
Requirements Traceability Approaches:

A Systematic Literature Review

Nejood Hashim Al-walidi

Faculty of Graduate Studies for

Statistical Research,

Cairo University, Cairo, Egypt

 email address:nejo.Hashim@su.edu.ye

ORCID : 0000-0002-1774-0801

Nagy Ramadan Darwish

Faculty of Graduate Studies for

Statistical Research,

Cairo University, Cairo, Egypt

 email address: n.nagy@fci-cu.edu.eg

 Ali Hussein Zolait

College of Information Technology

University of Bahrain

 Manama, Bahrain

 email address: azolait@uob.edu.bh

ORCID : 0000-0002-8020-8084

Abstract— Requirements traceability (RT) is a significant

quality factor in software development, enabling software

engineers to track requirements from inception to fulfillment.

While previous studies have predominantly focused on singular

aspects of requirements traceability, our Systematic Literature

Review (SLR) delves into multiple often-overlooked facets. Our

primary focus is on RT approaches, acknowledging a significant

gap in research attention in this area. The objective of this research

is to comprehensively explore requirements traceability

approaches, their empirical evidence, and associated challenges.

By doing so, we aim to lay a foundation for future research

endeavors in this domain. Additionally, we seek to examine the

latest real-time RT approaches, the criteria utilized for their

evaluation, and the distinguishing characteristics of the identified

methods. Adhering to SLR guidelines, we meticulously analyze,

evaluate, and interpret relevant primary research spanning from

2006 to 2019. Our systematic literature review (SLR) identifies

state-of-the-art approaches in requirements traceability, highlights

gaps for further investigation, delineates criteria for evaluating

traceability approaches, and outlines key characteristics of

identified methods. This compilation serves as a valuable resource

for both researchers and practitioners seeking specific RT

approaches tailored to their interests. While prior studies typically

focused on singular topics related to requirements traceability, our

SLR casts a wider net, exploring numerous neglected dimensions

of this critical aspect of software development. Our analysis

specifically targets the period between 2010 and 2019.

Keywords— Requirements traceability, traceability

approaches, Software development, Requirements traceability

categories and challenges, Systematic Literature Review,

evaluation

I. INTRODUCTION (HEADING 1)

In response to the high rate of software project failures,

many software development standards have been proposed.

These standards include SEI's CMMI and IEEE's JSTD-016.

A common feature of these standards is that they all impose

requirements traceability practices on the software

development process [1]. Requirements traceability can be

defined as “the ability to describe and follow the life of a

requirement, in both forward and backward direction, (i.e.,

from its origin, through its development and specification,

to its subsequent deployment and use, and through periods

of ongoing refinement and iteration in any of these phases)”

[3]. This definition can be visualized in Figure 1.

As shown in Figure 1, requirements traceability ensures
continued alignment between stakeholder requirements and
the various outputs of the system development
process. Consequently, requirements traceability has been

demonstrated to provide many benefits in software
development. Requirements traceability can demonstrate that
a system meets its specified requirements. Additionally, it
simplifies identifying which requirements, design elements,
code, and test cases need updates to accommodate a change
request during the software project's maintenance phase.
Moreover, by following traceability links, a project manager
can promptly determine the number of artifacts impacted by
a proposed change, allowing for informed decision-making
regarding the associated costs and risks.

Fig 1. A View of Software Requirements Traceability [1]

Although the importance of traceability seems to be

generally approved in the software engineering industry,

organizations continue to struggle to implement it. One

major challenge facing the implementation of traceability is

simply the costs involved. Therefore, it is important to

address questions such as “How much traceability is

enough?” and “What kinds of traceability provide cost-

effective solutions?” [2].

In previous Systematic Literature Reviews (SLRs)

within the realm of Requirements Traceability (RT),

researchers have primarily focused on investigating related

challenges, as well as the approaches and tools developed

to tackle them. The insights gained from these SLRs can

serve as valuable resources for both researchers and

practitioners seeking specific sets of approaches and tools

tailored to their interests. However, these SLRs have varied

in their scopes: some have delved into RT definitions,

challenges, tools, and techniques using primary studies

spanning the years 1997-2007 [3]; others have focused on

recording and maintaining information of the traceability

within the context of Model-Driven Engineering [4]; while

some have paid particular attention to traceability between

the architecture of the software and code, presenting

classification schemes to distinguish various aspects of

traceability approaches [5]. Additionally, there have been

SLRs conducted to explore the latest developments in the

area of requirements traceability, utilizing primary studies

from the years 2010-2017 [6]. To our knowledge, there is

currently no recent SLR available that analyzes and

evaluates the latest RT approaches. During the period

between 2010 and 2019, the majority of researchers

concentrated on specific topics related to RT approaches as

mentioned above. Consequently, our objective is to explore

the areas that have been overlooked within the domain of

RT approaches during this time frame. The main objective

of this research is to investigate current RT approaches,

focusing on their evaluation against specified criteria, and

to offer a framework for situating new research endeavors

appropriately. We aim to address aspects that may not have

been adequately covered in previous studies.

To achieve this objective, we follow the SLR guidelines

outlined by “Kitchenham and Charters” [7], conducting a

comprehensive analysis, evaluation, and summary of

relevant primary research conducted between 2010 and

2019.

The rest of this systematic literature review (SLR) is
organized as follows: Section 2 reviews related literature.
Section 3 outlines the methodology used for this SLR.
Section 4 presents the results obtained from data analysis.
Section 5 discusses these results in the context of the
research questions. Finally, Section 6 offers our conclusions
and suggests directions for future work.

II. RELATED SLRS

In their paper titled “Requirements traceability: A

systematic review and industry case study”, the authors

investigated four research questions “What is requirements

traceability based on state-of-the-art research? What are

the challenges when implementing requirements traceability

and how does research address these challenges? What are

the various requirements for traceability tools according to

research literature? What requirements traceability

techniques are covered in the research literature?”. The

results indicate that the authors provided several common

definitions, challenges, tools, and techniques. The most

commonly used definition of RT is narrated as “the ability

to describe and follow the life of a requirement in both

forwards and backward direction (i.e., from its origins,

through its development and specification to its, subsequent

deployment and use, and periods of on-going refinement

and iteration in any of these phases)", was the most

commonly used definition (about 80%). An interesting

observation is that most frequently serves as the primary

reason for not implementing and maintaining adequate

traceability policies. The requirements traceability tools

covered in their SLR include requirements tracing on-target

(RETRO), Rational RequisitePro, DOORS, DesignTrack,

TRAM, or tool for requirements and architectural

management, Scenario Advisor, and other traceability tools

like SLATE, CRADLE, RDD-100, Marconi RTM, RTS,

Rtrace, and Teamwork/RQT. The requirements traceability

techniques covered in the SLR include Value-Based

Requirements Tracing(VBRT), Feature-Oriented

Requirements Traceability(FORT), Pre-RS requirements

traceability, Event-Based Traceability(EBT), Information

Retrieval(IR), Rule-Based Approach(RBA), Feature-Model

based approach, Scenario-based approach, process centered

engineering environments, Design Patterns, traceability

matrices, keywords and ontology, aspect weaving, Goal-

Centric Traceability, and hypertext-based methods: Most of

these techniques and tools were not validated empirically[3].

