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Abstract: Drug development has traditionally been expensive and time consuming. Computational approaches such as 

machine learning have been widely applied to improve efficiency, yet interpreting prediction outcomes remains a 

challenge. This study aims to improve the efficiency of Alzheimer's drug discovery by conducting QSAR (Quantitative 

Structure Activity Relationship) modelling with Random Forest model to predict the inhibition potential (IC50 values) of 

each Alzheimer's drug candidate compound. A total of 5779 compounds were collected from ChEMBL and PubChem 

databases. The QSAR model in this study was built using features that were extracted by generating 1024 Morgan 

Fingerprints representing the substructure of compounds. In this study, SHapley Additive exPlanations (SHAP) are 

implemented to understand locally and globally important features from the prediction results of the developed model. 

The effectiveness of the QSAR model in this study was tested with 10-fold cross validation, where the developed regression 

model can achieve a MAPE score of 11.10% and the classification model achieves an AUC-ROC score of 84.77%. In this 

work, molecular docking is conducted to simulate how a drug binds to its target and verify the best molecules' 

effectiveness. Additionally, a web based application was developed in this study to facilitate predicting the bioactivity 

value of Acetylcholinesterase (AChE) inhibitors.   
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1. INTRODUCTION 

Alzheimer's disease is a brain disease that causes a 

gradual decline in memory, thinking ability and behaviour. 

This disease is the most common cause of dementia, which 

is a condition that causes a decrease in mental function that 

interferes with daily activities. The early symptoms of 

Alzheimer's disease are usually not obvious, but some early 

symptoms may occur, such as difficulty remembering new 

things, difficulty completing daily tasks, difficulty finding 

words, difficulty understanding new information, and 

mood changes. or behaviour. Alzheimer's disease cannot be 

treated yet, but medication such as rivastigmine can help 

delay the illness's progression by blocking cholinesterase 

[1]. Annually, the number of people with Alzheimer's 

disease is still rising. However, designing one drug still 

takes more than ten years with expensive costs.  In general, 

drug development consists of pre-discovery, preclinical 

development, clinical trials and reviewing stages. In the 

initial stage, researchers screen candidate drug compounds, 

and this stage up to preclinical development can take 5-6 

years [2]. 

Due to the limitation of the wet lab approach, it is not 

efficient to test all possible chemicals as therapeutic 

candidates manually. Afterwards, in silico studies 

(computational approaches) became widely used to help 

increase efficiency. Where, the implementation of 

Artificial Intelligence in recent Drug Target Interaction 

(DTI) studies is enabling cost-effectiveness [3].  In the 

process of screening the Alzheimer's drug candidates, it is 
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crucial to analyze the drug target interaction with the target 

enzyme that is responsible for Alzheimer’s disease. 

To be an effective drug, a compound must be able to 

reach the target enzyme in the body at a sufficient 

concentration level so that it can remain in bioactive form 

until the desired biological process occurs [4]. In this 

study, Acetylcholinesterase (AChE) was selected as the 

target enzyme that is responsible for Alzheimer’s 

Disease. This study aims to conduct a DTI study by 

designing a Quantitative structure-activity relationship 

(QSAR) model. QSAR is used in drug discovery to predict 

biological activities and toxicity in a way to screen out 

compounds that don't have drug-like properties [5]. Where, 

the drug compounds need to consider several basic aspects 

such as absorption, distribution, metabolism, excretion, and 

toxicity (ADMET). 

In this research, to improve the efficiency of the 

screening process for candidate Alzheimer's drug 

compounds, a Random Forest model was developed to 

predict a bioactivity value. Aside from machine learning's 

capability to boost efficiency in processing vast amounts of 

data, interpretability issues in machine learning 

implementation have an impact on public confidence in its 

use in drug development and genomics. Ethical problems 

and discrimination have also contributed to the widespread 

discussion of machine learning interpretation approaches in 

recent years. So, in this study, a prediction interpretation 

study will be conducted on some data points using SHAP 

(SHapley Additive Explanations) to interpret prediction 

outcomes both locally and globally. 

