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Abstract: 

Artificial Intelligence in medical diagnostics has the potential to significantly increase patient care and healthcare outcomes. This synergy 

between advanced artificial intelligence technologies not only optimizes the efficiency of diagnostic analysis but also holds significant 

promise in improving patient outcomes and supporting healthcare professionals in delivering precise medical interventions. This paper 

presents a radically new approach that combines the effect of Large Language Models (LLM) with Computer Vision techniques aimed 

at increasing the performance of medical diagnosis and treatment recommendations for respiratory diseases. For image analysis, we 

use a pre-trained LLM from Hugging Face, ‘Llama-2-7B-chat-GGML’, and Convolution Neural Networks (CNN) which consists of 

InceptionV3, MobileNetV2, and NASNet. The CNN was able to classify chest X-ray images to be 92.85%, 91.88%, and 95.92%. 

Moreover, the LLM is used to analyze clinical data and generate therapeutic recommendations. We achieved a reduction in inference 

time of around 33.1% from 165.6 seconds to 111.9 seconds in the most general scenario. Such interaction of CNN and LLM in 

system use increases the information value of medical diagnostic analysis with high potential for increasing the healthcare outcome. 

Detailed information about the workflow, diagnostic techniques, and recommendation generation is presented. Experimental analysis of 

the developed system indicates the application of a combination of LLM and CNN for medical diagnostic purposes to aid healthcare 

professionals in making informed decisions and providing precise medical advice. 

Keywords: Bioinformatics, Natural language processing, Medical diagnosis, Respiratory diseases, Convolutional neural network, Large 

language models, Patient healthcare 

 

1. INTRODUCTION 

The healthcare industry and the field of bioinformatics 
have experienced significant evolution driven by advance- 
ments in artificial intelligence (AI) and natural language 
processing (NLP) [1], [2], [3]. Despite the promising in- 
tegration of AI in these areas, the development of a fully 
realised framework that synergizes the capabilities of large 
language models (LLMs) with the analytical power of 
convolutional neural networks (CNNs) for the diagnosis 
and management of respiratory diseases, such as pneumonia 
and COVID-19, remains incomplete. The need for such 
an integrated system is particularly acute in the realm of 
respiratory illnesses, where rapid and accurate diagnosis 
is crucial for effective treatment. While several studies 
have explored the individual benefits of LLMs and CNNs 
in medical contexts, their combined utility in a cohesive 
diagnostic and healthcare enhancement framework has not 
been fully explored or developed. This gap underscores 
an opportunity for a transformative approach that could 
substantially improve the outcomes for patients suffering 
from respiratory conditions by leveraging the strengths of 

both LLMs and CNNs. 

Respiratory diseases, particularly pneumonia and 
COVID-19, have presented significant challenges to global 
health due to their prevalence and the critical importance 
of timely and accurate diagnosis. While effective, 
traditional diagnostic methods often require considerable 
time and resources, which can delay the initiation of 
appropriate treatments. The advent of AI technologies, 
particularly CNNs, has shown great promise in the rapid 
and accurate classification of medical images [?], [?], 
[4]. Simultaneously, LLMs have demonstrated substantial 
capabilities in understanding and generating human-like 
text, making them invaluable in parsing clinical data and 
providing contextually relevant medical advice [5], [?]. 

In recent years, there has been an increasing focus 
on the application of CNNs for medical image analysis, 
with several studies highlighting their efficacy in detect- 
ing various conditions from radiographic images [?], [6]. 
For instance, CNN architectures such as DenseNet201 
and VGG19 have been employed successfully to classify 
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pneumonia and COVID-19 from chest X-rays with high 
accuracy [1], [6]. Concurrently, LLMs like GPT-3 have been 
explored for their potential to enhance clinical decision- 
making through advanced natural language understanding 
and generation [2], [3]. However, the integration of these 
two powerful technologies into a unified framework for 
respiratory disease diagnosis and management has not been 
fully realized. 

This paper aims to bridge this gap by presenting a novel 
integrated system that combines the strengths of LLMs 
and CNNs for the diagnosis and treatment recommendation 
of respiratory diseases. Our approach leverages the image 
classification prowess of CNNs with the contextual under- 
standing capabilities of LLMs to provide a comprehensive 
diagnostic and advisory system. Specifically, we utilize the 
’Llama-2-7B-chat-GGML’ model from Hugging Face in 
conjunction with CNN architectures such as InceptionV3, 
MobileNetV2, and NASNet to achieve high classification 
accuracies and generate tailored therapeutic suggestions. 
The key contributions of this work are: 

• Demonstrating the feasibility of integrating LLMs 
with CNNs for enhanced diagnostic accuracy. 

• Providing a detailed workflow of the system, in- 
cluding image analysis, disease classification, and 
recommendation generation. 

• Evaluating the performance of the integrated system 
in terms of classification accuracy and inference time, 
showing significant improvements in both areas. 

The remainder of this paper is structured as follows: 
Section 2 reviews the related work in the application of AI 
in medical diagnostics. Section 3 describes the methodology 
used in developing the integrated system. Section 4 presents 
the experimental results and performance analysis. Section 
5 discusses the implications of the findings and potential 
areas for future research. Finally, Section 6 concludes the 
paper, summarizing the key contributions and impact of the 
study. 

2. RelaTed WORK 

This section reviews the existing research on AI-driven 
diagnosis using CNNs and LLMs. It is divided into two 
subsections: the first is dedicated to the use of CNNs 
for detecting respiratory diseases, and the second reviews 
LLMs as tools for generating medical recommendations. 

