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Abstract: In this study, the integration of a handheld device with a ZED Mini depth sensor is explored to produce Z-HandAR, a 

framework that enhances occlusion handling in handheld Augmented Reality (AR) applications. The aim is to improve the occlusion 

handling capabilities of the conventional AR depth-based framework by leveraging the powerful stereo vision technology of an RGBD 

depth sensor. By combining the handheld device with the depth sensor, we can benefit from accurate depth information for more 

realistic AR experiences. The setup involves the fusion of handheld device with depth sensor via a fusion module involving Unity 

Render Streaming, a WebRTC-based streaming framework. This allows the handheld device to access the frame data captured by the 

depth sensor in real-time. For this study, we conducted a pilot test to get the finding where we aim to enhance occlusion handling and 

reduce flickering in handheld AR applications. We compare our results with one of the state-of-the-art handheld AR frameworks, 

Lightship ARDK. Our results show improvement over Lightship ARDK’s handheld AR occlusion handling. This paper explores a 

promising potential for improving occlusion handling in handheld AR applications. By leveraging the stereo vision technique of the 

depth sensor, we present the experiments and framework of this integration could lead to significant advancements in handheld AR 

technology. 
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1. INTRODUCTION 

Augmented Reality (AR) combines real and virtual 
objects through specific displays. One of the displays is 
handheld devices [1]. Handheld AR refers to AR 
experiences that are accessed through handheld devices 
such as smartphones or tablets. One of the remaining issues 
in handheld AR is occlusion [2]. Occlusion occurs when 
objects closer to viewer obscure the view of object further 
away along line-of-sight [3]. Users will have the 
misconception that the real object is further from the 
viewpoint than the virtual objects when the virtual objects 
are occluded by the real objects in the scene [4]. Occlusion 
handling aims to understand the surroundings and how 
virtual objects are partially or fully occluded by real 
objects. By definition, occlusion handling is a set of 
techniques to mitigate the effects of occlusion when doing 
inference from image [5]. In context of AR, when the 
system detects overlapping between real and virtual 
objects, the system needs to optimize rendering 
accordingly by not drawing what is not visible [6]. 

Occlusion-free is a scenario where occlusion is no longer a 
concern. Thus, occlusion-free terminology has known as 
the solution to occlusion issue. 

Depth-based methods for occlusion handling in 
handheld AR applications utilize depth information to 
enhance the realism and accuracy of virtual object 
placement within real-world scenes [7]. Unlike traditional 
model-based approaches, which rely on predefined 3D 
models to approximate occlusion, depth-based methods 
directly analyze depth data obtained from depth sensors or 
depth estimation algorithms [8]. These methods offer 
several advantages, including the ability to handle both 
static and dynamic scenes, adaptability to various 
environments ranging from simple to complex, and 
improved occlusion accuracy. By leveraging depth 
information, these methods enable AR applications to 
better understand the spatial relationships between virtual 
and real objects, resulting in more realistic and immersive 
user experiences [9]. Additionally, depth-based methods 
facilitate tasks such as lighting estimation, collision 
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detection, avatar pathfinding, and spatial mapping, further 
enhancing the capabilities of AR systems. Through a 
comparative analysis of depth-based approaches, 
researchers aim to identify the most effective techniques 
for occlusion handling in handheld AR applications, 
contributing to advancements in AR technology and user 
interaction. 

This paper proposes a framework that integrates 

handheld AR with ZED Mini, a stereo vision-based RGBD 

depth sensor via a fusion module consisting of a WebRTC-

based streaming. A pilot test has been developed on 

handheld AR to obtain the initial results of this framework. 

This paper also studies about spatial mapping on handheld 

AR. The spatial mapping is a process to generate spatial 

map as the output. It can be achieved using specific 

methods involving algorithms and techniques for depth 

data and transforming it into a spatial map. 