2. RELATED WORKS 

A. SARS-CoV-2 3CLpro Inhibitor Classification 

The study [6] developed a neural network to identify 

the bioactivity class of SARS-CoV-2 3CLpro protein 

inhibitor. The dataset used in this study collected from 

ChEMBL and PubChem databases contain over 300,000 

experimental data from screening SARS-CoV-2 3CLpro 

inhibitors. In this study Lipinski and PaDEL descriptors 

were examined as feature extraction methods. A various 

ensamble models were trained in this study including 

Random Forest, Bagging, Extra Tree, LGBM, XGB, and 

AdaBoost. A neural network model was also designed in 

this study and outperformed the ML methods with 93% 

accuracy. The performance of models trained with PaDEL 

descriptors outperformed and suitable for high-throughput 

QSAR modeling.  

The Explanatory factor identified in this study by 

implementing SHapley Additive exPlanations (SHAP) on 

the XGB classifier. The SHAP model could improve the 

interpretability of XGB model by finding the important 

fingerprints from PaDEL descriptors. The SHAP provides 

a more comprehensive and comprehensible depiction of 

the feature importances compared to the conventional 

approaches such as feature importance scores. Because 

SHAP values account for feature interaction, allowing for 

a deeper understanding of how each feature influences the 

model’s prediction.   

B. Antimalarial Predictive Models 

Antimalarial medication resistant happening for 

Chloroquine and Artemisinin-based Combination 

Treatment (ACT), consequently malaria became endemic 

in most locations. The study [7] implemented and 

compared five various ML including Support Vector 

Machine (SVM), Random Forest (RF), Extreme Gradient 

Boost (XGB), Logistic Regression (LR) and Artificial 

Neural Network (ANN) to build antimalarial predictive 

models. Those models were developed to predict the 

bioactivity class of drug against Plasmodium Falciparum 

Parasite. From the ChEMBL and PubChem databases, a 

total of 4794 compounds were retrieved and extracted into 

1444 PaDEL descriptors. 

The classification of anti-plasmodial activities in this 

study conducted with a threshold IC50 ≤ 1𝜇𝑀  as active 

compounds and IC50 > 1𝜇𝑀  as inactive compounds. In 

this study various numbers of features were used and 

selected with Recursive Feature Elimination (RFE). The 

result shows XGB model with 361 features, reach the best 

recall of the ‘active’ label with 0.81 and F1 score of 0.83. 

The XGB model outperformed the designed ANN model 

which achieved the recall of the ‘active’ and F1 score of 

0.79 and 0.80, respectively. This study implies that 

without compromising much precision, the XGB and 

ANN could identify the new anti-malaria drug formation 

around 81% and 79%, respectively. 

C. ChemBERTa 

The research [8] builds a model to forecast the 

molecular characteristics of SMILES strings using a 

Natural Language Processing (NLP) approach. Based on 

the RoBERTa transformer architecture, ChemBERTa is a 

model that was trained using the PubChem dataset, which 

has 77 million SMILES strings. ChemBERTa was created 

by combining six layers and twelve attention heads, which 

produced seventy-two distinct attention mechanisms. 

HuggingFace library's Byte-Pair Encoder (BPE) serves as 

the foundation for the tokenizer created on the 

ChemBERT model. Tokenization at both the character and 

word levels is combined in BPE, a hybrid tokenization 

technique. When it comes to several categorization tasks 

from MoleculeNet and attention-based visualization 

modalities, this model performs competitively. This model 

requires significant computational resources for training 

and inference compared to simple machine learning 

models. The size and interpretability of the model also 

needs to be considered, since it can be challenging to 

interpret the internal workings on complex models.  
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3. MATERIAL AND METHODS 

A. Datasets 

The first dataset collected for this study is obtained 
from the public open-source database ChEMBL. ChEMBL 
is a database that contains manually curated bioactive 
molecules with drug-like properties [9]. After cleaning 
5664 data, 3575 compounds in total were obtained. Every 
compound in the dataset is represented using SMILES and 
has an IC50 bioactivity value. SMILES is a common 
representation of molecules that emphasizes the use of 
molecular graph theory to allow for rigorous structural 
specification using natural and basic grammar [10].  Table 
7 provides a sample of the dataset. Every data point 
contains the ChEMBL ID, SMILES, and IC50 value. 
Where IC50 is a bioactivity value which can measure the 
concentration of compounds needed to 
inhibit the biological or biochemical function of a protein 
target by 50% [11]. 

