reliability, and effectiveness of RNN-based 
imputation methods, providing researchers with valuable 
insights into the strengths, limitations, and overall 
performance of these methods tailored to the research 
objectives. By strategically selecting and integrating these 
metrics into the evaluation framework, researchers can 
gain comprehensive insights into the performance and 
utility of RNN-based imputation methods across various 
missing data scenarios. 

A. Future Research Directions 

Drawing upon the insights gleaned from this study, 
several promising avenues for future research in the 
domain of RNN-based data imputation emerge. 

1) Investigating the Effectiveness of Different RNN 

Architecture: The effectiveness of different RNN 

architectures for imputing missing values across diverse 

types of datasets is a crucial area for future exploration. 

While RNNs contribute to enhancing data quality by 

addressing the data completeness dimension, 

understanding the strengths and limitations of each 

architecture becomes paramount when dealing with 

varied datasets characterized by distinct domains and 

missing mechanisms. This necessitates the development 

of more flexible RNN models capable of handling 

missing values more effectively. 
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2) Adopting Optimization Algorithm in RNN-Based 

Data Imputation Method:  The utilization of optimization 

algorithms such as Particle Swarm Optimization (PSO) 

and stochastic gradient descent (SGD) within the 

framework of RNNs presents a promising avenue for 

addressing the challenges associated with missing data 

imputation. While previous research has highlighted the 

potential of optimization, further exploration is required 

to fully exploit its capabilities. Investigating the impact 

of these optimization algorithm on model convergence, 

generalization, and computational efficiency, future 

research contributes to the development of more robust 

and effective RNN-based data imputation methods for 

handling missing data in various domains. 

6. CONCLUSION 

The primary objective in this study was to critically 
analyse the recent landscape of RNN-based imputation 
methods for missing data in time-series datasets. The 
central focus of this evaluation is to illuminate the existing 
gaps by highlighting the strengths demonstrated by recent 
RNN-based imputation methods, while also addressing 
their limitations in handling missing data for time-series 
datasets. The analysis started with 362 articles from 
SCOPUS database and reduced to 70 articles after 
implementing the inclusion and exclusion criteria. In the 
review, RNN or its variant including LSTM and GRU is 
used to impute missing data in the dataset. 

While the review provides valuable insights, it is 
essential to acknowledge a limitation. The absence of 
explicit analysis on datasets and the chosen evaluation 
metrics for data imputation using the RNN method is a 
notable gap. Future research could greatly benefit from a 
more in-depth exploration of dataset characteristics and 
the selected evaluation metrics within the context of 
RNN-based imputation techniques. 

The prominence of LSTM in the reviewed studies 
underscores its popularity and effectiveness in handling 
missing values. Nevertheless, the review highlights a need 
for further advancements in RNN methodologies to 
enhance their capabilities in addressing the complexities 
associated with missing data. 

In conclusion, the research on data imputation 
methods, particularly RNNs, is vital for mitigating 
challenges posed by missing values in datasets. This 
review serves as a foundation for future studies to refine 
and extend RNN-based approaches, ultimately 
contributing to the continuous improvement of data 
imputation techniques. 
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