 The paper titled “Model-Driven Engineering as a new

landscape for traceability management”. The authors

investigated five RQs about “To what extent do

methodological proposals recommend automating the

generation of trace links? How do these proposals suggest

managing and analyzing traceability? Are there tools or

frameworks that offer technological support for traceability

management in Model-Driven Engineering (MDE)? What

are the current limitations in traceability management within

the context of MDE? Are there specialized journals or

conferences that focus on traceability management in

MDE?”. The findings suggest that out of a total of 10,028

results, only 267 were considered relevant studies. After

removing duplicates, 157 unique studies were assessed

against predetermined exclusion criteria, resulting in 29

primary studies. These primary studies were further grouped

into 17 Groups of Primary Studies for subsequent review

stages. Overall, the authors noted satisfactory research

quality across all evaluated proposals, with each achieving a

minimum quality score of 50%. Notably, GPS4 emerged as

the top proposal based on quality assessment. The primary

studies covered various topics, including trace generation

(automated and/or manual), metamodel (general or specific

purpose), trace management (storage, visualization,

supported operations, and analysis), and implementation

(complete toolkit or partial). In terms of quality assessment,

the absence of clearly defined research methods was

identified as a significant limitation. The authors expressed

interest in investigating any potential correlation between

the quality of studies and their publication venue.

Additionally, they emphasized their readiness to contribute

to the development or refinement of methodological and

technical proposals for addressing traceability in Model-

Driven Engineering (MDE) [4].

 In their paper entitled “A systematic literature review of

traceability approaches between software architecture and

Source Code”. The researchers investigated six RQs that

seek clarify for inquiries regarding what is the current state

of traceability methods and tools between software

architecture and the source code. Specifically, what

information is available for tracing from higher-level

architectural artifacts to lower-level artifacts such as source

code and vice versa? Additionally, what empirical evidence

has been documented in the field of traceability between

software architecture and source code? As well as “to what

extent are the reported traceability relationships useful in

understanding software architecture? What are the reported

benefits and liabilities of traceability approaches between

software architecture and the source code? What are the

reported issues, barriers, and challenges of traceability

between software architecture and the source code?”. The

findings indicate that the authors have pinpointed the latest

advancements in requirements traceability methods and

tools, which connect software architecture to its source

code. Additionally, they've underscored areas where

improvements are needed and proposed avenues for future

study. The systematic literature review (SLR) delves into

requirements traceability methods, encompassing Event-

Based Traceability, Rule-Based Traceability, Hypertext-

Based Traceability, Traceability Based on Information

Retrieval, Design Patterns Based Traceability, Model-driven

Traceability, and Traceability Based on Machine Learning

Techniques. The authors propose a classification framework

to discern different facets of these approaches, focusing on

their Nature, Automation, Types of relations, Granularity,

and Direction and representation of traceability information.

This classification offers a basis for researchers and

practitioners to select or explore specific approaches [5].

In their paper entitled “Requirement traceability techniques

and tools”, the researchers investigated two research

questions to address “What are the leading models,

challenges, and tools in the area of requirement traceability

for the period from 2010 to 2017? What are the pros and

cons of leading requirement traceability models and tools?”.

The results show that the authors identified and investigated

33 research studies published during 2010-2017. The study

identified 7 models, 10 challenges, and 14 tools in total.

Among the models discussed were the Traceability

Information Model (TIM), Traceability Meta Model,

Traceability Process Model, Traceability Assessment Model

(TAM), Semantic Model, I-Trace, and Requirements

Dependency Model. The challenges highlighted

encompassed issues such as traceability decay, lack of

guidance, commitment issues, difficulties with manual

traceability, gaps in knowledge and understanding, project

longevity concerns, conflicting stakeholder perspectives,

communication gaps between teams, human factors, biases,

and inadequate tool support. Various tools were examined,

including ECOLABOR, TOOR, RESAT, POIROT,

CREWS-EVE, ProR, Trace Analyzer, TRIC, ADAMS,

SCOTCH+, Trace Maintainer, DOORS, RequisitePro, and

RETRO. The authors provided a thorough analysis of both

models and tools, ultimately concluding that DOORS and

the Traceability Meta Model stood out as the most effective

requirement traceability tool and model, respectively.

However, they noted that a comprehensive exploration of

requirement traceability challenges was not achieved. The

authors planned to conduct an in-depth examination of the

identified challenges in their forthcoming article. [6].

III. RESEARCH METHODOLOGY

A Systematic Literature Review (SLR) functions as a

structured method to locate, evaluate, and analyze all extant

research relevant to a particular research question, field of

study, or notable occurrence. The individual studies

contributing to a systematic review are referred to as

primary studies, making a systematic review a type of

secondary study. The significance of SLR lies in its ability

to synthesize existing information comprehensively and

impartially, enabling the formulation of broader conclusions

about a subject or serving as a precursor to further research

endeavors [7]. This study aims to discern the prevailing

methodologies employed for requirements traceability

between 2006 and 2019, while also identifying areas

necessitating further investigation. Adhering to the

guidelines for Systematic Literature Review, we scrutinized,

assessed, and interpreted the relevant studies available. A

systematic literature review typically encompasses three

principal phases:

 Planning the review phase (See Section 3.1)

 Conducting the review phase (See Section 3.2)

 Reporting the review phase (See Sections 4 and 5).

Planning the review phases involves three steps:
Specifying RQs, developing a Search Strategy, and Defining
Study Selection Criteria. Conducting the review phase
consists of three steps: Selection of Primary Studies, Quality
Assessment, and Data Extraction and Synthesis. Reporting
the review phase comprises three steps: Presenting SLR
Results, Discussing SLR Findings, and Concluding, as
shown in Figure 2.

Fig 2. A Systematic Literature Review Phases

A. Planning the review

The objective of this phase is to formulate a review

protocol, which involves defining the Research Questions

(RQs) intended to be addressed by the review (Refer to

Section 3.1.1), determining the search strategy to locate and

identify primary studies (Refer to Section 3.1.2, and

Planning

the

Review

Phase

Conducting

the Review

Phase

 Reporting

the Review

Phase

establishing the criteria for selecting studies (Refer to

Section 3.1.3).

 Specifying the Research Questions

Identifying the research questions stands out as a pivotal

aspect of any systematic literature review, given that these

questions guide the entire methodology of the review [5]

[7]. Presented below are the chosen research questions

intended to fulfill the goals of our SLR:

RQ1: What are the challenges related to RT?

RQ2: What are the state-of-the-art RT approaches?

RQ3: What are the criteria used to evaluate RT approaches?

RQ4: What are the characteristics of the identified RT

approaches??

 Search Strategy

In this SLR, the search procedure involved conducting

online searches using specific search terms and utilizing

online resources. Table 1 delineates the digital libraries

employed in the SLR to explore requirements traceability

methodologies:

TABLE 1. THE ONLINE RESOURCES USED IN THE SLR

Name Website Name Website

“IEEE
Xplorer”

“https://ieeexplore.ie
ee.org”

Semantic
scholar

“https://www.se
manticscholar.o

rg”

“ACM

Digital
Library”

“https://dl.acm.org” World

Scientific

“https://www.w

orldscientific.co
m”

“Google

Scholar”

“https://scholar.googl

e.com”

Research

gate

“https://www.re

searchgate.net”

“Academia” “https://www.academ
ia.edu”

Springer “https://www.sp
ringer.com”

The search terms below were employed to gather and

extract primary studies covering the timeframe from 2006 to

2019:

 Requirements Traceability (RT)

 Requirements Tracing.

 Traceability

 Requirements Traceability Approaches

 Requirements Traceability Technique.

