

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail:author’s email

 http://journals.uob.edu.bh

Z-HandAR: Handheld Augmented Reality Occlusion Handling

Framework using WebRTC-based Depth Sensor Streaming

Muhammad Anwar Ahmad1, Norhaida Mohd Suaib2, and Ajune Wanis Ismail1

1 ViCubeLab, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor, Malaysia

2 UTM Big Data Center, Ibnu Sina Institute of Scientific and Industrial Research,

UniversitiTeknologi Malaysia, 81310 Johor, Malaysia

E-mail address: muhd.anwar135@gmail.com, haida@utm.my, ajune@utm.my

Received ## Mon. 20##, Revised ## Mon. 20##, Accepted ## Mon. 20##, Published ## Mon. 20##

Abstract: In this study, the integration of a handheld device with a ZED Mini depth sensor is explored to produce Z-HandAR, a

framework that enhances occlusion handling in handheld Augmented Reality (AR) applications. The aim is to improve the occlusion

handling capabilities of the conventional AR depth-based framework by leveraging the powerful stereo vision technology of an RGBD

depth sensor. By combining the handheld device with the depth sensor, we can benefit from accurate depth information for more

realistic AR experiences. The setup involves the fusion of handheld device with depth sensor via a fusion module involving Unity

Render Streaming, a WebRTC-based streaming framework. This allows the handheld device to access the frame data captured by the

depth sensor in real-time. For this study, we conducted a pilot test to get the finding where we aim to enhance occlusion handling and

reduce flickering in handheld AR applications. We compare our results with one of the state-of-the-art handheld AR frameworks,

Lightship ARDK. Our results show improvement over Lightship ARDK’s handheld AR occlusion handling. This paper explores a

promising potential for improving occlusion handling in handheld AR applications. By leveraging the stereo vision technique of the

depth sensor, we present the experiments and framework of this integration could lead to significant advancements in handheld AR

technology.

Keywords: Augmented Reality, handheld device, occlusion handling, WebRTC streaming, depth sensor

1. INTRODUCTION

Augmented Reality (AR) combines real and virtual
objects through specific displays. One of the displays is
handheld devices [1]. Handheld AR refers to AR
experiences that are accessed through handheld devices
such as smartphones or tablets. One of the remaining issues
in handheld AR is occlusion [2]. Occlusion occurs when
objects closer to viewer obscure the view of object further
away along line-of-sight [3]. Users will have the
misconception that the real object is further from the
viewpoint than the virtual objects when the virtual objects
are occluded by the real objects in the scene [4]. Occlusion
handling aims to understand the surroundings and how
virtual objects are partially or fully occluded by real
objects. By definition, occlusion handling is a set of
techniques to mitigate the effects of occlusion when doing
inference from image [5]. In context of AR, when the
system detects overlapping between real and virtual
objects, the system needs to optimize rendering
accordingly by not drawing what is not visible [6].

Occlusion-free is a scenario where occlusion is no longer a
concern. Thus, occlusion-free terminology has known as
the solution to occlusion issue.

Depth-based methods for occlusion handling in
handheld AR applications utilize depth information to
enhance the realism and accuracy of virtual object
placement within real-world scenes [7]. Unlike traditional
model-based approaches, which rely on predefined 3D
models to approximate occlusion, depth-based methods
directly analyze depth data obtained from depth sensors or
depth estimation algorithms [8]. These methods offer
several advantages, including the ability to handle both
static and dynamic scenes, adaptability to various
environments ranging from simple to complex, and
improved occlusion accuracy. By leveraging depth
information, these methods enable AR applications to
better understand the spatial relationships between virtual
and real objects, resulting in more realistic and immersive
user experiences [9]. Additionally, depth-based methods
facilitate tasks such as lighting estimation, collision

2 Author Name: Paper Title …

http://journals.uob.edu.bh

detection, avatar pathfinding, and spatial mapping, further
enhancing the capabilities of AR systems. Through a
comparative analysis of depth-based approaches,
researchers aim to identify the most effective techniques
for occlusion handling in handheld AR applications,
contributing to advancements in AR technology and user
interaction.

This paper proposes a framework that integrates

handheld AR with ZED Mini, a stereo vision-based RGBD

depth sensor via a fusion module consisting of a WebRTC-

based streaming. A pilot test has been developed on

handheld AR to obtain the initial results of this framework.

This paper also studies about spatial mapping on handheld

AR. The spatial mapping is a process to generate spatial

map as the output. It can be achieved using specific

methods involving algorithms and techniques for depth

data and transforming it into a spatial map.