TABLE I.  SAMPLE OF CHEMBL DATASET 

ChEMBL ID SMILES IC50 

CHEMBL13389
7 

CCOc1nn(-
c2cccc(OCc3ccccc3)c2)c(=O)o1 

750.0 

CHEMBL33639
8 

O=C(N1CCCCC1)n1nc(-
c2ccc(Cl)cc2)nc1SCC1CC1 

100.0 

CHEMBL13158
8 

CN(C(=O)n1nc(-
c2ccc(Cl)cc2)nc1SCC(F)(F)F)c1cccc
c1 

50000.
0 

CHEMBL13062
8 

O=C(N1CCCCC1)n1nc(-
c2ccc(Cl)cc2)nc1SCC(F)(F)F 

300.0 

CHEMBL13047
8 

CSc1nc(-
c2ccc(OC(F)(F)F)cc2)nn1C(=O)N(C
)C 

800.0 

The second dataset collected from PubChem Database. 
In total, there are 115 AChE inhibitors collected in 
SMILES string. This dataset does not contain any 
bioactivity value. In this study, this collected dataset used 
for validating the predicted inhibition potency by 
conducting molecular docking. 

B. QSAR Modeling 

QSAR Modeling was developed in this study with 
Random Forest to determine the association between 
chemical compounds' structural features and the biological 
activity of Alzheimer's medicines. Using a variety of 
mathematical techniques, QSAR aims to associate 
structural, chemical, statistical, and physical attributes with 
biological potency. The physicochemical properties are 
taken into account, including partition coefficient and the 
existence of certain chemical features.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Workflow of QSAR Modeling for examining the AChE 

inhibitor candidates. 

The QSAR Modeling begins with data preparation, 
which includes data collection from the ChEMBL and 
PubChem databases, as well as data cleansing and 
transformation. Then, exploratory data analysis was carried 
out by computing Lipinski's Descriptor, ADMET 
Screening, and statistical analysis using the Mann-Whitney 
U Test. In the final stage of QSAR Modeling, a model is 
created using Random Forest and trained using compound 
data that has been extracted using Morgan Fingerprints. 
Then, the Random Forest model's predictions were 
analyzed using the SHAP approach. 

1) Data Preparation 

Before the ChEMBL dataset was used for model 

construction, first prepared by removing redundant data 

and missing values data. Each data is SMILES of a 

compound that represents a candidate for AChE inhibitor. 

The bioactivity value in IC50 is used as a label for 

constructing the regression model. However, the collected 

dataset has a wide range of IC50 values, so it converted into 

negative logarithmic in molar concentration units (M). The 

conversion calculation shown below: 

𝑝𝐼𝐶50 =  − log10(𝐼𝐶50) (1) 

Two bioactivity classes ‘active’ and ‘inactive’ 

compounds are created for performing classification 

prediction. According to prior research, ‘active’ 

compounds have an IC50 value < 1μM and ‘inactive’ 

compounds have an IC50 value > 10μM [12]. The 

calculations for converting IC50 to pIC50 for each 

bioactivity class are shown below: 
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• Active 

𝐼𝐶50 < 1𝜇𝑀 =  𝐼𝐶50 <  10−6𝑀 (2) 

𝑝𝐼𝐶50 =  − log10(10−6𝑀) 

𝑝𝐼𝐶50 > 6 

• Inactive 

𝐼𝐶50 > 10𝜇𝑀 =  𝐼𝐶50 >  10−5𝑀 (3) 

𝑝𝐼𝐶50 =  − log10(10−5𝑀) 

𝑝𝐼𝐶50 < 5  

2) Exploratory Data Analysis 

The exploratory data analysis in this study was carried 

out to investigate the bioactivity class 'active' and 'inactive' 

from two different populations. It is conducted by doing 

statistical analysis and screening of drug candidate 

molecules based on Lipinski's Rule of Five, where 

medications that can be ingested orally need to match the 

following requirements: 

• Molecular weight < 500 Daltons 

• Hydrogen bond donors < 5 

• Hydrogen bond acceptors < 10 

• The logarithm of octanol-water partition 
coefficient (ClogP) < 5 or (MlogP < 4.15) 

Four new features including molecular weight (MW), 

hydrogen bond donors (NumHDonors), hydrogen bond 

acceptors (NumHAcceptors), and the logarithm of 

octanol-water partition coefficient (ClogP) calculated to 

conduct a statistical analysis. The statistical analysis 

performed with Mann-Whitney U test to evaluate the 

hypothesis H0: bioactivity classes ‘active’ and ‘inactive’ 

come from the same population.  