 (1) AND Issues

 (1) AND Techniques

 (1) AND Challenges

 (1) AND Direction

 (1) AND Types

 (2) AND Types

 (3) AND Issues

 (4) AND Evaluation

 (4) AND Criteria

 (4) AND Characteristics

 Study Selection Criteria

The study of the selection criteria is aimed to identify

primary studies that provide direct evidence about the

research questions [7]. Inclusion and exclusion criteria are

employed to assess the suitability of publications and decide

whether to include or exclude specific studies from the SLR

[5]. The inclusion and exclusion criteria used in this SLR

are detailed in Table 2.

TABLE 2. STUDY SELECTION CRITERIA

Inclusion Criteria Exclusion Criteria

 Do the studies during the

2006 and 2019- time span?

 Primary studies that provide

evidence about the RQs.

 Are the collected citations

relevant?

 Journal articles and

conference proceedings on

traceability challenges,

traceability approaches,
traceability criteria, and

traceability approach

characteristics.

 Primary studies outside the

period from the 2006 to

2019-time span.

 Primary studies are not

relevant to the research
questions.

 Studies not published in

refereed journals or
conferences.

 Duplicate primary studies

are included only once,

using the latest version.

B. Conducting the Review Phase

Conducting the review involves three sub-sections:

Selection of Primary Studies (See section 3.2.1), Study

Quality Assessment (See section 3.2.2), and Data Extraction

(See Section 3.2.3).

 Selection of Primary Studies

In accordance with the research objective, a search string

was formulated to identify primary studies based on the

predefined inclusion and exclusion criteria within the

timeframe of the systematic literature review (SLR) (See

Section 3.1.3). Following the application of these criteria, 50

studies were selected from an extensive database comprising

250 studies, from which conclusions regarding requirements

traceability approaches were drawn. Table 3 enumerates the

43 studies identified as primary studies.

 Study Quality Assessment (SQA)

The SQA criteria are used to examine the accuracy and

trustfulness of the used research methodology as well as the

relevance of the citations [5]. The following criteria of

quality have been applied:

 Title: Is the title of research or keywords including the

strings: ‘‘traceability’’, ‘‘criteria’’, ‘‘techniques’’,

‘‘approaches’’, ‘‘characteristics’’, and ‘‘challenges’’.

 Abstract: Does the abstract lead us to conclude that the

main purpose of the study is requirements traceability?

 Result: Does the result relate to the requirements

problem?

 Conclusion: Were both negative and positive findings

fully reported? Were there any limitations that

influenced the conclusions or suggested avenues for

future research?

Table 3. Primary Studies used in our SLR

 Data Extraction and Synthesis (DES)

This step outlines how the necessary information from
each primary study will be gathered and combined.
Typically, researchers employ a form or table to collect data,
facilitating the organization of the extraction and synthesis
process. This approach enables researchers to address the
research questions identified in section (3.1.1). Table 4.
shows the elements of data extraction and synthesis for this
SLR.

TABLE 4. ELEMENTS OF DATA EXTRACTION AND SYNTHESIS

Description Details

1 Bibliographic

Information

Authors Names, year of publication, the title of the

publication, etc.

Extraction of Data

2 Overview The chosen study aims to identify challenges
associated with real-time (RT) systems, explore

state-of-the-art RT approaches, examine the criteria

used to evaluate these approaches and analyze the
characteristics of the identified RT approaches.

3 Results Results achieved in the chosen study.

Synthesis of Data

4 Challenges The challenges related to RT (See Section 4)

5 Approaches The state-of-the-art RT approaches (See Section 4)

6 Criteria The criteria used to evaluate RT approaches (See

Section 4)

7 Characteristics The characteristics of the identified RT approaches

(See Section 4)

C. Reporting the Review

 Reporting the review includes two sections: the

systematic literature review results which include the

analysis of the result obtained from this SLR (See Sections

4) and the systematic literature review discusses (See

Sections 5) which includes the answer to the fourth RQs,

which was posed in (Section 3.1.1).

IV. THE SYSTEMATIC LITERATURE REVIEW RESULTS

In this section, we present the results of our SLR on
requirements traceability approaches, which were conducted
following the methodology described in Section 3 after
analyzing the selected primary studies. We utilized 8 digital
libraries to collect and identify relevant research (as detailed
in Section 3.1.2). In total, 43 studies were analyzed to
address the four research questions, as illustrated in Figure 3.

Fig 3. Total of Studies Used to Answer the Four RQs

The primary studies address the four research questions

outlined in the results section. For RQ1, the papers

referenced are (8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 34). For

Ref Title

[8] “A Model for Enhancing Requirements Traceability and
Analysis”

[9] “Grand Challenges, Benchmarks, and TraceLab: Developing

Infrastructure for the Software Traceability Research

Community”

[10] “The Barriers to Traceability and their Potential”

[11] “Tackling the term-mismatch problem in automated trace”

[12] “A_MANY-TO-

MANY_MN_RELATIONAL_MODEL_TOIMPROVE_REQU”

[13] “A Review of Traceability Research at the requirements
engineering”

[14] “Addressing Traceability Challenges in the Development of

Embedded Systems”

[15] “ANewModelforRequirementstoCodeTraceabilitytoSupportCode
CoverageAnalysis”

[16] “Comparison of Information Retrieval Techniques for

Traceability Link Recovery”

[17] “Formulating a Software Traceability Model for Integrated”

[18] “Gray Links in the Use of Requirements Traceability”

[19] “Trust-based Requirements Traceability”

[20] “Requirements Change Impact Analysis Using Event Based”

[21] “Towards automated traceability maintenance”

[22] “Utilizing Multifaceted Requirement Traceability Approach a
Case Study”

[23] “Effective and efficient requirement traceability the software

development and information technology”

[24] “AchievementsandChallengesinState-of-the-
ArtSoftwareTraceabilityBetweenTest”

[25] “RETRATOS Requirement Traceability Tool Support”

[26] “Requirement Traceability for Software Development Lifecycle”

[27] “Change Impact Analysis with a Goal-Driven”

[28] “Rule-based Impact Analysis for Heterogeneous Software
Artifacts”

[29] “Test Coverage Measurement and Analysis on the Basis of

software traceability approaches”

[30] “Toward Multilevel Textual Requirements Traceability”

[31] “Requirement Tracing using Term Extraction”

[32]
“Traceability StrategStudy”

[33] “Comparative Study on Traceability Approaches in Software

Development”

[34] “The Grand Challenge of Traceability (v1.0)”

[35] “Rule-Based Maintenance of Post-Requirements Traceability

Relations”

[36] “Using Semantics-Enabled Information Retrieval in

Requirements Tracing”

[37] “Survey on Usage Scenarios for Requirements”

[38] “Improving IR-based traceability recovery”

[39] “Goal-Centric TOSEM”

[40] “Assessing traceability of software engineering artifacts”

[41] “Can LSI help Reconstructing Requirements Traceability in
Design and Test”

[42] “From Frequency to Meaning: Vector space models of

semantics”

[43] “Normalizing source code vocabulary”

 [44] “A Traceability Metamodel for Change Management of Non-
Functional”

[45] “Enabling Collaboration in Distributed Requirements”

[46] “Rule-Based Maintenance of Post-Requirements Traceability

Relations”

[47] “Enabling Automated Traceability Maintenance by Recognizing

Development Activities Applied to Models”

[48] “Tracing Non-Functional Requirements”

[49] “A survey of traceability in requirements engineering and model-
driven development”

[50] “Decision-Centric Traceability of Architectural Concerns”

[51] “Study of query expansion techniques and their application in the

biomedical information retrieval”

[52] “An integrated model for information retrieval based change

impact analysis”

[53] “An approach for integrating the prioritization of functional "and

nonfunctional requirements”

RQ2, the papers referenced are (17, 18, 19, 20, 21, 22, 25,

26, 27, 35, 39). For RQ3, the papers referenced are (24, 29,

27, 49). For RQ4, the papers referenced are (16, 17, 19, 21,

22, 23, 24, 29, 30, 31, 33, 36, 37, 38, 39, 40, 41, 42, 43, 44,

46, 47, 48, 49).