2. RELATED WORKS

A. Depth-based Handheld AR Occlusion Handling

Depth-based methods for occlusion handling in AR rely
on depth information for determining the relative
positioning between virtual and real object in the scene.
Generally, depth-based handheld AR occlusion handling
can be classified with three main approaches [10], which
are using embedded depth-sensor, learning-based depth
prediction, and monocular depth estimation. Tian and Ma’s
work [11] used a depth sensor called time-of-flight (ToF)
camera for occlusion handling and collision detection on an
Oppo R17 Pro smartphone. However, ToF lack geometric
details that can hinder certain physics simulations that
necessitate detailed geometry. The method from [12] used
a stereo vision technique called stereo matching to estimate
depth using monocular camera. Their method is now
integrated in Google ARCore as Depth API which is now
accessible in millions of Android-based phones worldwide
[13]. However, the limitation of this method is that it
cannot accurately track objects in motion [10]. Lightship
ARDK is another state-of-the-art handheld AR framework
which utilizes learning-based depth-prediction model for
estimating depth and performing occlusion handling.
Based on [12], they found that they were able to effectively
enable handheld AR application to be occlusion-aware.
Depth can be used not only to support the process of
occlusion handling, but also for better understanding of the
real scene such as 3D shape of the objects and the global
illumination condition of the scene [2]. [12] has applied
depth-based method and focus on improving occlusion,
while Du et al. [14] had used depth-based method has been
applied for lighting estimation, collision detection, avatar
pathfinding, depth-aware object placement, depth of field.
Occlusion problems still can be handled through model-
based method; however, the depth-based method can cater
for both static or dynamic scene and suitable for simple to
complex environment while model-based method is
suitable for simple and static scene [6]. However, these

approaches have limitations when it comes to accurately
estimating the depth such as pose imprecision, low-
textured areas, and hardware constraints that can cause
rolling shutter artifacts and motion blur [12].

Based on the limitations of the related studies, we
explored the potential of harnessing RGBD depth sensor
for the purpose of reconstructing spatial mapping occlusion
handling in handheld AR. RGBD depth sensors can
produce a spatial awareness that allows real time occlusion
handling based on a study by Burger et al. [15]. The
authors compared three different depth sensors, which are
devices that can measure the distance and shape of objects,
for use in surgical simulation. From the comparison, it is
found that the Intel D405 sensor is the most suitable for
close-range applications, such as reconstructing the shape
of the heart valve, but it has some limitations, such as not
being able to handle reflective surfaces or thin structures.
The ZED Mini sensor is the best choice for applications
that need high speed and low resolution, such as tracking
the movement of the tools. The Intel D415 sensor fails to
reconstruct the heart valve models and is not recommended
for surgical simulation. The authors also mentioned that
ZED Mini’s NEURAL mode is a good compromise
between the Z -accuracy and fill rate which is the fraction
of pixels that contain valid measurements within a region
of interest. There have been research on integration of
RGBD depth sensor with other types of AR use cases. Wolf
et al. [16] used head mounted display with ZED Mini to
allow the use of the depth sensor’s spatial awareness
capabilities to measure the mental load of users who wear
a video see-through AR. Martini et al. [17] used ZED Mini
in a system that combines 3D object detection, depth data
from stereo cameras, and VR environment rendering to
create an immersive virtual reality experience that avoids
collisions with real obstacles and enhances interaction with
virtual objects. This study determined the suitable RGBD
depth sensor for occlusion handling in AR use case that
require movements, which is essential in AR interactions.

B. Spatial Mapping in AR

Spatial mapping in AR involves the process of
generating a digital representation of the physical
environment, often referred to as a spatial map, to enable
virtual objects to interact with the real world more
effectively. Depth-based methods play a crucial role in
spatial mapping by providing accurate depth information
that can be used to construct and update the spatial map in
real-time. By integrating depth data obtained from depth
sensors or depth estimation algorithms, AR systems can
create a detailed and precise spatial map that accounts for
the 3D geometry of the environment, including the shapes
and positions of objects, surfaces, and obstacles [18], [19].
This process enhances the realism and believability of
virtual content overlaid onto the real world, as virtual
objects can accurately interact with physical surfaces and
respond to changes in the environment. By utilizing depth
information captured by the device's sensors, these

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 3

http://journals.uob.edu.bh

methods allow virtual content to appear realistically
anchored to physical surfaces and objects in the
environment [20]. Reconstructing the spatial meshes also
allows improvement of feature point depth estimates that
are obtained by sparse depth information [21].