A. CNNs for Respiratory Illness Detection 

Convolutional neural networks (CNNs) have demon- 
strated significant potential in the field of medical im- 
age analysis, particularly for the detection of respiratory 
diseases such as pneumonia and COVID-19. Numerous 
studies have explored various CNN architectures for their 
effectiveness in classifying medical images. For instance, 
DenseNet201 and VGG19 have been widely used due 
to their deep feature extraction capabilities and robust 

performance in image classification tasks [1], [?]. These 
architectures have shown high accuracy in distinguishing 
between normal and diseased states in chest X-ray and CT 
scan images. 

Cheng Wang proposed a method for diagnosing pneu- 
monia by using graph reasoning [7]. By building a graph 
representation of various lung regions, their proposed model 
was able to depict the relationships between various lung 
regions in an X-ray image and accurately detect pneumonia. 
Alhassan Mabrouk et al. [8] presented an ensemble model 
in their work that combines the predictions of various CNN 
architectures. By doing so, they were able to overcome 
the limitations of any particular CNN model and detect 
pneumonia with utmost accuracy and lower false positive 
scores. 

Another work done by Salehi et al. [4] proposed an au- 
tomatic transfer-learning method for pneumonia detection. 
Among their CNN models, DenseNet121 performed better 
than other models Xception, VGG19, and ResNet50 for 
pneumonia classification. Ezaz Khan [6] performed multi- 
class chest X-ray-based COVID-19 detection by pre-trained 
deep learning models - EfficientNetB1, NasNetMobile, and 
MobileNetV2. They also improved each CNN model’s 
performance by fine-tuning, retraining, and regularization. 
Their regularized EfficientNetB1 was able to outperform the 
other models in classification accuracy. Tuan Le Dinh [9] 
performed COVID-19 classification on a custom dataset 
using several CNN models - DenseNet, ResNet50, In- 
ceptionNet, Swin Transformer, Hybrid EfficientNet-DOLG. 
They also assessed the accuracy, precision, recall, and F1 
scores to validate each CNN architecture’s performance for 
chest X-ray classification. 

The comparative performance of these studies is sum- 
marized in Table I, which highlights the accuracy, precision, 
recall, and F1 scores achieved by each method. 

B. LLM-Based Recommendations 

Pretrained Large Language Models (LLMs) have 
emerged as powerful tools for generating human-like texts. 
GPT-3 [5] achieves strong performance on many NLP 
datasets, including question-answering, translation, and 
cloze tests. This model, with its 175 billion parameters, 
excels in zero-shot, one-shot, and few-shot settings. RecSys- 
Assistant-Human (RAH) [10], which processes complex 
user inquiries and generates context-aware interactive rec- 
ommendations. 

LLMs can encode textual features for enhanced us- 
age, item representations, and recommendation purposes. 
Hao Ding [11] proposed a ZeroShot recommender system 
that learns user behavioral patterns and generalizes across 
datasets using BERT. This system provides relatable item 
recommendations. Yupeng Hou [12] evaluated the promis- 
ing zero-shot ranking abilities of LLMs by constructing 
natural language prompts with historical interactions. They 
found that LLMs could perceive the order of sequential 
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TABLE I. Comparison Table of Related Classification Methods in Detecting Pneumonia and Covid-19 
 

Reference Name Accuracy Precision Recall F1 score 

C. Wang [7] Efficient Graph Model 0.89 0.89 0.91 0.90 

A. Mabrouk [8] Ensemble learning 0.9391 0.9396 0.9299 0.9391 

M. Salehi [4] DenseNet121 0.868 0.868 - 0.898 

Ejaz Khan [6] EfficientNetB1 0.9613 0.9725 - 0.975 

T. Le Dinh [9] Hybrid EfficientNet- DOLG 0.95 0.95 0.96 0.95 

 

interactions and utilize them effectively for recommendation 
purposes. 

Early research in LLM-based recommendations includes 
M6-Rec, an open-ended language model [13], and P5 [14], 
which unifies various recommendation tasks into a shared 
language modeling and NLP framework. Zhang et al. uti- 
lized GPT-2 [15] or BERT [16] as the recommender engine 
for next-movie prediction. 

LLMs have shown remarkable potential to significantly 
enhance medical healthcare facilities and bioinformatics re- 
search [17]. LLMs can encode clinical knowledge for better 
understanding [18] and extract biomedical information from 
knowledge graphs [19]. BERT, for instance, performed a 
highly accurate classification of chest radiographic reports 
by pretraining on 3.8 million text reports [1]. Malik Sal- 
lam [2] reviewed the potential use of the GPT-3 model 
for healthcare education and research. GPT-3 can also 
perform successive computer-aided diagnoses on medical 
images [20]. 

More modern LLMs, including OPT (ranging from 
125M to 175B parameters) [5], PaLM (540B parame- 
ters) [21], have shown impressive results in diverse NLP 
tasks such as logical reasoning, problem-solving, and unsu- 
pervised multitask learning. Another LLM model, UniS- 
rec [22], learns universal representations of user behav- 
ior sequences using pre-trained large language models. 
Youpeng Hou demonstrated the VQ-Rec framework [23], 
which obtains text encodings via language models and 
maps them for embedding lookups. ChatRec [24] employs 
conversational multi-round recommendations using LLMs, 
showing that LLMs can enhance cross-domain recommen- 
dation systems by improving interactivity and explainability. 

The knowledge sphere of modern LLMs has broad- 
ened compared to earlier language models. Several studies 
have already shown preliminary results using LLMs as 
recommenders with task-specific prompts. Junling Liu [25] 
assessed the performance of GPT-3 as a recommendation 
engine compared to traditional recommendation models. 
Their analysis shows that GPT-3 outperforms traditional 
methods in intelligible recommendation tasks and its po- 
tential to generate explanations. LLMs are also capable 
of providing personalized recommendations based on user 

instructions [26]. Damien Sileo [27] proposed a different 
recommendation framework that only uses unstructured text 
corpora as training data. The work concludes that standard 
language models can perform next-item recommendations 
compared to standard matrix factorization on trained data. 
The various LLM-based recommendation methods and their 
key findings are summarized in Table ??. 