These primary studies were utilized to address four

questions, each requiring a varying number of papers. Some

of these papers were employed multiple times to tackle the

research questions (RQs), as each paper alone was

insufficient to comprehensively address a specific RQ. For

instance, Paper 18 was utilized to address both RQ1 and

RQ2. Additionally, Paper 27 was employed to answer RQ2

and RQ3, whereas Papers 24, 29, and 49 were utilized to

address RQ3 and RQ4. Furthermore, Papers 17, 21, and 39

were utilized to answer both RQ2 and RQ4.

In addressing the first research question, we categorized the

challenges into four main categories: Challenges in

Technology, Challenges in Management, Social Challenges,

and Technical Challenges, each with different types. We

based our findings on 11 studies, although it's worth noting

that some of these studies did not specify particular

challenges.

 Transitioning to the second research question, we've

delineated five types of state-of-the-art approaches utilized

for requirements traceability: Rule-based, Value-based,

Information retrieval, Event-based, and Goal-centric. Our

analysis was informed by 11 studies delving into these

approaches.

For the third research question, we identified fifteen types of

requirements traceability criteria based on insights from six

relevant studies.

The criteria include database support [29], software

traceability support, tool support, coverage construction

[24], traceability scheme, scalability [49], visualization,

change impact analysis, evaluation [27], trace type [24],

trace direction [24], traceability analysis [24], underlying

technique, and accessibility [24].

 Finally, to address the last research question, we analyzed

20 studies to identify the primary characteristics of

requirements traceability approaches. Further details can be

found in Section 5).

V. THE SYSTEMATIC LITERATURE REVIEW DISCUSSES

This section offers an analysis of the findings discussed in

Section Four, aiming to address the four research questions

outlined in Section IV. The results encompass challenges

related to requirements traceability, state-of-the-art

approaches, evaluation criteria for traceability approaches,

and the key characteristics of identified requirements

traceability approaches. Figure 4 illustrates the annual

distribution of primary studies from 2006 to 2019. The

figure indicates that the highest number of publications on

requirements traceability approaches was achieved in 2012.

Fig 4. The Number of Papers used, Categorized by Years

1. The Challenges of Requirements Traceability

(Question1)

The challenge of requirements traceability relates to the

obstacles encountered when endeavoring to establish and

maintain a comprehensive and coherent link among various

project components, such as requirements, design, code, and

testing. This connection, frequently referred to as

traceability, plays a pivotal role in guaranteeing the correct

implementation and validation of each requirement during

the entirety of the project's life cycle. Requirements

Traceability (RT) emerges as one of the most crucial and

daunting tasks in ensuring the clarity and conciseness of

requirements [8]. It holds a pivotal position in the software

development process, with the potential to enhance the

quality of software products in a positive manner [9].

According to Regan and his co-author [10], challenges in

requirements traceability can be categorized into four types:

Challenges in Technology, Challenges in Management,

Social Challenges, and Technical Challenges. Figure 5

illustrates various types of challenges, with each category

having distinct types. The 'Challenges in Technology'

category includes four types, 'Challenges in Management'

comprises four types, 'Social Challenges' involves six types,

and 'Technical Challenges' encompasses six types. The

following provides a description of these types.

These challenges have various effects on RT, demanding

additional time and effort for resolution. At times, they

result in project delays or even cancellations. Figure 5

shows the main challenges along with the total number of

each type.

Fig 5. The challenges and their types in total

Figure 6 summarizes the most significant challenges in

requirements traceability, categorized by type.

A. Technology Challenges

Technology Challenges encompass the following issues:

traceability decay, low accuracy of traceability recovery

methods, and inadequate presentation and visualization of

trace links.

 Traceability decay: This type of problem occurs when

trace links are not updated when any changes take

place, resulting in a decline in traceability relations in

which some trace connections are lost and others falsely

reflect relationships. Links between two artifacts

requirements artifacts and source code artifacts are

particularly susceptible to this type of problem since

developers regularly alter the source code without

updating the links [10].

 Low accuracy of traceability recovery methods: The

most commonly used techniques for establishing

traceability links are Information Retrieval (IR)

techniques. However, experiments across various

domains and artifacts have demonstrated that these

techniques typically exhibit low precision. This issue

arises because IR-based methods connect artifact pairs

based on textual similarity, which merely indicates the

likelihood of a relationship between the two artifacts

[11].

 Poor presentation and visualization of trace links:

Large-scale undertakings are typically characterized by

a large number of artifacts and a large number of trace

links. Often, to represent the data, there are some tools,

such as lists or mega tables, that are used. These types

of tools hinder interested stakeholders from

understanding the data on traceability and detecting

inconsistencies [12].

 Lack of change notification and propagation: Every

modification to one artifact affects all associated

artifacts and links in the trace. In the worst-case

scenario, for example, a change in the requirements will

affect other artifacts that have relationships with it, such

as design, source code, and test cases [13].

B. Management Challenges

Management Challenges include: Cost, Obtaining

Information, Organizational Problems, and Purposed.

 Cost: The cost is one of the most significant challenges

in implementing traceability, particularly as the system

grows in size and sophistication, making requirement

tracing more expensive and difficult [13].

 Obtaining Information: Difficulty in finding the data

that is required to assist and improve the tracing process

[13].

 Organizational Problems: Some organizations do not

provide their employees with training on the importance

of traceability in processes, which can result in a lack of

representation and accountability. [14].

 Purpose: This challenge implies that traceability should

be established with a specific reason in mind, ensuring

it aligns with the needs of various stakeholders both

within and outside the company. [14].

C. Social Challenges
Social challenges include different stakeholder viewpoints,

politics and lack of training, lack of communication between

groups, trust issues, and constantly changing requirements.

 Different stakeholder viewpoints: Traceability may not

be given the attention it deserves in some parts of an

organization, which will lead to an inefficient allocation

of time, personnel, and resources. To create an

organizational policy for traceability that can be

consistently applied to all projects within the company,

it is currently best practice to consider the opinions of

various stakeholders. Establishing an organizational

policy on traceability is the best strategy to handle the

various perspectives of stakeholders [14].

 • Valued: The significance of strategy is recognized by

everyone, and stakeholders actively participate in its

creation within the company. However, if traceability is

not regarded as important, it may be considered

optional and given low priority, leading to an

inadequately developed strategy [14].

 Politics and lack of training: A factor contributing to

poor support for traceability is politics and a lack of

training. Some businesses fail to educate their personnel

on the value of traceability [14].

 Trusted: Establishing and maintaining trust and

confidence in traceability is crucial among all

stakeholders, especially in the face of inconsistencies,

omissions, and changes [14].

 Requirements constantly change: Constantly changing

requirements result in the project becoming more

complex and increasing the cost and effort involved

[15].

 Lack of communication between groups: the failure of

cooperation between the groups responsible for

coordinating traceability illustrates the lack of

communication between them. [16].

D. Technical Challenges

Technical challenges include Configurable, Complexity,

Portable, Poor tool support, Scalable, and Ubiquitous.