Depth-based methods play a critical role in spatial
mapping by providing the depth data necessary to construct
and update the spatial map in real-time. This allows
handheld AR applications to create dynamic and
interactive experiences where virtual content seamlessly
integrates with the user's surroundings. The raw depth data
obtained from the sensors is processed to generate a depth
map once the session has started, which is a 2D
representation of the 3D geometry of the scene where each
pixel contains depth information. Lightship ARDK [22] is
a handheld AR framework that has a depth-based algorithm
integrated based on ManyDepth, which is a deep learning
monocular depth estimation model inspired by multi-view
stereo (MVS) [23]. This framework supports spatial
mapping generated from the depth estimation model.
However, in literature there is limited discussion
surrounding this framework, thus in this paper we provide
a comparison of the spatial mapping and occlusion
handling output with our framework.

C. WebRTC-based Streaming

Web Real-Time Communication (WebRTC) is an

open-source project that allows audio and video

communication to work inside web pages [24]. WebRTC

is an open standard for real-time communication of video

and audio via a web browser. It provides JavaScript

Application Programming Interface (API) to realize the

audio/video functions and has features such as peer-to-

peer communication. In literature, WebRTC-based video

streaming has been explored since 2013 [25]. Since then,

the technology had improved drastically such that it has

been integrated into the popular game engine Unity,

known as Unity Render Streaming Framework [26]. This

framework allows real-time frame data streaming to

HTML5-based browsers, which can be found on virtually

any modern handheld device. This allows the devices to

leverage the powerful depth sensing capabilities of the

depth sensor over the network. Using network-based

solution for leveraging depth sensing devices is not new in

the handheld AR domain. Previous researchers have used

network to integrate Leap Motion hand tracking device to

introduce gesture interaction in handheld AR [27]. Thus,

this research follows a similar path of using network-based

solution for improving occlusion handling on handheld

AR.

3. METHODOLOGY

A. Experimental Design

This subsection introduces the proposed framework.
Fig. 1 shows the architecture of the framework. The

handheld device and the depth sensor are integrated via a
fusion module that performs the connection between the
devices. We chose ZED Mini for the depth sensor.
Physically, the ZED Mini is attached to the back of the
handheld device, while connected to a PC running Unity
game engine. In Unity, the depth sensor’s feed is displayed
in real time. Then, each frame is then sent to the handheld
device via the Unity Render Streaming Framework. On the
handheld device, the feed is displayed via the device’s
browser.

Figure 1. Architecture of the framework

Since the ZED Mini is attached to the handheld device,
the depth sensor is now effectively becoming a part of the
handheld device. Fig. 2 shows the attachment of ZED Mini
to the handheld device. As a result of this attachment,
moving the handheld device will also affect the feed
displayed in the screen.

Figure 2. Attachment of ZED Mini to handheld device

4 Author Name: Paper Title …

http://journals.uob.edu.bh

B. Fusion of Handheld Device with ZED Mini Module

This subsection describes a module that allows the

fusion of handheld device with the ZED Mini RGBD

depth sensor. Fig. 3 shows the fusion module hierarchy.

The core of this module is the Unity Render Streaming

Framework that is based on WebRTC. In the Unity editor,

this is where the fusion of the handheld device with the

ZED Mini module operates. The ZED_Rig_Mono

GameObject provided by the ZED SDK Unity Plugin is

now modified to be included in the fusion module with the

Unity Render Streaming’s prefabs and scripts. In the

RenderStreaming prefab, the SignalingManager.cs script

manages the communication with signaling servers. It is

responsible for sending the frame data output to the

receiver interface on the handheld device. It also

associates user input on the handheld device with events

that is then sent to the server. The Broadcast.cs script

contains the list of data that is streamed and received,

including the frame data (managed by

VideoStreamSender.cs) and input data (managed by

InputReceiver.cs). The data is exchanged between this

script and the SignalingManager.cs script. The fusion

module also contains functions that facilitate the

connection between the ZED Mini and handheld device,

managed by DeviceDetection.cs script. This function is

called before sending or receiving frame data requests.

Figure 3. Fusion module

C. WebRTC Connectivity

WebRTC uses a function called bandwidth estimation
to ensure real-time video communication. Using bandwidth
estimation, the bit rate (the amount of data sent and
received per second) can be reduced by automatically
lowering the resolution of the transmitted video when
bandwidth is low. The user on the handheld device browser
can control the application on the server using touch input.
The frame data from the depth sensor is streamed to the
handheld from the host PC running the Unity Render
Streaming Framework at runtime. To enable client
connection, the host PC server needs to be set up with

OpenSSL certificate, in which the procedure is described
in the Unity documentation. The client then needs to enter
the IP address of the host server to start the connection. The
host server then sends the feed to the client after
successfully connected. In Render Streaming a peer-to-
peer (P2P) network is created between two peers, and this
network sends video/audio/binary data.

