
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail: chadi.riman@aum.edu.kw, pierre.abichar@aum.edu.kw

 http://journals.uob.edu.bh

Using DCT and Quadtree for Image Compression

Chadi F. Riman1 and Pierre E. Abi-Char1

1 College of Engineering and Technology, American University of the Middle East, Kuwait

E-mail address: chadi.riman@aum.edu.kw, pierre.abichar@aum.edu.kw

Received ## Mon. 20##, Revised ## Mon. 20##, Accepted ## Mon. 20##, Published ## Mon. 20##

Abstract: Data file compression has been used for a long time to reduce data file sizes, due to restriction in memory capacity and

slow network communication speeds. Compression is also applied to images and became a necessity with the introduction of the

world wide web since images are used extensively in web sites. A Bitmap is a standard for image storing introduced by Microsoft for

its Windows operating system. Bitmaps are very popular today, but they use a lot of memory space, giving the need for compressing

them. Various techniques are used for bitmap (BMP) image compression. Several are lossless, that is the quality of the image is not

modified, and others are lossy, in which a part of the image is lost. Examples of lossless techniques include GIF and PNG, while JPG

is an example of a lossy technique. JPG is composed of Discrete Cosine Transform (DCT), Quantization, Huffman coding and Run-

length encoding (RLE). Quadtrees are also used for lossless or lossy image compression. In this work, we propose an algorithm

based on DCT/Quantization and Quadtrees to be used in sequence together for lossy image compression. Our proposed method will

be compared with other techniques, namely JPEG and Quadtree with different parameters. In the results, our proposed algorithm

performed well compared to other quadtree methods.

Keywords: Bitmap, DCT algorithm, Image Compression, JPEG, Quadtree, Quantization

1. INTRODUCTION

Computer images are an essential part of computer

daily usage, especially for end consumers. They are

identified with different color models such as RGB,

CMY, YCbCr. RGB means that every pixel has 3

different colors, one for Red, one for Green, and one for

Blue. CMY means that the image is composed of the

colors cyan, magenta and yellow. YCbCr represents the

image in terms of luma or brightness Y (which gives the

grey image alone), Cb (blue-difference chroma B-Y), and

Cr (red-difference chroma R-Y). The difference between

RGB and YCbCr is that RGB represents colors as

combinations of red, green and blue. On the other hand,

YCbCr represents colors as combinations of a brightness

and two chroma parts. [1]

There are several formats to save a picture in the

computer such as Raw format as taken from digital

cameras or scanners, and Bitmap (BMP) format that

introduced by Microsoft for its Windows operating

system in the 1980s. These formats usually consume a lot

of memory to save an image, typically 3 bytes per pixel

for BMP with 24 color bits, namely 8 bits (256 different

values) per color: R (red), G (green), and B (blue). [2]

Data file compression was introduced in the 1970s to

reduce file size files for storage purposes. Among the

different techniques used, Huffman coding was one of

them, followed by LZW algorithm which was widely used

for most general-purpose compression systems. [3]
With the widespread of World Wide Web in the early

nineties, and with the initial slow network speeds, there
was a need to reduce the size of an image so that it will be
downloaded on a client’s computer in reasonable time. [4]
Several image compression techniques were introduced to
solve these. They were categorized in 2 categories:
lossless and lossy. [5] The lossless methods compress the
image without losing any part of it, making it easy to
decompress and retrieve all the bits. Examples of lossless
image compression formats include Graphics Interchange
Format (GIF) in 1987, and Portable Network Graphics
(PNG) in 1997. The lossy methods compress the image
while losing a part of it, making it impossible to retrieve
the original image bits. Using lossy methods can be
noticeable in the deterioration of the image’s quality, but
sometimes it is not noticeable by a human’s eye. The most
important type of lossy image compression format is Joint
Photographic Experts Group (JPEG) in 1992. The JPEG
format gives an excellent compression while maintaining
a good quality. JPEG uses a lossy form of compression