 Configurable: “Traceability is established as specified,

moment-to-moment, and the rich semantics

accommodate changing stakeholder needs.” [34].

 Complexity: Many factors, including the project's size,

the sheer volume of objects that must be traced, and the

challenging connections between these artifacts that can

hinder traceability, can all be used to indicate

complexity [34].

 Portable: Traceability information should be portable,

meaning that it can be merged, exchanged, and reused

across organizations, domains, projects, product lines,

and tools supporting it [34].

 Fig 6: Requirements Traceability Challenges

 Poor tool support: Perhaps the largest obstacle to

adopting traceability is inadequate tool support. There

are numerous challenges with tools that might make

establishing and maintaining traceability difficult.

These include selecting from among available tools, the

lack of standalone traceability tools, integration issues

with other tools, and the difficulty of configuring a

general-purpose tool or developing a custom tool [18].

 Scalable: Traceability should be scalable, meaning that

it can support an increasing number of different types of

artifacts with varying levels of granularity throughout

the system's lifecycle and across the boundaries of the

organization and business [34].

 Ubiquitous: The grand challenge in requirements

traceability is achieving ubiquity, which means that

traceability links should be automatically created as

stakeholders and developers work, without requiring

them to explicitly think about creating such links. [34].

2. State-of-the-art approaches utilized for requirements

traceability (Question 2)

 This subsection discusses state-of-the-art approaches

used for requirements traceability and their associated

concerns from 2006 to 2019. These methods are applied

to track both functional and non-functional

requirements, automate the creation of traceability

links, gather early feedback, improve the direction of

requirement traceability [17], and help users manage

their traceable items more effectively [18]. Table 5

identifies significant approaches and relevant concerns

extracted from various studies, which can contribute to

the development and enhancement of requirements

traceability. The approaches include rule-based

approaches [17] [19], value-based requirements tracing

[18], information retrieval (IR) [19], event-based

traceability [20] [21] [22], and goal-centric traceability

(GCT) [39].

TABLE 5. REQUIREMENT TRACEABILITY APPROACHES

Table 6 presents the approaches to RT along with their

relevant concerns, which have been derived from specific

references.

3. The criteria used to evaluate traceability approaches

(Question 3)

In summary, these criteria serve as indicators of how well

these approaches support requirements traceability. They are

aligned with the foundational elements used to assess the

effectiveness of traceability recovery approaches in

traditional software engineering practices [24].

Our Systematic Literature Review (SLR) has identified

various traceability criteria used to evaluate traceability

approaches, including database support [29], software

traceability support, tool support, coverage construction

[24], traceability scheme, scalability [49], visualization,

change impact analysis, evaluation [27], trace type [24],

trace direction [24], traceability analysis [24], underlying

technique, and accessibility [24]. Table 6 provides a concise

summary of these criteria along with their definitions. The

ensuing criteria encapsulate the key factors influencing an

effective traceability recovery approach for evaluating any

conventional software engineering method. These criteria

have been derived from an extensive analysis of literature

and are inspired by insights from influential researchers in

the field. The subsequent section provides a brief

explanation of these criteria [24].

Table 6 provides a succinct overview of these criteria

alongside their definitions. Figure 7 visually represents the

criteria discussed in this Systematic Literature Review

(SLR), which have been employed in assessing Real-Time

(RT) approaches based on prior studies. These criteria are

applicable for evaluating any traceability approach within

traditional software engineering. They have been formulated

through a comprehensive examination of literature (e.g.,

[17], [24], [29], [49]), as well as inspired by insights gleaned

from eminent researchers in the field.

Fig 7: Criteria used to Evaluate Traceability Approaches

4. The major characteristics of the identified RT

approaches (Question 4)

This section provides a summary of the results obtained

from the comprehensive analysis of selected papers to

address RQ4, outlined in Table 7 and Figure 8. Additionally,

we have delineated the key characteristics of the

requirements traceability (RT) approaches identified in

response to the second research question.

Approach

Name

Relevant Concerns

Rule-based
approach.

It focuses on gradual modifications to a
developing network of traceability relationships.

[25][35].

Value-based
Requirements

Tracing.

Performance evaluation should consider tracing
precision and effort, which are determined by

stakeholder value, requirements risk, and tracing

costs [19].

Information
retrieval.

Addressing the low precision issue, aim to
enhance both precision and recall of traceability

links [21][26]

Event-based
Traceability

Understand the impacts of requirement changes
in large systems [22].

Goal-centric

traceability

Inability to trace Non-Functional Requirements

(NFRs) such as security, performance, and
usability [27] [39].

TABLE 7. REQUIREMENTS TRACEABILITY APPROACH

RT Approach Name Ref.

Rule Based Approach (RB) [21][46][47]

Value-Based Requirements

Tracing (VB)

[22][23]

Information Retrieval (IR) [16][19][30][31][33][36][37]
[38] [40][41][42][43]

Event-based Traceability (EB) [23][29]

Goal-Centric Traceability (GC) [39][44][48][50]

Fig 8. Requirements Traceability Approach

We note from Table 7 and Figure 6 that the Information

Retrieval approach to requirements traceability has more

references than alternative methodologies such as the Rule-

Based Approach, Value-Based Requirements, Event-based

Traceability, and Goal-Centric Traceability. Conversely, the

Value-Based Requirements Tracing approach and Event-

based Traceability exhibit fewer references compared to

their counterparts. This observation suggests that from 2006

to 2019, there were relatively fewer studies referencing

these five requirements traceability approaches. To

stimulate further research, authors may consider extending

the timeframe. The subsequent section delineates the

principal characteristics of the identified requirements

traceability approaches.

 Rule-Based Approach.

The rule-based approach demonstrates several notable

characteristics, including its capability to export all

supported artifacts into XML format and the utilization of

rules for generating traceability relations based on the

exported state of the models. Additionally, it sustains post-

requirements traceability relations, facilitating the automatic

generation of traceability links among various artifacts, such

as requirements, use cases, and analysis object models [46].

In the Rule-based approach, two types of rules are at work.

The first type involves requirement-to-object-model rules,

which utilize information retrieval techniques to

automatically establish traceability relations between

requirements and analysis models. The second type of rule

evaluates links between requirements and object models,

Criteria Name Criteria Definition

Database support Utilized to record code elements and test coverage information for later retrieval [29].

Software traceability support It is used in order to link software artifacts (Code, Requirement, and Test Case) in two ways: requirement

traceability (Requirement to Test Case) and code traceability (Code to Test Case) [29].

Tool support It is used for facilitating traceability links and automatically monitors the status of all change requests and

notifications to ensure that the necessary follow-up actions are carried out as needed [24].

Traceability analysis type Traceability analysis encompasses three types: manual, semi-automatic, and automatic [24].

Trace type It is categorized into two main groups: Functional traces and Non-functional traces [24]

Trace Direction A traceability link can be unidirectional (like 'depends-on') or bidirectional (like 'alternative-for') [24].

Traceability scheme A traceability scheme identifies the artifacts involved in the trace link recovery process and specifies the
granularity level for recording trace links for each artifact. [24].

Scalability “It is important that traceability approaches be scalable for both capturing links and presenting the linked

information to users. In manual or minimally-automated settings, scalability is more achievable due to the

incremental capture and maintenance of trace links.” This suggests that the approach can be effectively applied to
large projects.[24].

Evaluation The function of this criterion is to determine how the approach was evaluated in the original work, such as

through controlled experimental studies, case studies, or survey studies [24]

Visualization It facilitates users in evaluating the quality of trace links, underscoring the significance of traceability recovery
methods that provide insightful graphical representations for visualizing traces and identifying outdated or

questionable links [24].