The Web server enables communication between two
peers. This communication is called signaling. Fig. 4 is an
overview of how signaling works [26]. Peer 1 (Sender) and
Peer 2 (Receiver) are connected through the signaling
server. The sender sends signals to the signaling server,
which then forwards the signals to the receiver, establishing
a connection for video/audio/binary data exchange directly
between the peers. A signaling server is a server that helps
two peers find and connect to each other by exchanging
information like network data, media data, and session
control information. To facilitate the communication
between Unity and the Web browser, an application called
the web application is needed. It runs on a specific Uniform
Resource Locator (URL), which is the location of the Web
page that displays the Unity content. The application uses
the WebSocket protocol, which is a standard way of
exchanging data between a web server and a web client.
WebSocket allows for bidirectional and real-time
communication, which is essential for interactive and
immersive Unity applications. The web application also
handles the connection establishment, authentication, and
message routing between Unity and the Web browser.

Figure 4. Signaling overview [26]

Peer 1 (Sender) and Peer 2 (Receiver) are connected

through the signaling server. The sender sends signals to

the signaling server, which then forwards the signals to the

receiver, establishing a connection for video/audio/binary

data exchange directly between the peers. Fig. 5 provides

a more detailed description of peer-to-peer communication

using signaling server [26].

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 5

http://journals.uob.edu.bh

Figure 5. Peer-to-peer communication using signaling server [26]

A signaling server is a server that helps two peers find

and connect to each other by exchanging information like

network data, media data, and session control information.

The figure shows the steps involved in establishing a

connection between Peer 1 (Sender) and Peer 2 (Receiver)

using WebRTC, a technology that enables real-time

communication between browsers and devices. Here are

the steps:

• Peer 1 creates an Offer Session Description

Protocol (SDP), which is a description of the

media capabilities and preferences of Peer 1. Peer

1 sends the offer SDP to the signaling server,

which forwards it to Peer 2.

• Peer 2 receives the Offer SDP and creates an

Answer SDP, which is a description of the media

capabilities and preferences of Peer 2 that are

compatible with the Offer SDP. Peer 2 sends the

Answer SDP to the signaling server, which

forwards it to Peer 1.

• Peer 1 and Peer 2 exchange Interactive

Connectivity Establishment (ICE) candidates,

which are possible ways of connecting to each

other over the internet. ICE candidates include

information like IP address, port, and protocol.

Peer 1 and Peer 2 send ICE candidates to the

signaling server, which forwards to the other

peer.

• Peer 1 and Peer 2 use the SDP and ICE candidates

to negotiate a direct connection for transferring

video, audio, or binary data. The signaling server

is no longer needed for the communication.

To facilitate the communication between Unity and the

Web browser, an application called the web application is

needed. It runs on a specific Uniform Resource Locator

(URL), which is the location of the Web page that displays

the Unity content. The application uses the WebSocket

protocol, which is a standard way of exchanging data

between a web server and a web client. WebSocket allows

for bidirectional and real-time communication, which is

essential for interactive and immersive Unity applications.

The web application also handles the connection

establishment, authentication, and message routing

between Unity and the Web browser.

D. Pilot Test Application

This subsection introduces the applications that have

been developed for the pilot test. For our pilot test, we

perform comparison between our framework and ARDK

framework, therefore there are two applications that have

been developed. The first application we implemented the

ARDK framework and the second application we

implemented our framework. The flow for each

application differs slightly since our framework

incorporates network elements from the WebRTC. Fig. 6

shows the flowchart for ARDK application. When the

application starts, the system will scan the scene and

perform the spatial mapping. After that the virtual objects

are placed by selecting from a dropdown menu and

tapping on the screen of the handheld device. Then the

experiment is performed by observing the occlusion

handling when the virtual objects are covered by real

objects. For our experiment, we use a person’s hand and a

miniature house to cover the virtual objects.

Figure 6. Flowchart for ARDK application

Fig. 7 shows the flow for Z-HandAR

framework’s application. When the application starts, the

system will ask for the IP address of the server to perform

the connection. After the connection is successful, the

frame data will be start to transmit to the client handheld

device and displayed on the screen. Then, the procedure

follows the ARDK application’s flow.