2. RELATED WORKS 

A. Depth-based Handheld AR Occlusion Handling 

Depth-based methods for occlusion handling in AR rely 
on depth information for determining the relative 
positioning between virtual and real object in the scene. 
Generally, depth-based handheld AR occlusion handling 
can be classified with three main approaches [10], which 
are using embedded depth-sensor, learning-based depth 
prediction, and monocular depth estimation. Tian and Ma’s 
work [11] used a depth sensor called time-of-flight (ToF) 
camera for occlusion handling and collision detection on an 
Oppo R17 Pro smartphone. However, ToF lack geometric 
details that can hinder certain physics simulations that 
necessitate detailed geometry. The method from [12] used 
a stereo vision technique called stereo matching to estimate 
depth using monocular camera. Their method is now 
integrated in Google ARCore as Depth API which is now 
accessible in millions of Android-based phones worldwide 
[13]. However, the limitation of this method is that it 
cannot accurately track objects in motion [10]. Lightship 
ARDK is another state-of-the-art handheld AR framework 
which utilizes learning-based depth-prediction model for 
estimating depth and performing occlusion handling. 
Based on [12], they found that they were able to effectively 
enable handheld AR application to be occlusion-aware. 
Depth can be used not only to support the process of 
occlusion handling, but also for better understanding of the 
real scene such as 3D shape of the objects and the global 
illumination condition of the scene [2]. [12] has applied 
depth-based method and focus on improving occlusion, 
while Du et al. [14] had used  depth-based method has been 
applied for lighting estimation, collision detection, avatar 
pathfinding, depth-aware object placement, depth of field. 
Occlusion problems still can be handled through model-
based method; however, the depth-based method can cater 
for both static or dynamic scene and suitable for simple to 
complex environment while model-based method is 
suitable for simple and static scene [6]. However, these 

approaches have limitations when it comes to accurately 
estimating the depth such as pose imprecision, low-
textured areas, and hardware constraints that can cause 
rolling shutter artifacts and motion blur [12]. 

Based on the limitations of the related studies, we 
explored the potential of harnessing RGBD depth sensor 
for the purpose of reconstructing spatial mapping occlusion 
handling in handheld AR. RGBD depth sensors can 
produce a spatial awareness that allows real time occlusion 
handling based on a study by Burger et al. [15].  The 
authors compared three different depth sensors, which are 
devices that can measure the distance and shape of objects, 
for use in surgical simulation. From the comparison, it is 
found that the Intel D405 sensor is the most suitable for 
close-range applications, such as reconstructing the shape 
of the heart valve, but it has some limitations, such as not 
being able to handle reflective surfaces or thin structures. 
The ZED Mini sensor is the best choice for applications 
that need high speed and low resolution, such as tracking 
the movement of the tools. The Intel D415 sensor fails to 
reconstruct the heart valve models and is not recommended 
for surgical simulation. The authors also mentioned that 
ZED Mini’s NEURAL mode is a good compromise 
between the Z -accuracy and fill rate which is the fraction 
of pixels that contain valid measurements within a region 
of interest. There have been research on integration of 
RGBD depth sensor with other types of AR use cases. Wolf 
et al. [16] used head mounted display with ZED Mini to 
allow the use of the depth sensor’s spatial awareness 
capabilities to measure the mental load of users who wear 
a video see-through AR. Martini et al. [17] used ZED Mini 
in a system that combines 3D object detection, depth data 
from stereo cameras, and VR environment rendering to 
create an immersive virtual reality experience that avoids 
collisions with real obstacles and enhances interaction with 
virtual objects. This study determined the suitable RGBD 
depth sensor for occlusion handling in AR use case that 
require movements, which is essential in AR interactions. 

B. Spatial Mapping in AR 

Spatial mapping in AR involves the process of 
generating a digital representation of the physical 
environment, often referred to as a spatial map, to enable 
virtual objects to interact with the real world more 
effectively. Depth-based methods play a crucial role in 
spatial mapping by providing accurate depth information 
that can be used to construct and update the spatial map in 
real-time. By integrating depth data obtained from depth 
sensors or depth estimation algorithms, AR systems can 
create a detailed and precise spatial map that accounts for 
the 3D geometry of the environment, including the shapes 
and positions of objects, surfaces, and obstacles [18], [19]. 
This process enhances the realism and believability of 
virtual content overlaid onto the real world, as virtual 
objects can accurately interact with physical surfaces and 
respond to changes in the environment. By utilizing depth 
information captured by the device's sensors, these 
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methods allow virtual content to appear realistically 
anchored to physical surfaces and objects in the 
environment [20]. Reconstructing the spatial meshes also 
allows improvement of feature point depth estimates that 
are obtained by sparse depth information [21]. 