Underlying technique “It represents the core of an approach, through which traceability links between tests and code are recovered.”
[24].

Accessibility “Mapping between artifacts in software development life cycle” [17].

Coverage Construction The assessment of requirements traceability approaches also hinges on coverage construction, a crucial criterion.

This assessment pivots on whether coverage is attained through the execution of test cases or otherwise [24].

The change impact analysis Specifies whether the approach determines the impact of change on the artifacts throughout the software
development lifecycle [49].

Mapping Assess whether the approach can establish links between models at varying levels of abstraction [24].

TABLE 6. CRITERIA USED TO EVALUATE TRACEABILITY APPROACHES

IR
GC

RB

VB

EB

identifying intra-requirement dependencies and

automatically establishing these relations [21].

The Requirement-to-Object Model rules, combined with an

information retrieval technique, are instrumental in creating

traces. This approach seeks to address the issue of

insufficient automated support for maintaining traceability

relations within UML-based development tools, often

stemming from the activities conducted within these tools

[46]. Its primary focus lies in automating the preservation of

traceability relations between two artifacts. To accomplish

this, it utilizes a prototype tool called 'traceMaintainer' to

recognize development activities applied to models within

UML-based software development. Furthermore, it acts as a

solution to mitigate traceability decay [47].

 Value-Based Requirements Tracing Approach

(VBRT):

This approach integrates both semi-automated and manual

methods to establish traceability links and implement

changes in software artifacts. The tracing scope

encompasses source code, design elements, and requirement

documents, facilitating the identification of link traces

according to prioritized requirements [22]. It consists of five

processes: (1) requirements definition, which involves

identifying atomic requirements and giving each one a

unique identifier; (2) requirements prioritization, which

involves determining the value, risk, and effort of each

requirement; (3) requirements packaging, which involves

identifying clusters of requirements; (4) requirements

linking, which involves creating traceability links between

requirements and other artifacts; and (5) evaluation, which

involves determining the effectiveness of the approach [22],

as shown in Figure 9.

Fig 9. VBRT Processes

The VBRT approach provides both a technical and an

economic model for requirements tracing, tailored to various

criteria including the quantity, value, and risk of

requirements, as well as factors such as the volume of

artifacts, the extent of traceability, precision in tracing,

artifact size, and associated costs and efforts in tracing

identification and maintenance [23]. The primary objective

of this approach is to discern the significance and value of

individual requirements [23]. Figure 10 illustrates the

criteria utilized within the VBRT approach.

Fig 10. The Criteria of the VBRT Approach

 Information Retrieval (IR)

The Information Retrieval (IR) approach primarily

focuses on automating the creation of traceability links by

comparing two distinct artifact types, such as requirements

and source code [33]. IR “focuses on finding documents

whose content matches with a user query from a large

document collection” [51]. Information retrieval (IR)

techniques are frequently applied in the field of software

engineering. They support various tasks, including

document reuse and tracing between two or more documents

[52].

IR methods, widely recognized and applied, offer an

effective solution for recovering traceability links between

various artifact pairs, including requirement documents and

source code [16]. These methods are known for expediting

the generation of traceability links, thereby reducing the

time required for establishing traceability mappings [40].

The most popular methods in Information Retrieval (IR)

adapted for requirements traceability recovery include

Latent Semantic Indexing (LSI) [16], the Vector Space IR

Model (VSM), and IR Probabilistic. LSI, for instance,

enhances system understanding by reconstructing

traceability links among various artifacts generated during

development [41]. VSM, originally developed for the

SMART information retrieval system [42], and Probabilistic

methods compute ranking scores based on the probability

that a document (the target artifact) is related to the query

(the source artifact) [43]. These methods establish links

between different artifacts primarily based on their syntactic

information [36]. The management of links between two

artifacts begins with their creation and is facilitated using

suitable tools [37].

IR-based traceability recovery approaches generate ranked

lists of traceability links between segments of requirements

and source code. After that, these links are refined using

various pruning strategies and subsequently validated by

human experts [19]. Figure 11 illustrates the IR-based

recovery process. IR systems strive to establish a connection

between users' information needs and the information within

a document collection. The fundamental information

retrieval process consists of two phases:

 Indexing: In this phase, the provided information

within the documents is stored and organized.

 Similarity Computation: Here, a similarity score is

calculated between a user query and the documents

stored in the index [30].

Classic IR methods, such as the Vector Space Model

(VSM), offer relevance ranking for a given query but

overlook document organization, supporting only flat

queries. Furthermore, they operate on static documents,

usually retrieving entire documents as units of relevance

[30].

The primary challenge in Information Retrieval (IR) lies in

identifying the pertinent documents within a document set

according to user-defined information requirements. Many

IR approaches involve converting each document in the set

into a mathematical representation that encapsulates its

informational essence. Then, a comparison is made with

similar representations of user information needs (queries)

[31].

Fig 11. IR Recovery Processes[38]

 Event-based Traceability (EBT)

 The EBT approach employs an event-based traceability

model to effectively manage changes and deliver timely

updates for affected artifacts along with their associated

links [23]. In this methodology, traceability relationships are

established as publisher-subscriber relationships, where

reliant artifacts subscribe to the requirements they depend

on. Whenever a requirement undergoes modifications, the

dependent artifacts receive notifications, enabling them to

take necessary actions [29]. The approach comprises three

core components:1. Requirement Manager: This

component is responsible for overseeing requirements and

issuing change event messages to the event server.2. Event

Server: The event server manages initial subscriptions

made by dependent entities, processes event notifications

from requirement managers, and forwards event messages to

pertinent subscribers. 3. Subscribing Entity: These are the

entities that subscribe to and receive notifications

concerning changes [29], as illustrated in Fig 12.

 Fig 12. EBRT Approach Parts

 Goal-Centric Traceability.

 Goal-centric traceability (GCT) emphasizes quality

goals, typically specified as Non-Functional Requirements

(NFRs) or constraints [39]. The Systems and Requirements

Engineering Center (SAREC) at DePaul University has

employed various tools to implement GCT. Poirot, a robust

tracing tool, utilizes a probabilistic network to generate

traceability links on demand, connecting design and code

artifacts to nodes within a design hierarchy. Additionally,

students in the MS Studio class developed a graphical tool

for creating models of soft goal interdependency graphs

(SIGs). Previously, the University of Illinois at Chicago

developed an event-based traceability (EBT) utility that

establishes links between QAMs and goals. Furthermore, an

XML-based utility was designed for graph traversal and the

reevaluation of QAMs [39].

 Goal-Centric Traceability (GCT) serves the purpose of

tracking Non-Functional Requirements (NFRs) through

three primary activities: requirement development, impact

detection, and evaluation and decision-making [44]. Across

the prolonged lifespan of a software-intensive system, GCT

furnishes traceability support for the management and

upkeep of NFRs along with their correlated quality concerns

[48]. This methodology heightens the automation for

leveraging and comprehending traceability links. While it is

tailored with maintainability in mind in certain scenarios, it

necessitates specific modeling environments or development

practices. Moreover, as it isn't directly integrated into

specific tasks such as architectural analysis, it might not

immediately yield advantages for trace creators. This raises

pragmatic concerns regarding the cost-benefit ratio

associated with investing in a traceability infrastructure,

potentially impeding its widespread adoption in practical

contexts [48].