6 Author Name: Paper Title …

http://journals.uob.edu.bh

Figure 7. Architecture of the framework

4. RESULTS AND DISCUSSIONS

A. Pilot Test Results

This subsection discusses about the results of the pilot
test, with comparison of two applications for spatial
mapping and occlusion handling. First, we explain on the
user interface (UI) of the applications. We created the same
UI for both applications, shown in Fig. 8. The UI of the
application consists of a reset button, angle indicator, a
virtual object selection dropdown menu, occlusion toggle,
and mesh toggle.

Figure 8. UI of the application

Table 1 shows the functionalities of each UI elements.
The reset button is used for resetting the test quickly
without closing and restarting the application. The angle
indicator is to ensure a similar range of angle for both
devices during testing. We chose angles between 75
degrees to 95 degrees for this test. The virtual object
dropdown menu is for selecting the AR objects that will be
registered in the scene. For this test, we chose basic
primitives which are cube, cylinder, and sphere. The
occlusion toggle allows switching on and off the occlusion
handling effects. When the toggle is on, occlusion handling
will occur, and vice versa. Similarly, the mesh toggle
allows switching on and off the mesh generated during
spatial mapping process. When the toggle is on, mesh will
be displayed, and vice versa.

TABLE I. UI ELEMENTS FUNCTIONALITIES

UI Element

Label

Name Functionality

(i) Reset button resetting the test

(ii) Angle indicator ensure similar range of

angle for both devices

during testing

(iii) Virtual object

dropdown menu

selecting the AR

objects

(iv) Occlusion toggle switching on and off

the occlusion handling
effects

(v) Mesh toggle switching on and off

the mesh generated
during spatial

mapping process

The results of the spatial mapping process are shown in
Fig. 9. In Fig. 9(a), the spatial map of ARDK application is
visualized as blue wireframe meshes. In Fig. 9(b), the
spatial map of the ZED Mini transmitted to the handheld
device using our framework is shown.

Figure 9. Spatial mapping process of both applications

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 7

http://journals.uob.edu.bh

We present the comparative results of the occlusion
handling between ARDK and our framework in Figure 9.
Fig. 10(a) and Fig. 10(b) show the results of ARDK’s
occlusion handling. In Fig. 10(a), the Occlusion Toggle is
turned off, showing no effects of occlusion handling. In
Fig. 10(b), the Occlusion Toggle is turned on, resulting in
the pixel of the virtual objects becoming invisible when real
objects is obstructing them. However, it can be seen that
the boundary between the real object and virtual object are
unsmooth. There are also some pixels in other virtual
objects that are not within the occluded area that also
became invisible, shown in red circle. Figure 10(c) an Fig.
9(d) shows the results of our framework’s occlusion
handling. In Fig. 10(c), the Occlusion Toggle is turned off,
showing no effects of occlusion handling. In Fig. 10(d), the
Occlusion Toggle is turned on, once again resulting in the
pixel of the virtual objects becoming invisible when real
objects is obstructing them. Using this framework, the
boundary between the real object and virtual object are
smoother. The pixels in other virtual objects that are not
occluded were also not affected, showing improvement
from the ARDK framework. Fig. 10(e) and Fig. 10(f)
shows a side-by-side comparison of the results between the
ARDK framework and our framework, using a miniature
house as the real object. In Fig. 10(e), the ARDK
framework is able to produce a smoother occlusion,
however there are still parts of the boundary between the
real and virtual object that have visible jaggies, whereas in
Fig. 10(f), with our framework the occlusion handling
results are smooth on all parts. The issue of other virtual

objects that are not affected by the occluding object
becoming invisible is also present in the ARDK result.

B. Discussions

From the pilot test results, it can be seen that our

framework was able to be implemented on handheld AR.

The WebRTC-based streaming allows the frame data from

the ZED Mini to be transmitted from the server to the

handheld device, thereby enabling the handheld device to

leverage the ZED Mini’s depth sensing features. We

observed the spatial mapping and occlusion handling of

our framework, and it is an improvement over the ARDK

framework.

Since our framework is using a network-based

solution, we have to make sure that the internet connection

is fast and stable to ensure the frame data is consistently

transmitted without hiccups. In this case, ARDK has the

advantage of running locally on the device. However,

given that the frame data streaming technology we use can

be implemented on any device that allows development

with Unity, our solution is scalable with future devices.

The Unity Render Streaming documentation described

that the network performance does have impact on the

resolution quality. Thus, finding a way to optimize the data

transmission between the PC server and the handheld

device could improve this limitation. Second, the

framerate of the proposed framework prototype can

sometimes drop and causes lag during the runtime. The lag

is mostly obvious during the spatial mapping process. It

Figure 10. Results comparison between ARDK and Z-HandAR framework

8 Author Name: Paper Title …

http://journals.uob.edu.bh

might be caused by the number of geometries that the

streaming server needs to send to the handheld device.