C. Summary of Related Work 

Respiratory disease detection has seen increasing use 
of convolutional neural networks with studies using archi- 
tectures like DenseNet201 and VGG19. Moreover, Wang’s 
graph reasoning model for pneumonia and Mabrouk et 
al.’s ensemble have also examined CNN application in 
this modality. In addition to these examples, Salehi et al. 
used transfer learning with DenseNet121, and Khan’s multi- 
class COVID-19 detection with EfficientNetB1 observed 
increased performance through fine-tuning. Table shows the 
comparison of classification methods to detect pneumonia 
and COVID-19 disease. 

In the domain of recommendation and generated text, 
large language models have seen concurrent advances. 
Models like GPT-3 have been employed for a range of 
NLP tasks, including question-answering and translation, 
proving their efficacy in zero-shot and few-shot learning. 
Other LLM-based frameworks like RAH and InteRecAgent 
have been designed for contextual question-answering and 
interactive recommendation, respectively. In the context of 
medical healthcare, LLMs have been harnessed for clinical 
knowledge encoding, biomedical information extraction, 
and even the classification of radiographic reports, as seen 
with BERT pre-trained on text reports. GPT-3’s capabil- 
ities extend to aiding healthcare education and successive 
computer-aided medical diagnoses. Table shows a summary 
of the various methods along with their findings. 

In summary, modern LLMs such as OPT, PaLM, and 
LlaMA show rapid results across NLP tasks. Their devel- 
opment has seen the expansion of the knowledge sphere, 
with LLMs providing recommenders for various studies and 
demonstrating effective use even in task-specific prompts. 
Liu’s evaluation showcased GPT-3’s performance over tra- 
ditional baselines in intelligible tasks, and Sileo’s systems 
show that LLMs compare with standard recommendation 
methods. This paper builds on the development of Llama-2- 
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TABLE II. Summary of LLM-Based Recommendation Methods 
 

Ref.  Method Key Findings Application 

Brown 
al. [5] 

et GPT-3 Strong performance on NLP tasks Question-answering, 
Translation 

Shu et al. [28] RecSys-Assistant-Human 
(RAH) 

Effective human-like recommendations Contextual Question 
Answering 

Huang 
al. [10] 

et InteRecAgent Context-aware interactive recommenda- 
tions 

Conversational Rec- 
ommendation 

Ding 
al. [11] 

et ZeroShot Recommender Generalizes across datasets using BERT Item Recommenda- 
tions 

Hou 
al. [12] 

et Zero-shot Ranking Perceives historical interactions Sequential 
Interaction Ranking 

Cui et al. [13] M6-Rec Open-ended language model for recom- 
mendations 

Various Recommen- 
dation Tasks 

Geng 
al. [14] 

et P5 Unifies recommendation tasks in NLP 
framework 

Next-Item 
Recommendation 

Bressem 
al. [1] 

et BERT High accuracy in chest radiographic re- 
ports classification 

Medical Image Anal- 
ysis 

Sallam 
al. [2] 

et GPT-3 Potential in healthcare education and re- 
search 

Healthcare 
Education, Research 

Touvron 
al. [21] 

et LLaMA Impressive results in diverse NLP tasks Logical Reasoning, 
Problem-Solving 

Hou 
al. [22] 

et UniSrec Learns universal user behavior sequences Behavioral Sequence 
Recommendation 

Hou 
al. [23] 

et VQ-Rec Embedding lookups via language models Cross-domain 
Recommendation 

Gao 
al. [24] 

et ChatRec Enhances interactivity and explainability Conversational 
Multi-Round 
Recommendations 

Liu et al. [25] GPT-3 Outperforms traditional recommendation 
models 

Intelligible Recom- 
mendation Tasks 

Zhang 
al. [26] 

et Personalized Recommenda- 
tions 

Provides personalized recommendations 
based on user instructions 

Personalized Recom- 
mendations 

Sileo 
al. [27] 

et Unstructured Text Corpora 
Framework 

Effective next-item recommendations Next-Item 
Recommendation 

 

7B-chat-GGML for use in medical recommendation, using 
its 7 billion parameters to provide contextually relevant 
advice based on respiratory illness diagnoses such as pneu- 
monia and COVID-19, aiming to enhance patient care with 
better health recommendations. 

3. MeThOdOlOgy 

The methodology is split into two main parts, with 
each part contributing to a key element of the AI-supported 
diagnosis system. As a reference, Figure 1 depicts the high- 
level architecture of our approach. 

Pneumonia Detection: The first component focuses on 
detecting respiratory diseases, specifically due to pneumo- 
nia and COVID-19, utilizing Convolutional Neural Network 

(CNN) models. The CNN architectures selected for this 
purpose include: 

• Inception V3 [29]: This model is renowned for its 
sophisticated architecture, which includes multiple 
convolutional layers with varied filter sizes. It lever- 
ages inception modules that allow the network to 
capture intricate patterns and details at multiple scales 
within the imaging data. Inception V3 is particularly 
efficient in terms of computation and depth, making 
it well-suited for detailed image classification tasks 
required in medical diagnostics. 

• MobileNetV2 [30]: Known for its lightweight archi- 
tecture and efficiency, MobileNetV2 is particularly 
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advantageous in scenarios requiring fast and efficient 
processing. The model utilizes depthwise separable 
convolutions, significantly reducing the number of 
parameters and computational load while maintaining 
high accuracy. The version used in this study was 
specifically iterated through 200 epochs, indicating 
a comprehensive training process aimed at refining 
its diagnostic precision and robustness in identifying 
respiratory diseases from X-ray and CT images. 