Depth-based methods play a critical role in spatial 
mapping by providing the depth data necessary to construct 
and update the spatial map in real-time. This allows 
handheld AR applications to create dynamic and 
interactive experiences where virtual content seamlessly 
integrates with the user's surroundings. The raw depth data 
obtained from the sensors is processed to generate a depth 
map once the session has started, which is a 2D 
representation of the 3D geometry of the scene where each 
pixel contains depth information. Lightship ARDK [22] is 
a handheld AR framework that has a depth-based algorithm 
integrated based on ManyDepth, which is a deep learning 
monocular depth estimation model inspired by multi-view 
stereo (MVS) [23]. This framework supports spatial 
mapping generated from the depth estimation model. 
However, in literature there is limited discussion 
surrounding this framework, thus in this paper we provide 
a comparison of the spatial mapping and occlusion 
handling output with our framework. 

C. WebRTC-based Streaming 

Web Real-Time Communication (WebRTC) is an 

open-source project that allows audio and video 

communication to work inside web pages [24]. WebRTC 

is an open standard for real-time communication of video 

and audio via a web browser. It provides JavaScript 

Application Programming Interface (API) to realize the 

audio/video functions and has features such as peer-to-

peer communication. In literature, WebRTC-based video 

streaming has been explored since 2013 [25]. Since then, 

the technology had improved drastically such that it has 

been integrated into the popular game engine Unity, 

known as Unity Render Streaming Framework [26]. This 

framework allows real-time frame data streaming to 

HTML5-based browsers, which can be found on virtually 

any modern handheld device. This allows the devices to 

leverage the powerful depth sensing capabilities of the 

depth sensor over the network. Using network-based 

solution for leveraging depth sensing devices is not new in 

the handheld AR domain. Previous researchers have used 

network to integrate Leap Motion hand tracking device to 

introduce gesture interaction in handheld AR [27]. Thus, 

this research follows a similar path of using network-based 

solution for improving occlusion handling on handheld 

AR. 

3. METHODOLOGY 

A. Experimental Design 

This subsection introduces the proposed framework. 
Fig. 1 shows the architecture of the framework. The 

handheld device and the depth sensor are integrated via a 
fusion module that performs the connection between the 
devices. We chose ZED Mini for the depth sensor. 
Physically, the ZED Mini is attached to the back of the 
handheld device, while connected to a PC running Unity 
game engine. In Unity, the depth sensor’s feed is displayed 
in real time. Then, each frame is then sent to the handheld 
device via the Unity Render Streaming Framework. On the 
handheld device, the feed is displayed via the device’s 
browser. 

 

Figure 1.  Architecture of the framework 

Since the ZED Mini is attached to the handheld device, 
the depth sensor is now effectively becoming a part of the 
handheld device. Fig. 2 shows the attachment of ZED Mini 
to the handheld device. As a result of this attachment, 
moving the handheld device will also affect the feed 
displayed in the screen. 

 

Figure 2.  Attachment of ZED Mini to handheld device 
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B. Fusion of Handheld Device with ZED Mini Module 

This subsection describes a module that allows the 

fusion of handheld device with the ZED Mini RGBD 

depth sensor.  Fig. 3 shows the fusion module hierarchy. 

The core of this module is the Unity Render Streaming 

Framework that is based on WebRTC. In the Unity editor, 

this is where the fusion of the handheld device with the 

ZED Mini module operates. The ZED_Rig_Mono 

GameObject provided by the ZED SDK Unity Plugin is 

now modified to be included in the fusion module with the 

Unity Render Streaming’s prefabs and scripts. In the 

RenderStreaming prefab, the SignalingManager.cs script 

manages the communication with signaling servers. It is 

responsible for sending the frame data output to the 

receiver interface on the handheld device. It also 

associates user input on the handheld device with events 

that is then sent to the server. The Broadcast.cs script 

contains the list of data that is streamed and received, 

including the frame data (managed by 

VideoStreamSender.cs) and input data (managed by 

InputReceiver.cs). The data is exchanged between this 

script and the SignalingManager.cs script. The fusion 

module also contains functions that facilitate the 

connection between the ZED Mini and handheld device, 

managed by DeviceDetection.cs script. This function is 

called before sending or receiving frame data requests. 