The movement of the user is also restricted due to

being connected to the PC. This limitation could be

improved by substituting the PC with an embedded

computing device. Stereolabs claimed that the Nvidia

Jetson Nano embedded computer is compatible with the

ZED software development kit (SDK) and able to

calculate the depth with the depth sensors, albeit with less

performance [28] Thus, this is an interesting research

direction to improve this framework.

5. CONCLUSION

Our contribution from this research is the integration of

the handheld device with RGBD depth sensor that is able

to perform spatial mapping. Spatial mapping generates

detailed and accurate representation of the physical

environment in the digital space via three-dimensional

(3D) meshes. This mesh can used for occlusion handling

through specific shaders that hides the meshes’ rendering

while still keeping the depth information. Since spatial

mapping involves understanding of the environment

depth, spatial mapping can be called depth-based

mapping. RGBD depth sensors are able to perform spatial

mapping with high precision, however a high-end PC is

needed to perform the depth calculation process. Thus, this

research contributed to leveraging the depth sensing power

of the depth sensor on handheld device. Network-based

streaming method was used to integrate the handheld

device with the depth sensor. Thus, the handheld device is

now able to perform the spatial mapping.

The integration of the depth sensor also contributed to

the design of an improved framework for handheld AR

occlusion handling. The framework’s design was

explained extensively in the methodology to show its

underlying principles and operational mechanisms. The

practicality of the framework was tested in the pilot test.

Overall, the integration of a handheld device with ZED

Mini depth sensor offers promising potential for

improving occlusion handling and reducing flickering in

AR applications. The stereo vision technology in the ZED

Mini allows near accurate depth sensing. Handheld

devices usually have limited processing power compared

to a desktop PC, which can be observed by the ARDK

results. By integrating the ZED Mini that runs on the PC

server, computational constraints can be lifted and allow

improved handheld AR spatial mapping and occlusion

handling. This in turn allows developers to create more

immersive and realistic AR experiences that seamlessly

blend virtual and real-world elements.

Further experimentation and optimization of this

integration could lead to significant advancements in

handheld AR technology. Implementing the ZED Mini

depth sensor in handheld AR applications presents several

challenges. Streaming the frame data from the ZED Mini

to the handheld device in real-time requires robust data

transfer protocols and efficient processing capabilities to

ensure low latency and high throughput. We have

observed several times whereby the frame data have delay

in transmission, therefore making the streaming lag. The

framerate also dropped noticeably during the spatial

mapping process. We would propose in the future to

explore compression methods for improving the latency

issue, as done by [29]. Compressing the data transmission

could also optimize power consumption to prolong battery

life of the handheld device.

Evaluating handheld AR experiences also require real

user use cases. Occlusion handling plays a significant role

in affecting the user’s depth perception and is primarily a

visual phenomenon, thus evaluating it relies on conducting

a user evaluation [30]. Thus, in the future, we would

conduct user evaluation testing to gather user satisfaction

levels on the usage of this handheld AR framework.

ACKNOWLEDGMENT

We would like to thank ViCubeLab at Universiti
Teknologi Malaysia for their invaluable support and
facilities.

REFERENCES

[1] F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in

augmented reality tracking, interaction and display: A review
of ten years of ISMAR,” in 2008 7th IEEE/ACM International

Symposium on Mixed and Augmented Reality, 2008, pp. 193–

202. doi: 10.1109/ISMAR.2008.4637362.
[2] M. C. de F. Macedo and A. L. Apolinario, “Occlusion

Handling in Augmented Reality: Past, Present and Future,”

IEEE Trans Vis Comput Graph, p. 1, 2021, doi:
10.1109/TVCG.2021.3117866.

[3] D. E. Breen, R. T. Whitaker, E. Rose, and M. Tuceryan,

“Interactive Occlusion and Automatic Object Placement for
Augmented Reality,” Computer Graphics Forum, vol. 15, no.

3, pp. 11–22, 1996, doi: https://doi.org/10.1111/1467-

8659.1530011.
[4] Y. Tian, T. Guan, and C. Wang, “Real-Time Occlusion

Handling in Augmented Reality Based on an Object Tracking

Approach,” Sensors, vol. 10, no. 4, pp. 2885–2900, 2010, doi:
10.3390/s100402885.

[5] R. Benenson, “Occlusion Handling,” in Computer Vision: A

Reference Guide, K. Ikeuchi, Ed., Boston, MA: Springer US,
2014, pp. 551–552. doi: 10.1007/978-0-387-31439-6_136.