IJCDS 1571019981

1

2 Chadi F. Riman and Pierre E. Abi-Char: Using DCT and Quadtree for Image Compression

http://journals.uob.edu.bh

based on the discrete cosine transform (DCT),
quantization, run-length encoding, and then Huffman
coding. Another way is reducing the image resolution in
any format (for example downsizing a 256x256 pixels
BMP to 64x64) which also results in image size reduction,
but with a big loss of quality. [6] [7]

A quadtree is a type of tree data structure in which
each internal node has exactly 4 sub-nodes. It is used to
store information for a two dimensional space. [8]
Quadtrees were also used for image compression in both
lossless and lossy algorithms, in which an image keeps
being divided into 4 equal regions until each region values
reach a certain threshold. [9]

In this paper, we present an improvement to the
original quadtree image compression by combining it with
part of the process done in JPEG compression. The
quadtree is created after performing the DCT and
Quantization of the original image, with the latter two
being part of JPEG compression. Computer experiments
for different standard images are conducted to evaluate
the performance of the proposed algorithms. The
simulation results will also be compared to other methods
mostly using Quadtrees to show the effectiveness of the
proposed system, especially when compared with the
usual quadtree implementations.

The rest of this paper is organized as follows. In

Section II, we briefly survey the relevant literature review.

Section III presents mathematical preliminaries. Section

IV describes the proposed DCT and Quantization with the

Quadtree algorithm. In section V, the performance of the

proposed scheme is analyzed and compared to other

methods. Finally, we conclude the paper in Section VI

with a perspective of the obtained results.

2. RELATED WORK

In the past years, several image compression

approaches have been proposed in both lossless and lossy

ways. Furthermore, several work covered using

Quadtrees for compression of data and images. A few of

the relevant recent work done is listed next.

Authors in [10] suggested a new hybrid image

compression technique. Three transform-based

techniques discrete Fourier transform (DFT), discrete

wavelet transform (DWT), and discrete cosine transform

(DCT) have been combined for image compression to

combine the good characteristics of these methods. To

test the level of compression, quantitative measures were

used to test the compression level and the effectiveness of

the suggested system.

In [11], the JPEG algorithm was improved by storing

the location of end-of-block codes for empty blocks in a

separate buffer and compressing the buffer with a lossless

method (Huffman or arithmetic coding), used for all the

image data. This way, with the same Peak Signal to Noise

Ratio value, a higher compression ratio than the

conventional JPEG encoder resulted. The improvement

amount varied between images.

A work in [12] suggested a way to improve PEG

compression algorithm for color image. It tried to

improve compressed image quality by modifying

luminance quantization table in frequency domain. The

quantization table is modified in a way to only keep the

lowest frequency DCT coefficients with significant

amplitude values. The proposed method was verified with

simulation results.

Another work in [13] also suggested adding a pre-

processing steps that could be generalized to be

implemented before any lossy technique and was

performed on various images that varied in types,

dimension, and bit-depth. JPEG was one of the used

techniques along the proposed pre-processing steps. The

results showed the advantage of combining pre-

processing with JPEG in terms of enhanced peak signal-

to-noise ratio (PSNR) and better compression ratio.

JPEG2000 was released in 2000 as an improvement

over JPEG original algorithm. In [14], a comparison was

made between the two. The main difference is that

JPEG2000 used discrete wavelet transform (DWT)

instead of discrete cosine transform (DCT). It also used

Embedded Block Coding with Optimal Truncation

(EBCOT) instead of Huffman coding. The results showed

that JPEG had a slight quality edge at low compression

ratios (below 20:1), while JPEG2000 was the better at

medium and high compression ratios.

In [15], a new compression concept based on

convolutional neural networks (CNN) was suggested. To

get high-quality image compression at low bit rates, two

CNNs are combined into the compression algorithm. The

two CNN cooperate and are trained using a unique

optimization procedure. Results from the testing gave

enhanced performance and quicker processing.

A work done in [16] proposed a method for lossy

image compression based convolutional neural networks

that is claimed better than JPEG. Three techniques were

shown: hidden-state priming, spatially adaptive bit rates,

and perceptually-weighted training loss. Combining these

three techniques improved over standard image codecs

such as JPEG.