TABLE II.  MANN-WHITNEY U TEST RESULT 

Feature Statistic

s 

P-value 𝜶 Interpretatio

n 

pIC50 882716.5 0.04837

2 

0.0

5 

Reject H0 

MW 823729.0 0.00000

1 

0.0

5 

Reject H0 

NumHDonors 850778.5 0.00019

8 

0.0

5 

Reject H0 

NumHAcceptor

s 

879139.0 0.02891

1 

0.0

5 

Reject H0 

ClogP 859996.5 0.00205

1 

0.0

5 

Reject H0 

Based on the Mann-Whitney U Test result, the 

statistical test results on all features successfully rejected 

hypothesis H0. In summary, the groupings of compounds 

with the bioactivity classes "active" and "inactive" do not 

originate from the same data population. 

3) Model Construction 

All SMILES in ChEMBL dataset were extracted into 

Morgan Fingerprints before used in the model 

construction process. Morgan Fingerprints, also known as 

circular fingerprints, are vectors that depict the 

substructure of molecules with different atomic radii [13]. 

In total there are 1024 Morgan Fingerprints that were 

generated from all SMILES strings that represent each 

compound in ChEMBL dataset. 

This study constructed two models for different tasks: 

regression and classification. The regression model was 

created to predict the bioactivity value pIC50, and a 

classification model developed to distinguish the 

bioactivity class ‘active’ and ‘inactive’. Both models 

developed using Random Forest, which is an ensemble 

model consisting of multiple decision trees. A simple 

algorithm was chosen in order to help the prediction easily 

to interpret. Where each model construction is evaluated 

with 10-fold cross validation. 

It is easy to interpret the prediction from a single 

decision tree, but it would be challenging to interpret 

multiple decision trees. Therefore, in this study an 

explainer model known as SHAP was implemented to help 

explain the prediction results.  

C. Evaluation Metrics 

The main metric that will be used in evaluating the 
regression model is Mean Absolute Percentage Error 
(MAPE) score. 

𝑀 =
1

𝑛
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
| 

𝑛

𝑡=1

(4) 

Where 𝐴𝑡  is the actual value and 𝐹𝑡  is the forecast 
value. MAPE was chosen to evaluate the regression model 
because it shows the error in percentage and makes it easy 
to compare with different datasets or model performances. 

Apart from MAPE, 𝑅2  is used to measure the 
dependency between features and the prediction result. 𝑅2 
calculations can be done as follows: 

• The sum of squares of residuals 

𝑆𝑆𝑟𝑒𝑠 = ∑(𝑦𝑖 − 𝑓𝑖)
2

𝑖

 (5) 

• The total sum of squares 

𝑆𝑆𝑡𝑜𝑡 = ∑(𝑦𝑖 − �̅�)2

𝑖

 (6) 

 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 (7) 
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Evaluation of the classification model was done using 
the AUC-ROC (Area Under the Receiver Operating 
Characteristic Curve) metric. AUC-ROC measures the 
two-dimensional area under the ROC curve, with values 
ranging from 0 to 1. AUC-ROC equals to one indicates a 
model with perfect performance. The ROC curve has two 
parameters:  

• TPR (True Positive Rate) 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(8) 

• FPR (False Positive Rate) 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(9) 

The F1 metric is also used to evaluate the performance 

of the classification model. F1 calculates the average of 

precision and recall which is mathematically defined as 

follows: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(10) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(11) 

𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(12) 

D. SHAP 

Shapley Additive exPlanations (SHAP) is a method 
developed to explain prediction of an instance by 
calculating the contribution of each feature to the 
prediction result [14]. SHAP was designed based on 
Shapley values which is one of the game theory concepts.  
SHAP was developed with unification concept and shows 
improved computational performance and/or better 
consistency of human intuition than previous approaches 
[15]. 