[6] M. M. Shah, H. Arshad, and R. Sulaiman, “Occlusion in

augmented reality,” in 2012 8th International Conference on
Information Science and Digital Content Technology

(ICIDT2012), 2012, pp. 372–378.

[7] N. A. B. Abdul Halim and A. W. B. Ismail, “Raycasting
method using hand gesture for target selection on the occluded

object in handheld Augmented Reality,” in 2021 6th IEEE

International Conference on Recent Advances and Innovations
in Engineering (ICRAIE), 2021, pp. 1–6. doi:

10.1109/ICRAIE52900.2021.9704035.

[8] N. M. and I. A. W. Ahmad Muhammad Anwar and Suaib,

“Review of Model-Based Techniques in Augmented Reality

Occlusion Handling,” in Expert Clouds and Applications, S.
and I. I. Jeena Jacob I. and Kolandapalayam Shanmugam, Ed.,

Singapore: Springer Nature Singapore, 2023, pp. 629–641.

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 9

http://journals.uob.edu.bh

[9] N. A. A. Halim and A. W. Ismail, “Target selection in handheld

Augmented Reality for distant and occluded object,” in 2022

IEEE 7th International Conference on Recent Advances and
Innovations in Engineering (ICRAIE), 2022, pp. 266–271. doi:

10.1109/ICRAIE56454.2022.10054325.

[10] J. Zhang et al., “MobiDepth: Real-Time Depth Estimation
Using on-Device Dual Cameras,” in Proceedings of the 28th

Annual International Conference on Mobile Computing And

Networking, in MobiCom ’22. New York, NY, USA:
Association for Computing Machinery, 2022, pp. 528–541.

doi: 10.1145/3495243.3560517.

[11] Y. Tian, Y. Ma, S. Quan, and Y. Xu, “Occlusion and Collision
Aware Smartphone AR Using Time-of-Flight Camera,” in

Advances in Visual Computing, G. Bebis, R. Boyle, B. Parvin,

D. Koracin, D. Ushizima, S. Chai, S. Sueda, X. Lin, A. Lu, D.

Thalmann, C. Wang, and P. Xu, Eds., Cham: Springer

International Publishing, 2019, pp. 141–153.

[12] J. Valentin et al., “Depth from Motion for Smartphone AR,”
ACM Trans. Graph., vol. 37, no. 6, Dec. 2018, doi:

10.1145/3272127.3275041.

[13] “Depth Adds Realism | ARCore | Google Developers.”
Accessed: Apr. 16, 2023. [Online]. Available:

https://developers.google.com/ar/develop/depth

[14] R. Du et al., “DepthLab: Real-Time 3D Interaction with Depth
Maps for Mobile Augmented Reality,” in Proceedings of the

33rd Annual ACM Symposium on User Interface Software and

Technology, in UIST ’20. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 829–843. doi:

10.1145/3379337.3415881.

[15] L. Burger et al., “Comparative evaluation of three
commercially available markerless depth sensors for close-

range use in surgical simulation,” Int J Comput Assist Radiol

Surg, vol. 18, no. 6, pp. 1109–1118, 2023, doi:
10.1007/s11548-023-02887-1.

[16] D. Wolf, T. Wagner, and E. Rukzio, “Low-Cost Real-Time

Mental Load Adaptation for Augmented Reality Instructions -
A Feasibility Study,” in 2019 IEEE International Symposium

on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct),
2019, pp. 1–3. doi: 10.1109/ISMAR-Adjunct.2019.00015.

[17] M. Martini, F. Solari, and M. Chessa, “Obstacle Avoidance

and Interaction in Extended Reality: An Approach Based
on 3D Object Detection,” in Image Analysis and Processing –

ICIAP 2023, A. and H. E. Foresti Gian Luca and Fusiello, Ed.,

Cham: Springer Nature Switzerland, 2023, pp. 111–122.
[18] J. Ferrão, P. Dias, B. S. Santos, and M. Oliveira,

“Environment-Aware Rendering and Interaction in Web-

Based Augmented Reality,” J Imaging, vol. 9, no. 3, 2023, doi:
10.3390/jimaging9030063.

[19] C. Zhou, Q. Yan, Y. Shi, and L. Sun, “DoubleStar: Long-

Range Attack Towards Depth Estimation Based Obstacle
Avoidance in Autonomous Systems,” 2021, doi:

10.48550/arxiv.2110.03154.