The authors in [17] tried to improve the performance

of JPEG2000 by combining it with features of the

original JPEG method. They proposed a compression

method in which both DWT and DCT were used to

2

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 3

http://journals.uob.edu.bh

improve the compression ratio. Then removed the

EBCOT used in JPEG2000 that as it has high

computational complexity and replaced it with the

simpler Huffman coding. This saved time and

computations in addition to a better compression.

The study done by the authors in [18] proposed hybrid

model the using canonical Huffman coding (CHC) with

discrete wavelet transform (DWT) and principal

component analysis (PCA) for image compression. When

compared to the existing approaches, the reconstructed

images gave a better peak signal-to-noise ratio which

reflects to a better image quality. It also gave lower bit

rates which means a better compression factor.

The work done in [19] proposed a fast lossless Image

Compression RVL-based system for real time

compression to give high ratio. Each pixel in the picture

uses a number of bits, called bit depth. The system was

able to get a large compression ratio within a very strict

time constraint since the system has to work in real time.

A work done in [20] suggested an improved lossless

image compression algorithm. It combined linear

prediction, integer wavelet transform (IWT) with output

coefficients processing and Huffman coding. Due to the

big correlation between the adjacent pixels of the source

image, there is a large compression space. The suggested

two-dimensional linear prediction model reduced the

redundancy between the pixels, so that the error values

are concentrated near zero and the data complexity is

reduced. The overall system gave a higher compression

rate with acceptable speed, mostly due to a reduced

predicted image entropy.

In [21] and [22], a new image compression technique

is proposed using quadtree decomposition with variable

block size for coding images. Inactive blocks are coded

by the block average value, while active blocks are coded

by using a set of parameters according to a pattern inside

the block. The goal is to achieve high compression ratios

and preserve image quality.

Another method [23] used fuzzy sets based on type-2

fuzzy logic for the quantization control used in discrete

cosine transform (DCT). An image coding system was

also provided with the fuzzy optimization algorithm, in

which the fuzzy rules of the gain factor used in image

compression were built.

Fuzzy logic was also used with Huffman coding in

[24] Coding is based on Huffman code with fuzzy logic-

based weighting functions for the frequency of the

existing symbols in data to generate efficient compression

code. Fuzzy logic is then coded to provide data security

under symmetric key encryption and decryption.

3. MATHEMATICAL PRELIMINARIES

In this section, we describe how JPEG image
compression works in details. Also we explain what is a
quadtree and how it is used for image compression in both
lossless and lossy ways. For the purpose of reducing
complexities, we will assume working with grey images,
thus having equal components for RGB images, or just the
Lumen part of YCbCr images.

A. JPEG Image Compression

JPEG image compression works by The JPEG format
gives an excellent compression while maintaining a good
quality. JPEG uses a lossy form of compression based on
the discrete cosine transform (DCT), quantization, run-
length encoding (RLE), and then Huffman coding. [6]

1) Discrete Cosine Transform (DCT)

DCT shows a sequence of data points as a sum of

cosine functions oscillating at different frequencies. It is a

method to convert a signal into elementary frequency

components. To apply DCT, the image is divided first into

8×8 blocks. For each block, DCT is applied after

modifying the each color range to be [-128, 127]

instead of [0, 255] by subtracting 128 from each element.

DCT for each cell (i, j) uses the following simplified

equation for the standard 8x8 blocks that JPEG uses: [7]

𝐷(𝑖, 𝑗) =
1

4
𝐶(𝑖)𝐶(𝑗) ∑ ∑ 𝑝(𝑥, 𝑦) cos

(2𝑥 + 1)𝑖𝜋

16
cos

(2𝑦 + 1)𝑗𝜋

16

7

𝑦=0

7

𝑥=0

1

Where p(x, y) is the original pixel element (x, y) in

matrix p, and C(x) is 1/√2 if x=0, and 1 otherwise.

From the above equation, we get a matrix form T

which is easier for calculation. So that the DCT of 8x8

block is calculated by:

D = TMT’ 2
where T is the DCT matrix, T’ is the transpose of T,

and M is the modified image block to the color range [-

128,127].