 

 

Figure 3.  Fusion module 

C. WebRTC Connectivity 

WebRTC uses a function called bandwidth estimation 
to ensure real-time video communication. Using bandwidth 
estimation, the bit rate (the amount of data sent and 
received per second) can be reduced by automatically 
lowering the resolution of the transmitted video when 
bandwidth is low. The user on the handheld device browser 
can control the application on the server using touch input. 
The frame data from the depth sensor is streamed to the 
handheld from the host PC running the Unity Render 
Streaming Framework at runtime. To enable client 
connection, the host PC server needs to be set up with 

OpenSSL certificate, in which the procedure is described 
in the Unity documentation. The client then needs to enter 
the IP address of the host server to start the connection. The 
host server then sends the feed to the client after 
successfully connected. In Render Streaming a peer-to-
peer (P2P) network is created between two peers, and this 
network sends video/audio/binary data.  

The Web server enables communication between two 
peers. This communication is called signaling. Fig. 4 is an 
overview of how signaling works [26]. Peer 1 (Sender) and 
Peer 2 (Receiver) are connected through the signaling 
server. The sender sends signals to the signaling server, 
which then forwards the signals to the receiver, establishing 
a connection for video/audio/binary data exchange directly 
between the peers. A signaling server is a server that helps 
two peers find and connect to each other by exchanging 
information like network data, media data, and session 
control information. To facilitate the communication 
between Unity and the Web browser, an application called 
the web application is needed. It runs on a specific Uniform 
Resource Locator (URL), which is the location of the Web 
page that displays the Unity content. The application uses 
the WebSocket protocol, which is a standard way of 
exchanging data between a web server and a web client. 
WebSocket allows for bidirectional and real-time 
communication, which is essential for interactive and 
immersive Unity applications. The web application also 
handles the connection establishment, authentication, and 
message routing between Unity and the Web browser. 

 

 
Figure 4.  Signaling overview [26] 

Peer 1 (Sender) and Peer 2 (Receiver) are connected 

through the signaling server. The sender sends signals to 

the signaling server, which then forwards the signals to the 

receiver, establishing a connection for video/audio/binary 

data exchange directly between the peers. Fig. 5 provides 

a more detailed description of peer-to-peer communication 

using signaling server [26]. 
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Figure 5.  Peer-to-peer communication using signaling server [26] 

A signaling server is a server that helps two peers find 

and connect to each other by exchanging information like 

network data, media data, and session control information. 

The figure shows the steps involved in establishing a 

connection between Peer 1 (Sender) and Peer 2 (Receiver) 

using WebRTC, a technology that enables real-time 

communication between browsers and devices. Here are 

the steps: 

• Peer 1 creates an Offer Session Description 

Protocol (SDP), which is a description of the 

media capabilities and preferences of Peer 1. Peer 

1 sends the offer SDP to the signaling server, 

which forwards it to Peer 2. 

• Peer 2 receives the Offer SDP and creates an 

Answer SDP, which is a description of the media 

capabilities and preferences of Peer 2 that are 

compatible with the Offer SDP. Peer 2 sends the 

Answer SDP to the signaling server, which 

forwards it to Peer 1. 

• Peer 1 and Peer 2 exchange Interactive 

Connectivity Establishment (ICE) candidates, 

which are possible ways of connecting to each 

other over the internet. ICE candidates include 

information like IP address, port, and protocol. 

Peer 1 and Peer 2 send ICE candidates to the 

signaling server, which forwards to the other 

peer. 

• Peer 1 and Peer 2 use the SDP and ICE candidates 

to negotiate a direct connection for transferring 

video, audio, or binary data. The signaling server 

is no longer needed for the communication. 

To facilitate the communication between Unity and the 

Web browser, an application called the web application is 

needed. It runs on a specific Uniform Resource Locator 

(URL), which is the location of the Web page that displays 

the Unity content. The application uses the WebSocket 

protocol, which is a standard way of exchanging data 

between a web server and a web client. WebSocket allows 

for bidirectional and real-time communication, which is 

essential for interactive and immersive Unity applications. 

The web application also handles the connection 

establishment, authentication, and message routing 

between Unity and the Web browser. 

D. Pilot Test Application 

This subsection introduces the applications that have 

been developed for the pilot test. For our pilot test, we 

perform comparison between our framework and ARDK 

framework, therefore there are two applications that have 

been developed. The first application we implemented the 

ARDK framework and the second application we 

implemented our framework. The flow for each 

application differs slightly since our framework 

incorporates network elements from the WebRTC. Fig. 6 

shows the flowchart for ARDK application. When the 

application starts, the system will scan the scene and 

perform the spatial mapping. After that the virtual objects 

are placed by selecting from a dropdown menu and 

tapping on the screen of the handheld device. Then the 

experiment is performed by observing the occlusion 

handling when the virtual objects are covered by real 

objects. For our experiment, we use a person’s hand and a 

miniature house to cover the virtual objects. 