The GCT framework comprises the following elements: (1)

a goal model capturing stakeholders' quality concerns and

tradeoffs; (2) a series of Quality Assessment Models

(QAMs) designed to evaluate how effectively the

architecture meets the defined quality objectives; (3) a

traceability system linking QAMs to goals; (4) GCT

algorithms overseeing automated impact analysis and

change propagation throughout the goal hierarchy; and (5)

an impact report depicted in Fig 13. GCT facilitates the

establishment of trace links around various architectural

decisions and facilitates essential software engineering tasks

such as analyzing stakeholder satisfaction, validating

requirements, preserving architecture, conducting impact

analysis, and constructing safety cases [50].

 Fig 13. GCT Framework

Table VIII presents the various approaches for requirements

traceability discussed above, showcasing how each

approach handles the tracing of both Functional

Requirements (FR) and Non-Functional Requirements

(NFR).. “Functional requirements describe the functional

behavior of the system whereas nonfunctional requirements”

[53].

TABLE 8. FUNCTIONAL AND NON-FUNCTIONAL TRACING APPROACH

Name of Approach

Type of Requirements

FR NFR

Rule Based Approach ///////////

Value-Based Requirements

Tracing Approach

Information Retrieval

Approach

Event-based traceability

Approach

Goal-Centric Approach /////////

Drawing from the responses to the four research questions,

our findings reveal a notable scarcity of research focused on

requirements traceability approaches. This underscores the

imperative for additional research endeavors to delve into

and enrich the landscape of requirements traceability

methodologies.

VI. CONCLUSION AND FUTURE WORK

 Requirements traceability (RT) stands as a significant

quality factor in software development, enabling software

engineers to monitor requirements from inception to

fulfillment. This study presents a Systematic Literature

Review (SLR) in the field of requirements traceability

approaches. We meticulously followed the guided steps of

SLR, commencing with planning the review phase (See

Section 3.1), proceeding to conducting the review phase

(See Section 3.2), and culminating in reporting the review

phase (See Sections 4 and 5).

Our contribution encompasses the classification of

requirements traceability challenges and a succinct overview

of state-of-the-art approaches. We also provide criteria for

evaluating traceability approaches and outline the key

characteristics of identified requirements traceability

approaches from 2006 to 2019. These criteria and

characteristics serve as invaluable guidance for researchers

and practitioners seeking specific approaches of interest.

Consequently, our findings augment the body of knowledge

concerning the most significant challenges of requirements

traceability encountered by traceability approaches.

Grasping these challenges can aid software engineers and

developers in enhancing their work and achieving superior

traceability by selecting suitable approaches or refining

existing ones. Furthermore, we furnish a brief overview of

state-of-the-art approaches, juxtapose the most crucial

criteria for evaluating traceability approaches to assist in

selecting suitable ones and discuss the principal

characteristics of identified requirements traceability

approaches utilized to fortify traceability. These topics have

not been previously addressed together in previous SLRs.

Our future research goal is to explore new criteria,

focusing on innovative approaches and utilizing new tools.

This will involve extending the research period to include

data up to 2024 and incorporating additional digital libraries

VII. REFERENCES

[1] A.Kannenberg, & H. Saiedian. “Why software requirements
traceability remains a challenge”. CrossTalk The Journal of Defense

Software Engineering, vol.22.no.5,pp. 14-19, 2009.

[2] J. Cleland-Huang. “Just enough requirements traceability”. In 30th
Annual International Computer Software and Applications

Conference (COMPSAC'06); Vol. 1, pp. 41-42. Chicago. IEEE.2006.

[3] R.Torkar,T. Gorschek,R.Feldt,M. Svahnberg, U.A. Raja, & K.

Kamran. “Requirements traceability: a systematic review and industry

case study”. International Journal of Software Engineering and

Knowledge Engineering, pp.385-433.2012.
[4] I.Santiago,A. Jiménez,J.M. Vara,V. De Castro, V. A. Bollati, &E.

Marcos. “Model-Driven Engineering as a new landscape for

traceability management: A systematic literature review”. Information
and Software Technology. Vol.54,no.12, pp. 1340-1356,2012.

[5] M. A Javed, & U. Zdun. “A systematic literature review of

traceability approaches between software architecture and source
code” . In Proceedings of the 18th International Conference on

Evaluation and Assessment in Software Engineering .p.16. Vienna,

Austria: ACM.2014.
[6] H.Tufail, M.F.Masood, B. Zeb,F.Azam, & M.W.Anwar. “ A

systematic review of requirement traceability techniques and tools”.

2nd International Conference on System Reliability and Safety
(ICSRS) IEEE; pp. 450-454,vol.12 . 2017

[7] B.A.Kitchenham & S.Charters, “Guidelines for Performing

Systematic Literature Reviews in Software Engineering”. Technical
Report EBSE, vol.01, pp.1-65.2007.

[8] A.M. Salem. “Model for Enhancing Requirements Traceability and

Analysis. International Journal of Advanced Computer Science and

Applications”, vol.1, no.5, 2010.

[9] J.Cleland-Huang, A.Czauderna, A.Dekhtyar,,

O.Gotel,J.H.Hayes,E.Keenan,& A.Zisman, “Grand challenges,
benchmarks, and TraceLab: developing infrastructure for the software

traceability research community”. ACM .pp.17-23,.2011.

[10] G.Regan,F. McCaffery,K. McDaid,& D. Flood. “The barriers to
traceability and their potential solutions: Towards a reference

framework”. In Software Engineering and Advanced Applications

(SEAA)IEEE. pp. 319-322. 2012.
[11] J. Guo, M. Gibiec, and J. Cleland-Huang, “Tackling the term-

mismatch problem in automated trace retrieval. Empirical Software

Engineering”, 2016; Vol.22, No.3, PP.1103–1142.

[12] C.L.Williams. “A MANY-TO-MANY (M:N) RELATIONAL
MODEL TO IMPROVE REQUIREMENTS TRACEABILITY.2011.

[13] S.Nair,J.L. De La Vara, &S.A. Sen. “review of traceability research at

the requirements engineering conference re@ 21”. In 21st IEEE
International Requirements Engineering Conference (RE) IEEE,

Brazil. pp. 222-229.2013.

[14] S. Maro. “Addressing Traceability Challenges in the Development of
Embedded Systems”.2107.

[15] M.Shahid,&S.A. Ibrahim. “New Model For Requirements to Code

Traceability to Support Code Coverage Analysis”. Asian Academic

Research Journal of Multidisciplinary (AARJMD),vol.1.no.14,

PP.159-172.2013.

[16] D.V. Rodriguez, & D.L. Carver. “Comparison of information retrieval

techniques for traceability link recovery”. In 2019 IEEE 2nd
International Conference on Information and Computer Technologies

(ICICT)IEEE. pp. 186-193.2019.

[17] A.Azmi, & S. Ibrahim. “Formulating a Software Traceability Model
for IntegratedTest Documentation: a Case Study”. International

Journal of Information and Electronics Engineering.vol. 1,no.2,

178.2011.
[18] N.Niu, W. Wang, &A. Gupta. “Gray links in the use of requirements

traceability”.In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering , ACM.pp. 384-
395.2016.

[19] N.Ali,Y.G. Guéhéneuc,& G. Antoniol. “Trust-based requirements

traceability”. In 2011 IEEE 19th International Conference on
Program Comprehension. IEEE.pp.111-120. 2011.

[20] R.P.Gohil,S.Bhattacharya,&R.Chauhan. “ Requirements Change

Impact Analysis Using Event Based Traceability”. Lecture Notes on
Software Engineering, vol. 4, no.3.pp. 162.2016.