T has the equation:

𝑇𝑖, 𝑗 =
1

√8
 𝑖𝑓 𝑖 = 0,

1

2
cos

(2𝑗+1)𝑖𝜋

16
 𝑖𝑓 𝑖 > 0 3

2) Quantization

After DCT, quantization is applied to compress the

8x8 DCT block D calculated in equation 2. Every

element in D is divided by a corresponding element in

quantization matrix Q. There are different levels of

compression of Q. The most used one, which is the best

in terms of preserving image quality and high level of

compression is Q50. The resulting matrix C has the

following equation:

Ci,j = round(Di,j / Qi,j) 4

In C, it is noticed that many cells on right and lower parts

consist of zeros, which is due to the compression effect

done by Q.

3) Run-Length Encoding (RLE)

3

4 Chadi F. Riman and Pierre E. Abi-Char: Using DCT and Quadtree for Image Compression

http://journals.uob.edu.bh

After quantization, the matrix C is read in a zigzag

order starting from the upper left corner, grouping

repeated numbers together, especially the zeros.

Sequence of same number is stored as a single count and

data value

4) Huffman Coding

After run-length encoding, Huffman coding is applied

to the block. All numbers in the block are replaced with

codes having variable sizes. A more repeated number

will have a smaller coding size than less frequent

numbers.

B. Quadtree Image Compression

A quadtree is a type of tree data structure where each
node is a leaf node or has exactly four children. This data
structure is used to store information for a two
dimensional space. [8] This is very convenient for saving
images because a planar image has two dimensions. A
quadtree can be used for image compression in both
lossless and lossy ways. A tree node is created to
represent the full image. The difference of individual
pixels and the average RGB color of an image is checked
against an error threshold. If the difference is bigger than
the threshold, the image is divided into 4 sub regions, and
the node gets 4 children. The process is repeated
recursively until it meets the threshold. The image values
are saved in the leaf nodes. If the threshold is zero, then
the compression is lossless, otherwise it is lossy. The end
tree should be smaller than the original image. [9]

To illustrate the above, 2 examples are done, lossless
example with threshold of zero, and another lossy
example with threshold of 10.

For the first example, a small portion 8x8 pixel block
is taken from an image containing 21 blocks of grey color
shades (Fig. 1a). The portion lies on the border between 2
different zones of grey. The threshold is set to be zero,
which means a lossless compression case. This block can
be divided into 22 regions using the zero threshold as
shown in Fig. 2b.

Figure 1. a) 21 shades of GREY image b) LENA grey image

90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90

90 90 90 90 90 90 90 90

96 96 96 96 96 96 96 96

103 103 103 103 103 103 103 103

103 103 103 103 103 103 103 103

103 103 103 103 103 103 103 103

103 103 103 103 103 103 103 103

a) 8x8 sample pixel values taken from 24 shades of grey image

Figure 2. b) 8x8 sample, with quadtree regions for zero threshold

Figure 3 shows the quadtree for the first example. The
letter ‘x’ represents a node without a final value, but
having 4 children nodes. In this example, the 22 regions
give a compression ratio of 2.91 to 1 excluding the empty
‘x’ nodes, and 2.21 to 1 including the ‘x’ nodes.

Figure 3. The quadtree for the 8x8 GREY sample, taken from figure 2

For the second example, an 8x8 pixel block (shown in
Fig. 3a) is taken from LENA grey image of size 256x256
(Fig. 1b), which is a standard used picture for image
processing. We assume the threshold to be 10, so the
compression is lossy. The rounded average of the cell
values is 130. The deducted average from the cell values
is shown in Fig. 3b. This block can be divided into 25
regions using the threshold 10, as shown in Fig. 3c.