 

 

Figure 6.  Flowchart for ARDK application 

Fig. 7 shows the flow for Z-HandAR 

framework’s application. When the application starts, the 

system will ask for the IP address of the server to perform 

the connection. After the connection is successful, the 

frame data will be start to transmit to the client handheld 

device and displayed on the screen. Then, the procedure 

follows the ARDK application’s flow. 
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Figure 7.  Architecture of the framework 

4. RESULTS AND DISCUSSIONS 

A. Pilot Test Results 

This subsection discusses about the results of the pilot 
test, with comparison of two applications for spatial 
mapping and occlusion handling. First, we explain on the 
user interface (UI) of the applications. We created the same 
UI for both applications, shown in Fig. 8. The UI of the 
application consists of a reset button, angle indicator, a 
virtual object selection dropdown menu, occlusion toggle, 
and mesh toggle. 

 

Figure 8.  UI of the application 

Table 1 shows the functionalities of each UI elements. 
The reset button is used for resetting the test quickly 
without closing and restarting the application. The angle 
indicator is to ensure a similar range of angle for both 
devices during testing. We chose angles between 75 
degrees to 95 degrees for this test. The virtual object 
dropdown menu is for selecting the AR objects that will be 
registered in the scene. For this test, we chose basic 
primitives which are cube, cylinder, and sphere. The 
occlusion toggle allows switching on and off the occlusion 
handling effects. When the toggle is on, occlusion handling 
will occur, and vice versa. Similarly, the mesh toggle 
allows switching on and off the mesh generated during 
spatial mapping process. When the toggle is on, mesh will 
be displayed, and vice versa. 

 

TABLE I.  UI ELEMENTS FUNCTIONALITIES 

UI Element 

Label 

Name Functionality 

(i) Reset button resetting the test 

(ii) Angle indicator ensure similar range of 

angle for both devices 

during testing 

(iii) Virtual object 

dropdown menu 

selecting the AR 

objects 

(iv) Occlusion toggle switching on and off 

the occlusion handling 
effects 

(v) Mesh toggle switching on and off 

the mesh generated 
during spatial 

mapping process 

 

The results of the spatial mapping process are shown in 
Fig. 9. In Fig. 9(a), the spatial map of ARDK application is 
visualized as blue wireframe meshes.  In Fig. 9(b), the 
spatial map of the ZED Mini transmitted to the handheld 
device using our framework is shown. 

 

Figure 9.  Spatial mapping process of both applications 
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We present the comparative results of the occlusion 
handling between ARDK and our framework in Figure 9. 
Fig. 10(a) and Fig. 10(b) show the results of ARDK’s 
occlusion handling. In Fig. 10(a), the Occlusion Toggle is 
turned off, showing no effects of occlusion handling. In 
Fig. 10(b), the Occlusion Toggle is turned on, resulting in 
the pixel of the virtual objects becoming invisible when real 
objects is obstructing them. However, it can be seen that 
the boundary between the real object and virtual object are 
unsmooth. There are also some pixels in other virtual 
objects that are not within the occluded area that also 
became invisible, shown in red circle. Figure 10(c) an Fig. 
9(d) shows the results of our framework’s occlusion 
handling. In Fig. 10(c), the Occlusion Toggle is turned off, 
showing no effects of occlusion handling. In Fig. 10(d), the 
Occlusion Toggle is turned on, once again resulting in the 
pixel of the virtual objects becoming invisible when real 
objects is obstructing them. Using this framework, the 
boundary between the real object and virtual object are 
smoother. The pixels in other virtual objects that are not 
occluded were also not affected, showing improvement 
from the ARDK framework. Fig. 10(e) and Fig. 10(f) 
shows a side-by-side comparison of the results between the 
ARDK framework and our framework, using a miniature 
house as the real object. In Fig. 10(e), the ARDK 
framework is able to produce a smoother occlusion, 
however there are still parts of the boundary between the 
real and virtual object that have visible jaggies, whereas in 
Fig. 10(f), with our framework the occlusion handling 
results are smooth on all parts. The issue of other virtual 

objects that are not affected by the occluding object 
becoming invisible is also present in the ARDK result. 