• NASNet (Neural Architecture Search 
Network)[31]: NASNet employs a novel approach 
where the architecture is optimized through an 
automated search process. This process identifies 
the best performing network structures tailored to 
the specific task of medical image classification. 
NASNet’s capability to evolve its architecture 
through neural architecture search allows it to 
achieve superior performance and robustness in 
disease identification. It is particularly useful for 
adapting to the varying complexities present in 
different medical imaging datasets. 

LLM Based Recommendation System: The second 
component of the methodology revolves around the recom- 
mendation system, which is underpinned by a pre-trained 
Large Language Model (LLM). This system is structured 
into three sequential stages: 

• Medical Context Interpretation: At this initial 
stage, the LLM processes input data from the dis- 
ease detection component, which includes diagnostic 
results from the CNN models. The model interprets 
the clinical context by understanding the specific 
health scenario of the patient, such as the severity 
of the detected condition, patient history, and other 
relevant clinical details. This step ensures that the 
recommendations are personalized and contextually 
relevant to the patient’s current medical situation. 

• Knowledge Base Consultation: After establishing 
the medical context, the LLM refers to an exten- 
sive and continually updated knowledge base. This 
knowledge base comprises medical literature, clinical 
guidelines, best practice protocols, and case studies. 
By accessing this repository, the LLM aligns its 
recommendations with the latest medical standards 
and evidence-based practices. This step is crucial for 
ensuring that the generated recommendations are not 
only accurate but also reflect the most current and 
accepted medical knowledge. 

• Recommendation Generation: In the final stage, 
the LLM synthesizes the interpreted medical con- 
text with the consulted knowledge base to generate 
specific recommendations. These recommendations 
may include potential treatment options tailored to 
the detected condition, suggestions for further diag- 

nostic tests to refine the diagnosis, or referrals to 
specialists for advanced care. The output is designed 
to be actionable and practical, providing healthcare 
professionals with clear guidance on the next steps 
in patient management. 

A. Detailed Architecture of the AI-Assisted Diagnostic and 
Recommendation System 

In essence, the methodology outlined in this paper 
presents an integrated approach where the initial diagnos- 
tic intelligence is provided by advanced image-processing 
CNN models, and the subsequent patient-specific medical 
recommendations are produced by a sophisticated LLM 
system. A detailed architecture of the AI-assisted diagnostic 
and recommendation system is shown in Figure 2, detailing 
the CNN model classification process for X-ray detection 
and the subsequent recommendation generation by the LLM 
model based on the medical context and knowledge base. 
It can be broken down into two main modules: 

• Disease Detection: This module involves the CNN 
Model Classification, where X-ray images are input 
to detect potential respiratory diseases. The process 
leverages state-of-the-art CNN models which are not 
specified in the image but could include Inception V3, 
MobileNetV2, or NASNet as previously mentioned. 

• LLM Model: Once the disease is detected and 
the medical context is established from the X-ray 
detection module, the process flows into the Large 
Language Model (LLM) module. This module has 
several internal steps: 

◦ Knowledge Base: The LLM model first inter- 
acts with a Knowledge Base, which likely con- 
tains vast amounts of medical data, guidelines, 
and literature, to ground the subsequent rec- 
ommendation in solid, evidence-based medical 
understanding. 

◦ Prompt: With the context and knowledge in 
place, a prompt is generated for the LLM. This 
prompt effectively communicates the specific 
details and nuances of the detected medical 
condition, guiding the LLM towards generating 
a relevant and accurate recommendation. 

◦ Recommendation: In response to the prompt, 
the LLM model, specified here as ’Llama-7B’, 
processes the information and outputs a recom- 
mendation tailored to the detected medical con- 
dition. This recommendation could range from 
treatment options to further diagnostic steps or 
specialist referrals. 

B. Pneumonia Detection 

In this subsection, we elucidate the application of Con- 
volutional Neural Networks (CNNs) for the classification of 
X-ray images to identify pneumonia and COVID-19. CNNs, 
specialized machine learning models for image processing 
and computer vision tasks, have been utilized for their 
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Figure 1. High Level Architecture. 

 

 
Figure 2. An overview of the AI-Assisted Diagnostic and Recommendation System. The process begins with CNN Model Classification for 
disease detection from X-ray images, followed by an LLM-based system that utilizes a medical Knowledge Base and prompts to generate tailored 
recommendations. 

 

proficiency in pattern recognition within complex image 
data. 

The dataset for our CNN model comprises 8,118 chest 
X-ray images across three categories: normal, pneumonia, 
and COVID-19, sourced from [32]. The input to our CNN 
models is a standardized image of size 224x224x3. The 
CNNs are rigorously trained on this dataset to differentiate 
among the three aforementioned classes. Figure 3 depicts 
the CNN models’ classification process. 

Post-training, the CNN models possess the capability 
to conduct a precise analysis of X-ray images. The im- 
ages undergo pre-processing before being input into the 
CNN models, which include InceptionV3, MobileNetV2 
(enhanced through 200 epochs of training), and NASNet. 
These models execute binary classification, yielding a pre- 
diction of either 0 (normal) or 1 (presence of pneumonia 
or COVID-19). Figure 4 provides examples of the X-ray 
images used in our study. 

C. LLM Recommendation 

This subsection outlines the construction of our knowl- 

CSV files, and web scraping, drawing from a wide spectrum 
of medical encyclopedias and authoritative sources such as 
the World Health Organization’s (WHO) medical articles. 
Footnotes provide the URLs to these valuable resources.1 2 
3 4 5 

 

The diagram (Figure ??) showcases the utilization of a 
large language model (LLM) to synthesize patient-centric 
recommendations. Within our system’s pipeline, the LLM 
discerns insights from the KB and, through a sophisti- 
cated prompt strategy, formulates recommendations that are 
customized to the patient’s specific health context. These 
recommendations span medication prescriptions, suggested 
lifestyle modifications, and potential further diagnostics 
required. 