Suppose 𝑓 is the original prediction model which will be 
explained by the explanation model 𝑔. Explanation model 
g is a simpler model that estimates a more complex model 
𝑓. The explanation model 𝑔 is additive, which means that 
the explanation carried out based on the sum of the 
contributions of each feature. Mathematically, the concept 
of additive feature attribution in the SHAP method is 
defined as a linear function of binary variables as follows: 

𝑔(𝑧′) = 𝜙0 +  ∑ 𝜙𝑖𝑧𝑖
′

𝑀

𝑖=1

(13) 

Where 𝑧′ ∈ {0,1}𝑀, M is the number of input features 

simplified to binary values (0 or 1), and 𝜙𝑖 ∈ 𝑅  is the 

attribution for each feature. 

4. RESULTS AND DISCUSSION 

A. Model Performances 

This research develops a Random Forest model to 
predict the bioactivity of Alzheimer's drug candidate 
compounds in two schemes, regression and classification. 
10-fold cross-validation was used to evaluate the Random 
Forest performance to predict the pIC50 value. The result 
is shown in the following table: 

TABLE III.  REGRESSION PERFORMANCE 

Fold MAPE 𝑹𝟐 

Fold-1 0.1155 0.7080 

Fold-2 0.1119 0.7168 

Fold-3 0.1017 0.7638 

Fold-4 0.1257 0.6902 

Fold-5 0.1003 0.7688 

Fold-6 0.1124 0.7493 

Fold-7 0.1092 0.7624 

Fold-8 0.1020 0.8030 

Fold-9 0.1121 0.7023 

Fold-10 0.1191 0.6772 

Average 0.1110 0.7342 

Std 0.0077 0.0388 

The standard deviation value for the 10-fold cross-
validation indicates that there is not much variation in the 
MAPE and regression model values between folds. In other 
words, the model has sufficient stability for ten trials using 
random data. The prediction performance is deemed 
acceptable, with an average MAPE score of 
11.10% indicating a reasonably low error. According to the 
average 𝑅2 value, 73.42% of the variability in the target 
data can be explained by the regression model. 

The table below shows the performance of the 
classification model using the Random Forest Classifier 
created for this study. 

TABLE IV.  CLASSIFICATION PERFORMANCE 

Fold AUC-ROC F1 Score 

Fold-1 0.8381 0.8703 

Fold-2 0.8350 0.8692 

Fold-3 0.8368 0.8730 

Fold-4 0.8590 0.8847 

Fold-5 0.8663 0.8872 
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Fold-6 0.8277 0.8575 

Fold-7 0.8595 0.8835 

Fold-8 0.8292 0.8656 

Fold-9 0.8781 0.9008 

Fold-10 0.8468 0.8764 

Average 0.8477 0.8768 

Std 0.0162 0.0118 

 

Based on the standard deviation values, Table IV 
illustrates the F1 and AUC-ROC values in the classification 
model are stable in 10-fold cross-validation. Based on the 
average AUC-ROC score, which is 84.77%, this 
classification model performs well in differentiating across 
classes. The F1 value of 87.68% indicates that the model's 
classification performance also demonstrates a good 
balance between precision and recall values. 

B. SHAP Interpretation 

 

Figure 2.  SHAP Summary of PubChem Dataset Prediction. 

Among 1024 Morgan fingerprints, the bar chart shows 
the 20 most important substructures.  

 

Figure 3.  20 most important Morgan Fingerprints. 

Fig.3 shows the visualization of 20 most important 
Morgan Fingerprints based on SHAP summary results. 
Those important features include Morgan Fingerprints 247, 
683, 928, 394, 762, 1013, 727, 780, 117, 311, 38, 973, 411, 
992, 917, 669, 602, 448, 340, and 931. Overall, the features 
displayed in the SHAP summary have a class 0 value 
higher than class 1. This indicates that the absence of these 
features further increases their dominance in the predicted 
results. 