127 132 126 133 134 130 138 139

123 129 127 133 134 132 138 138

117 126 127 133 134 134 138 138

110 122 126 130 132 132 134 139

108 122 128 130 132 133 133 140

108 123 132 132 133 135 132 141

106 122 131 130 131 133 130 142

108 122 128 131 129 130 138 136

a) 8x8 sample pixel values taken from LENA grey image

-3 2 -4 3 4 0 8 9

-7 -1 -3 3 4 2 8 8

-13 -4 -3 3 4 4 8 8

-20 -8 -4 0 2 2 4 9

4

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 5

http://journals.uob.edu.bh

-22 -8 -2 0 2 3 3 10

-22 -7 2 2 3 5 2 11

-24 -8 1 0 1 3 0 12

-22 -8 -2 1 -1 0 8 6

b) 8x8 sample pixel values minus calculated average value of 130

Figure 4. c) 8x8 sample, with quadtree regions for threshold 10

Figure 5 shows the quadtree for the previous example.
The letter ‘x’ represents a node without a final value, but
having 4 children nodes. In this example, the 25 regions
give a compression ratio of 2.56 to 1 excluding the empty
‘x’ nodes, and 1.94 to 1 including the ‘x’ nodes.

Figure 5. The quadtree for the 8x8 LENA sample, taken from figure 3

4. PROPOSED ALGORITHM

The proposed scheme consists of three main parts,
namely the Discrete Cosine Transform, the Quantization,
and the Quadtree decomposition. These three parts are
described as follows.

Assuming that the original image is 256x256 pixels
The image is initially decomposed to 8x8 pixel blocks,
then the color range for each pixel is changed to be around
zero, by deducting 128 from each number as explained in
the previous section. As an example, we will the same
sample taken from LENA grey image in figure 4a. The
following figure 6 shows the updated numbers from figure
4a after deducting 128 from each cell.

-1 4 -2 5 6 2 10 11

-5 1 -1 5 6 4 10 10

-11 -2 -1 5 6 6 10 10

-18 -6 -2 2 4 4 6 11

-20 -6 0 2 4 5 5 12

-20 -5 4 4 5 7 4 13

-22 -6 3 2 3 5 2 14

-20 -6 0 3 1 2 10 8

Figure 6. 8x8 sample pixel values taken from LENA grey image (fig.

4a), with numbers centered around zero

After the initial centering around zero, the DCT is
applied first similarly as applied to JPEG algorithm. Then
DCT is applied to every block using equation (2)
mentioned in the previous section. The results of applying
DCT to the 8x8 block in figure 6 is shown next in figure
7, with all numbers rounded off to one decimal place.

12.8 -51.5 -15.2 -20.8 -4 -8 -5.3 -2.7

11.7 10.3 8.9 10.1 5.6 2.9 -6.5 0.3

4.6 6.6 5.2 2.1 0.7 3.5 -4.3 0.7

2.6 1.8 0.5 -2 1.6 -3.9 3.1 -0.6

-3.8 -0.3 1.9 0.7 0 1.8 -3.2 0.7

-1.2 -0.7 0.1 -1.5 1.1 -2.5 1.8 -0.6

2.7 0.6 -0.6 1.2 -0.8 1.9 -1.5 0.1

0.2 -0.3 0.3 0 0.1 -0.6 0.2 -0.3

Figure 7. Results of applying DCT to the 8x8 sample pixel values in

fig. 6

Next, the quantization step is applied also in the same
way as in JPEG. Q50 is used as a compromise between
having a good quality and a good compression ratio. The
resulting block matrix from the first step (Fig. 7) is
divided by the quantization matrix Q50, using equation (4)
from previous section. The results of applying
quantization to the 8x8 block in figure 7 (after DCT) is
shown next in figure 8. As mentioned in equation (4), all
numbers are rounded to the nearest integer.

1 -5 -2 -1 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Figure 8. Results of applying Quantizatrion (Q50) to the 8x8 block

after DCT sample pixel values in fig. 7

The last step involves creating a quadtree after
merging all the 8x8 blocks into the full image (which is
assumed to be 256x256 pixels, with 8 bits gray color
depth). The full image is checked for a single pixel value
from the image. A quadtree node is created depicting this
value. If a single value does not exist, then the image is
divided into 4 equal blocks, with each block tested again
for uniformity, assuming a threshold of zero. On the
quadtree, this is done by adding 4 children to the parent
node. This process keeps running recursively until no
further decomposition can be done. Finally the leaf nodes
represent the actual parts of the image.