[21] Rochimah, S., WAN KADIR P.Mäder, and G.Orlena. “Towards

automated traceability maintenance”. Journal of Systems and
Software, vol. 85, pp.2205-2227.2012.

[22] W. M., & A.H.Abdullah. “Utilizing multifaceted requirement

traceability approach: a case study. International Journal of Software
Engineering and Knowledge Engineering”, vol. 21.no.04,pp. 571-

603.2011.

[23] T.Shereni. “Effective and efficient requirement traceability in the
software development and Information Technology industry”.

(Doctoral dissertation, University of Cape Town)2015.

[24] R. M. Parizi, , S. P. Lee, , &M. Dabbagh . “Achievements and
challenges in state-of-the-art software traceability between test and

code artifacts” . Transactions on Reliability, IEEE; vol.63.no.4,
pp.913-926..2014.

[25] G.C.Filho,M. Lencastre,A. Rodrigues, & C.Schuenemann

.RETRATOS: “Requirement Traceability Tool Support”.
semanticscholar.org, VOL.6. 2013

[26] S. Murugappan, & D. Prabha. “Requirement Traceability for Software

Development Lifecycle”. International Journal of Scientific &
Engineering Research,vol. vol.8.no.5,pp. 1-11.2017.

[27] W.T.Lee,W.Y. Deng,J. Lee, &S.J. Lee. “Change impact analysis with

a goal‐driven traceability‐based approach”. International Journal of
Intelligent Systems,2010; 25(8), 878-908.

[28] P. Mäder, O. Gotel, & I. Philippow. “Rule-based maintenance of post-

requirements traceability relations”. In 16th IEEE International
Requirements Engineering Conference, IEEE. Spain. pp. 23-32.2008.

[29] M. Shahid, S.Ibrahim & H. Selamat. “Test coverage measurement and

analysis on the basis of software traceability approaches”.
International Journal of Information and Electronics Engineering,

vol.1no.2, 115-119.2011.

[30] N. Sannier, &B. Baudry. “Toward multilevel textual requirements
traceability using model-driven engineering and information

retrieval”. In 2012 Second IEEE International Workshop on Model-

Driven Requirements Engineering (MoDRE). pp. 29-38. 2012

[31] Al-Saati, N., & Abdul-Jaleel, R. Requirement Tracing using Term

Extraction. arXiv preprint arXiv:1506.08789.2015.

[32] P. Rempel, Mçder, P., & Kuschke, T. An empirical study on project-

specific traceability strategies. In 2013 21st IEEE International

Requirements Engineering Conference (RE) 2013; (pp. 195-204).

IEEE.

[33] M.Hassnain. “A Comparative Study on Traceability Approaches in

Software Development Life Cycle”. ITEE Journal Information

Technology & Electrical Engineering, VOL.4.NO.2.2015.

[34] O.Gotel,J.Cleland-Huang, J., Hayes, J. H., Zisman, A., Egyed, A.,

Grünbacher, P., & Maletic, J. The grand challenge of traceability (v1.

0). Software and Systems Traceability, 343-409.2012.

[35] P. Mäder, O. Gotel, O., &I.I. Philippow, I. (SeHinptember). “Rule-

based maintenance of post-requirements traceability relations”.

In 2008 16th IEEE International Requirements Engineering

Conference.; pp. 23-32. IEEE.

[36] A. Mahmoud, & N. Niu, N. Using Semantics-Enabled Information

Retrieval in Requirements Tracing: An Ongoing Experimental

Investigation”. IEEE 34th Annual Computer Software and

Applications Conference. VOL.29.2010

[37] E. Bouil lon, P. Mäder, & I. Philippow, “A survey on usage scenarios

for requirements traceability in practice. In Requirements

Engineering: Foundation for Software Quality”: 19th International

Working Conference, REFSQ, Essen, Germany, vol 8-11, 2013.

Proceedings 19 (pp. 158-173). Springer Berlin Heidelberg.

[38] G. Capobianco, A.D. Lucia, R. Oliveto, A. Panichella, &S. S.

Panichella. “Improving IR‐based traceability recovery via noun‐based

indexing of software artifacts”. Journal of Software: Evolution and

Process, VOL.25. NO.7,PP. 743-762.2013.

[39] J. Cleland-Huang, W. Marrero, & B. Berenbach. (2008). Goal-centric

traceability: Using virtual plumblines to maintain critical systemic

qualities. IEEE Transactions on Software Engineering, vol.34, no.5,

pp 685-699.2008

[40] S. Sundaram, J.H. Hayes, A, Dekhtyar, & E.A. Holbrook, E. A.

Assessing traceability of software engineering artifacts. Requirements

Engineering,2010;15(3), 313–335. doi:10.1007.

[41] M. Lormans, & A. Van Deursen, “A. Can LSI help reconstructing

requirements traceability in design and test? In Conference on

Software Maintenance and Reengineering (CSMR'06) IEEE. VOL.2.

pp. 10. .2006.

[42] P. D. Turney, & P. Pantel, “From frequency to meaning: Vector space

models of semantics”. Journal of artificial intelligence research,

vol.37, pp.141-188.2010.

[43] A. De Lucia, A. Marcus, Oliveto, R., & R.D. Poshyvanyk, .

Information retrieval methods for automated traceability

recovery. Software and systems traceability, PP. 71-98.2012.

[44] M. Kassab, O. Ormandjieva, & M. Daneva, “A traceability

metamodel for change management of non-functional requirements”.

In 2008 Sixth International Conference on Software Engineering

Research, Management and Applications. IEEE. pp. 245-254.2008.

[45] V.Sinha, V., Sengupta, B., & Chandra, S. Enabling collaboration in

distributed requirements management. IEEE software, 2006; 23(5),

52-61.

[46] P. Mader, O. Gotel, O., & I. Philippow. “Enabling automated

traceability maintenance by recognizing development activities

applied to models”. In 2008 23rd IEEE/ACM International

Conference on Automated Software Engineering. IEEE. pp. 49-

58.2008

[47] M. Mirakhorli &J. Cleland-Huang. “Tracing non-functional

requirements.” In Software and systems traceability. pp. 299-320.
Springer, In Software and systems traceability . (pp. 299-320). 2012.

[48] D. Hanspeter, A. Janes, A. Sillitti, & G. Succi, “ Improving the

identification of traceability links between source code and

requirements”. In DMS. pp. 95-100.2012.

[49] I. Galvao, I., &A. Goknil. “Survey of traceability approaches in

model-driven engineering.In 11th IEEE International Enterprise

Distributed Object Computing Conference.pp. 313-313).Netherlands,
IEEE.2007..

[50] J. Cleland-Huang, M. Mirakhorli, Czauderna, A., & Wieloch, M.

“Decision-Centric Traceability of architectural concerns”. 2013 7th

International Workshop on Traceability in Emerging Forms of

Software Engineering (TEFSE). 2013;

doi:10.1109/tefse.2013.6620147

[51] A.R.Rivas,E.L. Iglesias, & L.Borrajo. “Study of query expansion

techniques and their application in the biomedical information

retrieval”. The Scientific World Journal, 2014.

[52] W.Wang, He, Y., Li, T., Zhu, J., & Liu, J. “An integrated model for

information retrieval based change impact analysis”. Scientific

Programming, PP.1-13.2018.

[53] M.Dabbagh, & S. Lee, S. P. (2014). “An approach for integrating the

prioritization of functional and nonfunctional requirements”. The

Scientific World Journal, 2014.