[20] B. Glocker, J. Shotton, and A. Criminisi, “Real-Time RGB-D
Camera Relocalization via Randomized Ferns for Keyframe

Encoding,” Visualization and Computer Graphics, IEEE

Transactions on, vol. 21, pp. 571–583, Oct. 2015, doi:
10.1109/TVCG.2014.2360403.

[21] T. Jin, S. Wu, M. Dasari, K. Apicharttrisorn, and A. Rowe,

“StageAR: Markerless Mobile Phone Localization for AR in
Live Events,” in 2024 IEEE Conference Virtual Reality and 3D

User Interfaces (VR), 2024, pp. 1000–1010. doi:

10.1109/VR58804.2024.00119.
[22] Niantic, “Lightship ARDK.” Accessed: Apr. 15, 2023.

[Online]. Available: https://lightship.dev/

[23] J. Watson, O. Mac Aodha, V. Prisacariu, G. J. Brostow, and M.
Firman, “The Temporal Opportunist: Self-Supervised Multi-

Frame Monocular Depth,” CoRR, vol. abs/2104.14540, 2021,

[Online]. Available: https://arxiv.org/abs/2104.14540

[24] C. Jennings, T. Hardie, and M. Westerlund, “Real-time

communications for the web,” IEEE Communications

Magazine, vol. 51, no. 4, pp. 20–26, 2013, doi:
10.1109/MCOM.2013.6495756.

[25] J. K. Nurminen, A. J. R. Meyn, E. Jalonen, Y. Raivio, and R.

Garcıa Marrero, “P2P media streaming with HTML5 and
WebRTC,” in 2013 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), 2013, pp.

63–64. doi: 10.1109/INFCOMW.2013.6970739.
[26] Unity Technologies, “About Unity Render Streaming”,

Accessed: Nov. 23, 2023. [Online]. Available:

https://docs.unity3d.com/Packages/com.unity.renderstreaming
@3.1/manual/index.html

[27] A. Ismail, M. Aladin, and M. N. A. Nor’a, “Real Hand Gesture

in Augmented Reality Drawing with Markerless Tracking on

Mobile,” International Journal of Computing and Digital

Systems, vol. 12, pp. 1071–1080, Oct. 2022, doi:

10.12785/ijcds/120186.
[28] Stereolabs, “Announcing ZED SDK for Jetson Nano.”

Accessed: Feb. 19, 2024. [Online]. Available:

https://www.stereolabs.com/blog/announcing-zed-sdk-for-
jetson-nano

[29] A. Wanis Ismail, S. Abd Karim Ishigaki, and F. Edora Fadzli,

“Improved Real-time 3D Reconstruction Method for Mixed
Reality Telepresence,” International Journal of Computing

and Digital Systems, vol. 20, pp. 2210–142, doi:

10.12785/ijcds/XXXXXX.
[30] M. Alfakhori, J. S. Sardi Barzallo, and V. Coors, “Occlusion

Handling for Mobile AR Applications in Indoor and Outdoor

Scenarios,” Sensors, vol. 23, no. 9, 2023, doi:
10.3390/s23094245.

Muhammad Anwar Ahmad is

currently a PhD student at Universiti

Teknologi Malaysia, Skudai Johore. He

is a member of UTM Vicubelab – a

research group of experts in virtual,

visualization, and vision. He graduated

from UTM with Bachelor’s degree in

2016. He received his MPhil from UTM

in 2019, with research focus on 3D

facial expression of local cultural dance.

For his PhD, his research focus is towards Mixed/Augmented

Reality technology. He is also a member of mivielab (mixed and

virtual environment research lab).

Norhaida Mohd Suaib is

currently a Senior Lecturer in

computer graphics and computer

vision at the Faculty of

Computing, Universiti Teknologi

Malaysia, Skudai, Johore. She is

a member of UTM Vicubelab – a

research group of experts in

virtual, visualization, and vision.

Her expertise is in

Mixed/Augmented Reality

technology, computer graphics algorithm & techniques,

10 Author Name: Paper Title …

http://journals.uob.edu.bh

interactive computer graphics, visualization and computer

graphics and cultural heritage.

Ajune Wanis Ismail is a senior

lecturer at Johor Universiti

Teknologi Malaysia (UTM).

She is currently the head of

UTM Vicubelab – a research

group of experts in virtual,

visualization, and vision. She

earned her B.Sc., M.Sc., and

Dr. Sc. degrees from UTM. She

earned a B.Sc. in computer

graphics and computer vision

and began research on Augmented Reality, which is now her

primary research focus. Her expertise is in Mixed/Augmented

Reality technology. She is also the head of mivieLab (mixed and

virtual environment research lab).