We emphasize that our LLM of choice is the LLaMA2- 
7B model, preferred over larger counterparts like GPT- 
3 due to its favorable balance between size and per- 
formance. Its relatively modest scale enhances both the 
training and deployment efficiency. Opting for LLaMA2- 
7B with its 7 billion parameters—instead of the more 
substantial LLaMA2-13B model—allows for expedited and 

edge base (KB), crucial for diagnosing medical conditions   

through the analysis of X-ray images and the assimilation 
of medical context. Our KB encompasses a diverse array 
of disease symptoms, corresponding treatments, preventive 
measures, and associated medications. For the KB assembly, 
data were curated from an array of sources including PDFs, 

1https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138033/ 
2https://onlinelibrary.wiley.com/doi/book/10.1002/0470114207 
3https://infobooks.org/free-pdf-books/medical/ 
4https://worldofmedicalsaviours.com/mbbs-pdf-books/ 
5https://www.who.int/publications-detail-redirect/9789241210157 
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Figure 3. Architectural flow of CNN models for Pneumonia and COVID-19 detection. 

 

Figure 4. Representative samples of X-ray images used as inputs for the CNN models. 

 

 

Figure 5. Workflow of the LLM Recommendation Model. 

 

more resource-efficient operations on standard PC CPUs. 
Our deployment was facilitated by hardware comprising 
a Ryzen 5 2400G CPU with 16GB RAM, demonstrating 
the model’s practicality for diverse computational environ- 
ments. By leveraging the LLaMA2-7B model, our system 
can efficiently generate precise and context-aware recom- 
mendations. This includes: 

• Medication Prescriptions: Based on the detected con- 
dition and referenced medical guidelines. 

• Lifestyle Modifications: Suggestions for diet, exer- 
cise, and other habits tailored to the patient’s needs. 

• Further Diagnostics: Recommendations for additional 
tests or specialist consultations to ensure comprehen- 
sive care. 

D. Data Preprocessing 

Figure 6 illustrates the data preprocessing workflow for a 
recommendation system powered by a large language model 
(LLM), specifically ’Llama-7B’. The process begins with 
the collection of custom data from various formats, includ- 
ing CSV files, PDF documents, and website content. This 
data, primarily textual in nature, undergoes transformation 
into a numerical form represented as multi-dimensional vec- 
tors, commonly known as embeddings. These embeddings 
serve as a standardized input for efficient processing and 
understanding by the LLM. 

Subsequently, the embeddings are stored in a vector 
database, indicated in the diagram as [FAISS], which stands 
for Facebook AI Similarity Search. FAISS is utilized here 
due to its proficiency in managing high-dimensional vectors 
and facilitating rapid similarity searches, which are crucial 
for retrieving relevant information from the knowledge base. 
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Finally, the LLM (Llama-7B) uses this structured vector 
database to generate recommendations. The LLM analyzes 
the embeddings, correlates them with the user’s health 
condition through a prompt, and produces pertinent rec- 
ommendations, which could range from medical advice to 
specific treatment options. 

1) Data Preprocessing for CNN model 

Prior to the utilization of convolutional neural network 
(CNN) models for the classification of chest X-ray images, 
preprocessing is pivotal. This phase conditions the images 
into a format conducive for CNNs to effectively learn 
complex features and patterns, a prerequisite for precise 
classification. The preprocessing steps implemented are 
detailed as follows: 

1) Image Loading and Resizing: Each selected image 
is loaded and resized to a uniform target dimension 
of 224x224 pixels, which matches the input size 
expected by the CNN models. 

2) Converting Images to NumPy Arrays: Conversion 
of images to NumPy arrays is performed to facilitate 
efficient storage of pixel values, offering a form well- 
suited for subsequent CNN processing. The adjusted 
images are transformed into these arrays. 

3) Normalization: The pixel values within the images 
are normalized to a range of [0, 1] by division with 
255. Such normalization is integral to improving 
the generalization capabilities of the models and 
expediting the training phase. 

4) Expanding Dimensions: To prepare the images for 
batch processing by CNNs, we expand the dimen- 
sions of the image arrays accordingly, catering to the 
batch input specifications of the deployed models. 

2) Data Preprocessing for LLM Model 

The preprocessing for our large language model (LLM) 
involves the creation of a vector database, integrating di- 
verse data formats such as PDFs, CSV files, and scraped 
web content. This data is processed into textual embed- 
dings, capturing the statistical probability and relational 
nuances of word occurrences. The semantic integrity of 
the sentences is paramount, as our chosen LLM model 
relies on it to generate contextually relevant responses. 
Employing FAISS—a library for efficient similarity search 
and clustering of high-dimensional vectors—we construct a 
vector database to act as the knowledge base (KB) for the 
LLM. The preprocessing encompasses the following key 
stages: 

i. Document Loading: A document loader is con- 
figured to ingest all relevant PDFs pertaining to 
the medical context. 

ii. Text Splitting: The loaded documents are seg- 
mented into smaller text chunks for more man- 
ageable processing, with each segment spanning 
approximately 500 characters and sharing an 

overlap of 50 characters with the subsequent 
segment. 

iii. Text Embeddings: These text segments are 
then encoded into numerical embeddings utiliz- 
ing HuggingFace’s sentence-transformer models, 
specifically all-MiniLM-L6-v2. 

iv. Vector Database (FAISS) Creation: A vector 
database is constructed from the embeddings, en- 
abling rapid similarity searches within the corpus 
of text segments. 

v. Database Saving: The resultant vector database 
is preserved, allowing for the embeddings and 
their corresponding text segments to be readily 
available for future recommendation and similar- 
ity search tasks without reprocessing. 