For illustration purpose, we will apply last step on the
8x8 block values received after applying DCT, then
quantization (Q50). We also assume a threshold value of
zero. The obtained quadtree is shown in the next figure 9.

5

6 Chadi F. Riman and Pierre E. Abi-Char: Using DCT and Quadtree for Image Compression

http://journals.uob.edu.bh

(a)

(b)

Figure 9. Obtained Quadtree with zero threshold from the fig. 8 above,
which is the result of DCT and Quantizatrion (Q50): (a) Quadtree

regions. (b) Quadtree values

The obtained quadtree in figure 9 by applying our
methodology (DCT-Quantization-Quadtree with zero
threshold) is more compact than the quadtree obtained in
figure 4c using only quadtree with threshold of 10. Our
result contains only 13 nodes excluding parent nodes (17
including all nodes). The other examples contains 25
nodes excluding parent nodes (33 including all nodes).
The overall compression using our method for this small
sample is 4.92 to 1 excluding the empty ‘x’ nodes, and
3.76 to 1 including the ‘x’ nodes. This number is almost
double the compression rate of the quadtree alone.

Figure 10. DCT – Quadtree Image Compression Algorithm’s Flowchart

A simplified flowchart for the overall system is

shown on the next figure 10. The proposed algorithm is

shown after that.

Algorithm DCT – Quadtree Image Compression

1. Select the 256x256 grey image.

2. Set threshold value Th.

3. Divide the image into 8x8 blocks.

4. Select the first 8x8 block M.

5. Modify the color of each pixel in M:

M(i,j) = M(i,j) – 128 (i/j going from 0 to 7)

6. Apply DCT to block M, getting matrix block D.

D = TMT’
Where:

𝑇𝑖, 𝑗 =
1

√8
 𝑖𝑓 𝑖 = 0,

1

2
cos

(2𝑗+1)𝑖𝜋

16
 𝑖𝑓 𝑖 > 0

T’ = Transpose of T
7. Apply quantization Q50 to block D, getting matrix C.

 Ci,j = round(Di,j / Qi,j)
8. Save block C as part of 256x256 final table F.

9. Select next 8x8 block M.

10. Loop steps 4 to 8 until no more 8x8 blocks remain.

11. Start from table F as 1 block, create one parent tree

node and set as current node.

12. Check the average block value a.

13. If all |block values – a| <= Th, save ‘a’ into the

current tree node.

14. If any absolute block value is greater than Th - a,

divide the block into 4 sub-blocks. Create 4 children

for the current tree node.

15. Move to the next tree node/block in F (movement is

left-right-up-down).

16. Repeat steps 12 to 15 until no more node/blocks

exist.

17. End of Algorithm.

5. PERFORMANCE & ANALYSIS OF THE

PROPOSED SCHEME

To verify the effectiveness of our proposed algorithm,
extensive simulations are carried out for a range of
standard images used for image processing and
compression. The system programming was done in C#
computing language and run on Windows 10 OS. The
suggested algorithm was run and compared with other
algorithms that are mainly based on quadtree and JPEG.
In total, the comparison was done on:

- Quadtree (Lossless, threshold zero)

- Quadtree (Lossy, with threshold 10)

- Quadtree with reduced image resolution (Lossy)

- JPEG: which consists of DCT / Quantization /
Huffman / RLE

Start

Load Image. Set Threshold Th.

Select 8x8 Blocks

End

Apply quantization to all

blocks

Adjust color of each cell -128

Apply DCT to all blocks

Create Quadtree for all table

6

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 7

http://journals.uob.edu.bh

- Our Algorithm: DCT / Quantization / Quadtree
(with both threshold zero and 10)

A. Selected Images

Five standard images were selected to compare the

different compression methods. To simplify the work, all

images were taken with 8 bits shades of grey, so each

pixel in the bitmap format took one byte. All pictures

were 256 pixel length by 256 pixels wide. The total

picture size was 64KB (kilo bytes) in one dimension, and

the total bitmap size was 192KB because the bitmap

gives 3 bytes for each pizel, 1 per color (red, green, blue),

even if the picture is grey. The pictures are: Lena (Fig.