To find out feature importance locally, you can see the 
results of the SHAP force plot on a data point. A SHAP 
force plot on a data point with the bioactivity class 
prediction "active" is shown below.  

TABLE V.  DETAIL OF SELECTED  'ACTIVE' COMPOUND 

SMILES COC1=C(C=C2C(=C1)CC(C2=O)CC3CCN(CC3)C
C4=CC=CC=C4)OC 

pIC50 8.1036 

Bioactivity 
class 

Active 

 

 

 

6



 

 

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..)                        7 

 

 
http://journals.uob.edu.bh 

 

 

Figure 4.  SHAP Force Plot of Selected ‘Active’ Compound. 

The chosen 'active' compound's forecast result, f(x), in 
the force plot is -1.87 below average. As seen by the 'red' 
arrow displays 668=0, 184=0, 309=0, and 26=0, meaning 
the absence of these substructures has a greater impact on 
the bioactivity prediction into the 'active' class. In the other 
hand, the 'blue' arrow displays 1013=0, 491=0, 688=0, and 
448=0, indicating that the absence of these substructures 
decreases the selected compound predicted to be an 'active' 
class. 

The following is an example of a force plot for 
compounds with predicted bioactivity class 'inactive' 
classification results. 

TABLE VI.  DETAIL OF SELECTED  'INACTIVE' COMPOUND 

SMILES CCCCN(CCCC)SN(C)C(=O)OC1=CC=CC2=C1OC(
C2)(C)C 

pIC50 4.9145 

Bioactivity 
class 

Inactive 

 

 

Figure 5.  SHAP Force Plot of Selected ‘Inactive’ Compound. 

The force plot findings indicate that there is a 

significant difference of -451.94 between the basis value 

and the expected outcomes of f(x). This demonstrates that 

the expected value for this compound is significantly less 

than the average expected value derived from the data that 

was utilized to train the model. Subsequently, it 

demonstrates that no feature increases the prediction 

outcomes of these data points in the bioactivity class 

'inactive' categorization significantly. On the other hand, 

the 'blue' arrow indicates that features 602, 575, 422, and 

247 have a value of 0. The number 0 denotes the lack of 

substructures 602, 575, 422, and 247, which lessens the 

impact on the compound data's specific "inactive" 

bioactivity class prediction. 

C. Molecular Docking 

In general, the molecular properties of compounds 

such as pIC50 are obtained manually through research 

results from the wet lab. Molecular Docking is a method 

that investigates interactions of ligand which is a small 

molecule with a target protein's binding site [16]. Protein-

ligand docking in this research predicts the position and 

orientation of an Alzheimer's drug candidate compound as 

ligand on the Acetylcholinesterase protein as receptor. 

In this study, molecular docking is used to validate the 

prediction results of the Random Forest model, for a new 

dataset that does not yet have labels. The dataset used in 

this analysis is a dataset taken through the PubChem 

database. In this study, only compounds with the highest 

and lowest pIC50 bioactivity values are selected to be 

conducted on molecular docking. 

TABLE VII.  MOLECULAR DOCKING RESULTS ON THE 'ACTIVE' 
LIGAND 

Mode Affinity 

(kcal/mol) 

Dist from best mode 

rmsd l.b. rmsd u.b. 

1 -13.18 0 0 

2 -11.42 3.32 10.33 

3 -11.34 2.023 3.081 

4 -11.02 1.609 2.223 

5 -10.92 3.584 10.3 

6 -10.7 2.843 4.706 

7 -10.67 3.593 9.67 

8 -10.6 1.594 2.529 

9 -10.51 3.551 10.97 

Std 0.7778 0.8326 3.6691 

 

 

Figure 6.  The docking pose of the ‘active’ ligand. 

Table VII shows molecular docking result on an 

‘active’ ligand with nine docking modes on the target 

protein Acetylcholinesterase. The docking mode 

represents one possible orientation and conformation of 

the ligand at the protein target binding site. Based on these 

results, docking mode 1 has the lowest affinity value at -

13.18 kcal/mol, indicating that the ligand can bind very 

strongly to the protein target. 
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Fig. 6 shows the docking pose of the 'active' ligand 

located in the pocket binding site of target protein. This 

shows that the compound chosen as the 'active' ligand has 

the potential to properly inhibit the biological function of 

the target protein Acetylcholinesterase. In other words, the 

compound could be a good candidate for an Alzheimer's 

drug. 