E. Prompting Strategy 

Within the scope of our system, we employ a few-shot 
prompting strategy, a method particularly suited for large 
language models (LLMs) like ’Llama-2-7B-chat-GGML’. 
Few-shot learning enables LLMs to grasp new tasks by 
considering only a small set of examples, or ”shots”. 
This approach leverages the natural language understanding 
capabilities of the model to generate text based on a limited 
number of illustrative prompts. To ensure the effectiveness 
and reliability of our few-shot prompting strategy, we 
adhere to the following prompt engineering policy: 

• Contextual Relevance: Prompts are generated dy- 
namically based on the patient’s diagnosis, ensuring 
that the model’s response is tailored to the specific 
health condition identified. This contextual relevance 
is crucial for generating accurate and useful informa- 
tion. 

• Comprehensive and Specific Requests: Prompts are 
designed to request detailed information, including 
specific medications, dosages, and management ad- 
vice for diagnosed conditions. This specificity helps 
guide the LLM to provide thorough and actionable 
recommendations. 

• General Health Tips: In cases where no disease is 
detected, prompts are structured to request general 
health tips. This ensures that the model can still 
provide valuable information even in the absence of 
a specific diagnosis. 

• Knowledge Base (KB) Inference: The LLM ref- 
erences a robust knowledge base to formulate re- 
sponses to the prompts. The KB is regularly updated 
with medical literature, guidelines, and authoritative 
sources to ensure that the information provided is 
current and evidence-based. 

• Accuracy and Reliability: The model is designed to 
prioritize accurate and useful responses. In scenarios 
where the LLM cannot ascertain a confident answer, 
it refrains from fabricating responses. This policy is 
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Figure 6. The detailed stages of data preprocessing for CNN and LLM models. 

 

crucial for maintaining the reliability and trustworthi- 
ness of the information provided to patients. 

Continuous Improvement: The prompt generation algo- 
rithm and the LLM’s performance are continuously mon- 
itored and refined based on feedback and advancements 
in medical knowledge and AI capabilities. This iterative 
improvement ensures that the system remains effective and 
relevant over time. 

The generation of prompts is crucial in guiding the 
model to provide the desired output. To structure these 
prompts effectively, we designed the following pseudocode, 
which is dynamically executed based on the diagnosis: 

Based on the algorithm (1), if a patient’s chest X-ray 
analysis results in a diagnosis of Pneumonia or COVID-19, 
the generated prompt solicits comprehensive information 
regarding medication and management advice. Conversely, 
if no disease is detected, the prompt inquires about general 
health tips. 

4. ExpeRIMenTal AnalysIs 

Our experimental study aims to evaluate the perfor- 
mance of an integrated diagnostic system utilizing both 
convolutional neural networks (CNNs) and a large language 
model (LLM). The system’s primary function is to analyze 
chest X-ray images to detect the presence of respiratory 
conditions, specifically Pneumonia and COVID-19, and 

  provide corresponding health recommendations. 

Algorithm 1 Prompt Generation Algorithm  

if result is in [”Pneumonia”, ”COVID-19”] then 
prompt = ”As a patient recently diagnosed with ” 

result ”, 
I am looking for expert medical advice on how to manage 
this condition. 
Could you provide detailed information on the specific 
medications recommended for ” result ”, 
including their names, dosages, and any important in- 
structions or precautions? 
Furthermore, I would appreciate any additional profes- 
sional advice or guidelines 
on lifestyle adjustments, dietary considerations, and pre- 
ventive measures to manage and improve my health 
condition.” 
else 

prompt = ”I have been informed that I do not have 
any diseases. 
However, I am interested in maintaining good health. 
Could you please provide me with a valuable health tip 
or general advice to enhance my overall well-being?” 

  end if  

To begin, we utilized three CNN architectures renowned 
for their image classification efficacy: InceptionV3, Mo- 
bileNetV2 trained for 200 epochs, and NASNet. The accu- 
racy of these CNN models in classifying X-ray images into 
the aforementioned categories is critical to the success of the 
subsequent LLM recommendation process. The evaluation 
metrics used to assess the performance of the CNN models 
included: 

• Accuracy: The proportion of correctly classified im- 
ages out of the total number of images. 

• Precision: The proportion of true positive results in 
the total predicted positive results. 

• Recall: The proportion of true positive results out of 
the actual positive cases. 

• F1 Score: The harmonic mean of precision and recall, 
provides a single metric that balances the two. 

The accuracy of these models in classifying X-ray 
images into categories—normal, Pneumonia, or COVID- 
19—is critical to the success of the subsequent LLM 
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recommendation process. The precision of the LLM’s health 
advice, based on the diagnosis provided by the CNNs, was 
also a vital aspect of the system’s overall evaluation. In 
our study, we utilized Google Colab notebooks to train our 
models, taking advantage of the robust and accessible com- 
puting resources they offer. By leveraging Colab’s freely 
accessible GPUs, specifically the Tesla T4 GPUs, we could 
expedite the training of our complex convolutional neural 
network (CNN) models. 

 

Figure 7. Accuracy versus loss graph for the InceptionV3 model 
during validation. 

 

Figure 8. MobileNetV2 (200 epochs) model accuracy versus loss 
graph. 

 

Figures 7, 8, and 9 show the accuracy versus loss curves 
for the InceptionV3, MobileNetV2, and NASNet models, 
respectively. Notably, the InceptionV3 model achieved an 
impressive accuracy of 92.85% and a loss of 17.09%. 
The MobileNetV2 model reached an accuracy of 91.88% 

 

 

Figure 9. Accuracy versus loss graph for the NASNet model during 
validation. 