B. Discussions 

From the pilot test results, it can be seen that our 

framework was able to be implemented on handheld AR. 

The WebRTC-based streaming allows the frame data from 

the ZED Mini to be transmitted from the server to the 

handheld device, thereby enabling the handheld device to 

leverage the ZED Mini’s depth sensing features. We 

observed the spatial mapping and occlusion handling of 

our framework, and it is an improvement over the ARDK 

framework.  

Since our framework is using a network-based 

solution, we have to make sure that the internet connection 

is fast and stable to ensure the frame data is consistently 

transmitted without hiccups. In this case, ARDK has the 

advantage of running locally on the device. However, 

given that the frame data streaming technology we use can 

be implemented on any device that allows development 

with Unity, our solution is scalable with future devices. 

The Unity Render Streaming documentation described 

that the network performance does have impact on the 

resolution quality. Thus, finding a way to optimize the data 

transmission between the PC server and the handheld 

device could improve this limitation. Second, the 

framerate of the proposed framework prototype can 

sometimes drop and causes lag during the runtime. The lag 

is mostly obvious during the spatial mapping process. It 

Figure 10.  Results comparison between ARDK and Z-HandAR framework 
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might be caused by the number of geometries that the 

streaming server needs to send to the handheld device. 

The movement of the user is also restricted due to 

being connected to the PC. This limitation could be 

improved by substituting the PC with an embedded 

computing device. Stereolabs claimed that the Nvidia 

Jetson Nano embedded computer is compatible with the  

ZED software development kit (SDK) and able to 

calculate the depth with the depth sensors, albeit with less 

performance [28] Thus, this is an interesting research 

direction to improve this framework. 

5. CONCLUSION 

Our contribution from this research is the integration of 

the handheld device with RGBD depth sensor that is able 

to perform spatial mapping. Spatial mapping generates 

detailed and accurate representation of the physical 

environment in the digital space via three-dimensional 

(3D) meshes. This mesh can used for occlusion handling 

through specific shaders that hides the meshes’ rendering 

while still keeping the depth information. Since spatial 

mapping involves understanding of the environment 

depth, spatial mapping can be called depth-based 

mapping. RGBD depth sensors are able to perform spatial 

mapping with high precision, however a high-end PC is 

needed to perform the depth calculation process. Thus, this 

research contributed to leveraging the depth sensing power 

of the depth sensor on handheld device. Network-based 

streaming method was used to integrate the handheld 

device with the depth sensor. Thus, the handheld device is 

now able to perform the spatial mapping. 

The integration of the depth sensor also contributed to 

the design of an improved framework for handheld AR 

occlusion handling. The framework’s design was 

explained extensively in the methodology to show its 

underlying principles and operational mechanisms. The 

practicality of the framework was tested in the pilot test. 

Overall, the integration of a handheld device with ZED 

Mini depth sensor offers promising potential for 

improving occlusion handling and reducing flickering in 

AR applications. The stereo vision technology in the ZED 

Mini allows near accurate  depth sensing. Handheld 

devices usually have limited processing power compared 

to a desktop PC, which can be observed by the ARDK 

results.  By integrating the ZED Mini that runs on the PC 

server, computational constraints can be lifted and allow 

improved handheld AR spatial mapping and occlusion 

handling. This in turn allows developers to create more 

immersive and realistic AR experiences that seamlessly 

blend virtual and real-world elements.  

Further experimentation and optimization of this 

integration could lead to significant advancements in 

handheld AR technology. Implementing the ZED Mini 

depth sensor in handheld AR applications presents several 

challenges. Streaming the frame data from the ZED Mini 

to the handheld device in real-time requires robust data 

transfer protocols and efficient processing capabilities to 

ensure low latency and high throughput. We have 

observed several times whereby the frame data have delay 

in transmission, therefore making the streaming lag. The 

framerate also dropped noticeably during the spatial 

mapping process. We would propose in the future to 

explore compression methods for improving the latency 

issue, as done by [29]. Compressing the data transmission 

could also optimize power consumption to prolong battery 

life of the handheld device.  

Evaluating handheld AR experiences also require real 

user use cases. Occlusion handling plays a significant role 

in affecting the user’s depth perception and is primarily a 

visual phenomenon, thus evaluating it relies on conducting 

a user evaluation [30]. Thus, in the future, we would 

conduct user evaluation testing to gather user satisfaction 

levels on the usage of this handheld AR framework.  
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