TABLE VIII.  MOLECULAR DOCKING RESULTS ON THE 'INACTIVE' 
LIGAND 

Mode Affinity 

(kcal/mol) 

Dist from best mode 

rmsd l.b. rmsd u.b. 

1 -5.845 0 0 

2 -5.488 3.303 6.034 

3 -4.694 3.34 5.013 

4 -4.586 9.233 10.2 

5 -4.44 8.409 10.04 

6 -4.272 31.37 32.14 

7 -4.202 8.214 10.15 

8 -4.173 9.814 12.34 

9 -4.123 28.61 29.96 

Std 0.5802 10.2252 9.8350 

 

 

Figure 7.  The docking pose of the ‘inactive’ ligand. 

Table VIII and Fig. 7 show the results of molecular 
docking on 'inactive' ligands. The lowest binding affinity 
of the 'inactive' ligand is -5,845 kcal/mol, which is much 
higher than that of the 'active' ligand. This shows that the 
'inactive' ligand has a weaker binding interaction than the 
'active' ligand. 

Based on the visualization of the docking pose for the 
'inactive' ligand, the position of the ligand is still in the 
pocket binding site of the target protein. This would make 
sense considering that all data collected through the 
PubChem database is Acetylcholinesterase inhibitors. So, 
all PubChem ligands that are predicted to be 'inactive' also 
still have the potential to inhibit the function of the protein 

target. However, the standard deviation values for the 
RMSD lower bound and upper bound for 'inactive' ligands 
are much higher than those for 'active' ligands. This shows 
that the 'inactive' ligand has much lower conformational 
flexibility or specificity when binding to the protein target. 
Conformational flexibility in 'inactive' ligands can make 
the ligand structure less able to lock properly at the binding 
site of the protein target. This allows the inhibitory 
potential of 'inactive' ligands to be lower compared to 
'active' ligands. 

D. Web Application Development 

The development of a web application has also been 
done in this research. The web application developed with 
Django framework and Python as the programming 
language. The system was designed as a web application 
since mostly bioactive prediction tools such as 
SwissTargetPrediction [17] were developed as web 
applications. Here are some interfaces and features of 
designed web application in this research: 

 

Figure 8.  The Home Page. 

In the Home page, user can see the visualization of 3D 
structure of target enzyme AChE. To obtain the bioactivity 
prediction result, users can input the chemicals in the 
SMILES string using a format file (.csv, .xlsx, or .txt) and 
then click the predict button. 

 

Figure 9.  The Prediction Result Page. 

The prediction result will be shown in a table and sorted 
descending based on the pIC50. On this page users can 
download the prediction result as csv file and proceed local 
analysis for a compound.  
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Figure 10.  SHAP local interpretation. 

The local analysis will show SHAP force plot for each 

class ‘active’ and ‘inactive’. 

 

Figure 11.  SHAP Summary 

On the same page, users will get the SHAP Summary, 
which shows a bar chart highlighting the most important 
features. 

 

Figure 12.  The docking pose of the ‘inactive’ ligand. 

In this web application, the user can also download the 3D 
structure of compound in PDB format. Where, a molecular 
docking analysis requires the compound's three-
dimensional structure.  

5. CONCLUSION 

In Conclusion, the Random Forest Method can be 
utilized as a suitable model for QSAR modeling in 
Alzheimer's drug discovery, considering ease of 
interpretation and maintaining a respectable degree of 
prediction accuracy (MAPE regression model 11.10% and 
AUC-ROC classification model 84.77%). Aside from that, 
adopting SHAP as an explanation model can help in both 
local and global interpretation by comprehending the 

essential elements of the Random Forest classification 
model prediction outputs in QSAR modeling. According 
to the molecular docking validation result, the binding 
affinity and the pIC50 have a negative correlation as 
expected. Moreover, a web-based tool has been created in 
this study to help with the screening process of 
Alzheimer's medication candidate.  Code for web 
application in this study could be access from, 
https://github.com/alyssaimani/Predict-BioActivity. 
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