 

 

after 200 epochs, with a loss of 20.39%. These results are 
indicative of the robust diagnostic capabilities the CNN 
models offer to the overall system. The plots reveal a 
common trend: as the number of epochs increases, the 
accuracy stabilizes, and the loss decreases, which is char- 
acteristic of a well-fitting model. The analysis of these 
curves provides insights into the models’ learning dynamics 
over time and underscores the importance of adequate 
training in achieving high performance. The results obtained 
from the CNN models form the basis for the subsequent 
phase where the LLM—’Llama-2-7B-chat-GGML’—takes 
over. Based on the categorized images, the LLM generates 
tailored recommendations, drawing from its training and 
the knowledge base built from diverse medical data. The 
experimental analysis thus serves a dual purpose: validating 
the CNN models’ classification accuracy and setting the 
stage for the LLM’s effective recommendation generation. 

In our study, we employed three different CNN ar- 
chitectures to classify chest X-ray images into normal, 
pneumonia, and COVID-19 categories. The performance 
of each model was rigorously evaluated based on several 
metrics, including accuracy, loss, precision, recall, and the 
F1 score. Table III provides a concise summary of these 
results. 

Analyzing the results (Table III), NasNet outperforms 
the other models with the highest accuracy of 95.92% and 
an impressive precision of 96.64%. It also demonstrates the 
lowest loss rate, indicating its robustness in X-ray image 
classification tasks. While InceptionV3 shows a comparable 
performance in terms of precision and recall, its slightly 
higher loss rate suggests a minor susceptibility to overfitting 
compared to NasNet. Conversely, MobileNetV2, despite a 
modest dip in accuracy and precision, presents a balanced 
profile that is potentially less prone to overfitting, evidenced 
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TABLE III. Summary of CNN Models Result Analysis and Performances 
 

CNN Model Accuracy Loss Precision Recall F1 score 

InceptionV3 92.85% 17.09% 94.03% 92.20% 93.11% 

MobileNetV2 91.88% 20.39% 91.44% 90.25% 90.84% 

NasNet 95.92% 14.22% 96.64% 95.92% 96.28% 

 

 

by its consistent performance across metrics. 

In evaluating the performance of our CNN models, we 
place significant emphasis on understanding their classifi- 
cation accuracy and potential misclassification trends. Con- 
fusion matrices for each of the models—InceptionV3, Mo- 
bileNetV2 trained for 200 epochs, and NASNet—provide 
valuable insights into the true positive, true negative, false 
positive, and false negative rates, which are instrumental in 
gauging the clinical applicability of these models. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. Confusion matrix for the MobileNetV2 model after 200 
epochs of training. 

 
 

 
 

 

 
 

 

 

 

Figure 10. Confusion matrix for the InceptionV3 model. 

 

Figure 10 details the confusion matrix for the Incep- 
tionV3 model, showing a balance of 47% true positives to 
53% false negatives, and 43% false positives to 57% true 
negatives. This suggests a higher sensitivity in detecting 
pneumonia. 

Similarly, Figure 11 exhibits the confusion matrix for 
MobileNetV2, where the distinction between true positives 
and false negatives is more pronounced at 47% and 37%, 
respectively, indicating a propensity towards more conser- 
vative classification. 

Lastly, the NASNet model’s confusion matrix, as seen 
in Figure 12, reveals 35% true positives against a consider- 
able 65% false positives, suggesting a potential inclination 
towards overpredicting the presence of pneumonia. Through 
these matrices, we can deduce the strengths and weaknesses 
of each CNN model in diagnosing respiratory diseases from 
X-ray images. The comprehensive analysis of true positive 
and false negative rates is critical in further refining these 
models to reduce diagnostic errors in real-world medical 
settings. 

The efficacy of our prompt generation algorithm is a 
significant contributor to the overall functionality of the 
’Llama-2-7B’ model, which is tasked with classifying dis- 
eases from chest X-ray images. We assessed the perfor- 
mance based on two critical criteria: the relevance of the 
prompts generated by the algorithm and the quality of the 
responses produced by the model. 

The data presented in Tables IV and V illustrate the 
prompt relevance and response efficacy of the LLM model 
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Figure 12. Confusion matrix for the NASNet model. 

 
TABLE IV. Prompt, Response, and First Inference Time for Pneu- 
monia 

 

Prompt As a patient who has received a diagno- 
sis of pneumonia, I am seeking expert 
guidance on the recommended medica- 
tions and advice for my condition. Please 
provide detailed information on the spe- 
cific medications I should take, including 
their names, dosages, and any important 
instructions. Additionally, I would greatly 
appreciate any professional advice or rec- 
ommendations on what actions I should 
take to effectively manage my pneumonia. 

Response [Response abbreviated for brevity; the ac- 
tual response provided by the LLM lists 
several supportive measures for managing 
pneumonia.] 

Inference 
Time 

165.6 seconds 

 

 

in two diagnostic scenarios. Notably, there is a reduction 
in inference time from the first to the second scenario, 
indicating an increase in processing efficiency. This im- 
provement suggests that our model is becoming more adept 
at generating relevant responses in a shorter time frame, a 
crucial factor in providing timely medical advice. 

5. DIscUssIOn 

A. Optimization of CNN Architectures 

Our experimental results confirm that with appropriate 
tuning, CNNs such as InceptionV3 and MobileNetV2 ex- 

TABLE V. Prompt, Response, and Second Inference Time for 
COVID-19 

 

Prompt As a patient who has received a diagno- 
sis of COVID-19, I am seeking expert 
guidance on the recommended medica- 
tions and advice for my condition. Please 
provide detailed information on the spe- 
cific medications I should take, including 
their names, dosages, and any important 
instructions. Additionally, I would greatly 
appreciate any professional advice or rec- 
ommendations on what actions I should 
take to effectively manage my COVID- 
19. 

Response [Response abbreviated for brevity; the 
actual response from the LLM includes 
a disclaimer about its limitations as a 
language model and a reminder to follow 
official health guidelines.] 

Inference 
Time 

111.9 seconds 

 

 

hibit high levels of accuracy in image classification tasks. 
Notably, NasNet demonstrated superior performance with 
an accuracy of 95.92%, a precision rate of 96.64%, and 
the lowest loss rate of 14.22%. These results underscore 
NasNet’s nuanced feature extraction capabilities and ro- 
bustness in distinguishing between normal, pneumonia, and 
COVID-19 cases. However, the challenge of overfitting 
remains prevalent, as indicated by the slightly higher loss 
rates in InceptionV3 and MobileNetV2. This necessitates 
ongoing refinement of regularization techniques and data 
augmentation strategies to enhance model generalization. 

B. Employment of LLMs for Health Recommendations 

The study explored the effectiveness of LLMs in gen- 
erating health recommendations. The ’Llama-2-7B’ model 
was instrumental in providing contextually relevant advice 
with inference times reflecting efficient deployment. For 
instance, the inference time for generating detailed rec- 
ommendations for pneumonia was 165.6 seconds, while 
for COVID-19 it was reduced to 111.9 seconds, demon- 
strating improved processing efficiency. The quality of the 
responses, measured against professional health guidelines, 
suggests that while LLMs are capable of generating general 
advice, their utility is significantly enhanced when coupled 
with expert oversight. This finding corroborates related 
studies advocating for a hybrid approach that combines AI 
with human expertise to ensure the accuracy and reliability 
of health recommendations. 

C. Integration of AI in Clinical Workflow 

Our findings reveal that AI models can significantly 
expedite the diagnostic process, as evidenced by the high 
accuracy and precision rates obtained in our experiments. 
For example, NasNet achieved an F1 score of 96.28%, 
indicating its potential as a reliable adjunct to human 
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diagnosticians. However, the nuanced nature of medical 
practice, which extends beyond the rigid classifications of 
AI models, underscores the necessity for these tools to 
operate within a framework that respects the complexity 
of patient care. The integration of AI must be approached 
with caution, ensuring that AI outputs are used to support, 
rather than replace, clinical judgment. 

D. Limitations and Future Work 

Our study is not without limitations. The size and 
diversity of the dataset, potential biases in model training, 
and the interpretability of model decisions are critical areas 
that require further investigation. For instance, while our 
dataset comprised 8,118 chest X-ray images, expanding this 
dataset to include a broader range of patient demograph- 
ics and conditions could enhance model robustness and 
generalizability. Additionally, the potential biases inherent 
in training data need to be addressed to prevent skewed 
predictions. 

The responses generated by the LLM also necessitate 
validation from medical professionals to ensure accuracy 
and reliability. Future research will aim to address these 
limitations by expanding the dataset, exploring techniques 
to mitigate biases, and developing methods to enhance the 
explainability of AI models. Furthermore, the integration of 
multimodal data sources, such as electronic health records, 
could enrich the LLM’s knowledge base, leading to more 
nuanced and comprehensive recommendations. Developing 
transparent models that provide clear rationale for their 
predictions will be crucial in gaining clinician trust and 
facilitating seamless integration into healthcare settings. 

6. COnclUsIOn 

Our study demonstrates the promising potential of inte- 
grating convolutional neural networks (CNNs) with large 
language models (LLMs) to enhance the accuracy and 
comprehensiveness of AI-assisted medical diagnostics and 
recommendations. The experimental analysis revealed that 
advanced CNN architectures such as InceptionV3, Mo- 
bileNetV2, and NasNet can effectively classify chest X- 
ray images to detect respiratory conditions, specifically 
Pneumonia and COVID-19, with high precision and accu- 
racy. Among these, NasNet showed superior performance, 
highlighting its capability for nuanced feature extraction and 
robust classification. 

The integration of the LLM, specifically the ’Llama-2- 
7B’ model, for generating health recommendations further 
extends the utility of the diagnostic system. The LLM was 
able to provide contextually relevant and detailed medical 
advice, demonstrating efficient inference times and high- 
quality responses. This dual-component system, combining 
the strengths of CNNs in image classification and LLMs 
in natural language processing, offers a comprehensive ap- 
proach to managing respiratory diseases. However, the study 
also identified several areas requiring further research and 
development. The potential for overfitting in CNN models, 
the need for a more diverse and extensive dataset, and 

the necessity for validation of LLM-generated responses by 
medical professionals are critical considerations for future 
work. Additionally, addressing biases in model training and 
enhancing the interpretability of AI decisions are paramount 
to ensure reliable and trustworthy AI applications in health- 
care. 

Future research will focus on expanding the dataset to 
include a wider range of patient demographics and con- 
ditions, exploring advanced techniques to mitigate biases, 
and developing transparent AI models that provide clear 
rationales for their predictions. Integrating multimodal data 
sources, such as electronic health records, will also be 
pursued to enrich the LLM’s knowledge base and enable 
more nuanced recommendations. 

In conclusion, the integration of CNNs for accurate 
disease detection with LLMs for tailored health recommen- 
dations represents a significant advancement in AI-assisted 
medical diagnostics. This approach not only improves di- 
agnostic accuracy but also enhances the quality of patient 
care through personalized and actionable medical advice. 
Realizing the full potential of this integrated system will 
require continuous refinement and a collaborative effort 
between AI researchers and healthcare professionals. 
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