11a), Barbara (Fig. 11b), 21 shades of Gray (Fig. 11c),

House (Fig. 11d), and Moon (Fig. 11e).

(a) (b)

(c) (d)

 (e)

Figure 11. Selected Images for compression comparison: (a) Lena, (b)

Barbara, (c) Grey 21, (d) House, (e) Moon.

B. Performed Tests

1) Quadtree (Lossless, threshold zero)

In this test, a normal quadtree is built based on the

original bitmap. The threshold was set to zero, which

means that any grouped nodes need to have exactly the

same value. Therefore this is a lossless compression. All

images details are restored with the same accuracy.

2) Quadtree (Lossy, with threshold 10)

In this test, a quadtree is built based on the original

bitmap. The threshold was set to 10, which means that

any grouped nodes can have a maximum deviation of 10

with respect to the average value. Therefore this is a

lossy compression. A part of the image details is lost due

to approximation.

3) Quadtree with reduced image resolution (Lossy)

In this test, a quadtree is built based on a modifed

bitmap of the original image, whereby all pixel values are

rounded down to the nearest 10. For example, the value

253 is saved as 250, and the value 27 is saved as 20. The

threshold was set to zero because the image is already

reduced in quality, in order not to lose more of the image

accuracy. Therefore this is a lossy compression, with the

loss happening in the quantization part of the

compression. with a part of the image detail is lost due to

the rounding of color values.

4) JPEG

In this test, a JPEG image is built based on the original

bitmap. As explained in the previous sections, JPEG

compression consists of DCT, Quantization, Huffman,

and RLE. It is a lossy compression method with the loss

happening in the quantization part of the compression.

5) Our Algorithm: DCT / Quantization / Quadtree

In this algorithm, DCT is applied first on the original

bitmap. Then quantization of 50 is applied on DCT. Next

a quadtree is built based on the results. A threshold of

zero is used first. Another threshold of 10 is also tested.

Although the threshold of 10 gives a better compression,

the image loses most of its quality because it was already

inducing loss, so it is dropped, and only threshold zero

was used in final testing.

C. Results of the Performed Tests

All the five compression algorithms were applied on

all the five selected standard images. We consider every

node in algorithms involving quadtrees as one byte value,

even header nodes containing no data. So assuming all

images having the same size of 65536 bytes, a full

quadtree with no compression will consume 87381 bytes.

This number is received if we start by 1 header node,

than keep multiplying by 4 and adding to the sum until

we reach 65536 nodes. The calculation is shown next:

1(head) + 4 + 16 + 64 + 256 + 1024 +

4096 + 16384 + 65536(leaves) = 87381

nodes

The test results are as follows:

7

8 Chadi F. Riman and Pierre E. Abi-Char: Using DCT and Quadtree for Image Compression

http://journals.uob.edu.bh

1) Lena Image

In the Lena image, for the quadtree with threshold

zero, the resulting file was bigger than the original. This

was due to not having many grouped groups of 4 nodes,

and the additional header nodes added a considerable

overhead. For the quadtree with threshold 10, a better

grouping was performed, and the resulting tree had

31357 nodes with the file reduced to 48% of its original

size. However, if the image resolution was reduced by a

round of 10, then quadtree applied with zero threshold,

the file was not compressed and kept its 100% size. The

JPEG algorithm achieved the best compression with the

file reduced to just 23% of its original size. Finally, our

algorithm achieved a file reduction to 56% of its size.

2) Barbara Image

The Barbara image is considerably more complicated

than all other images. For the quadtree with threshold

zero, the resulting file was bigger than the original. This

was due to the complicated image and not having many

grouped groups of 4 nodes, and also the parent header

nodes. For the quadtree with threshold 10, the resulting

tree had 51713 nodes with the file reduced to 79% of its

original size. But if the image resolution was reduced by

a round of 10, then quadtree applied with zero threshold,

the file became of bigger size than the original. The

JPEG algorithm achieved the best compression with the

file reduced to just 28% of its original size. Finally, our

algorithm achieved a file reduction to 68% of its size

with 44761 nodes.

3) 21 Shades of Grey Image

The 21 shades of grey image is the simplest and most

uniform picture in the selected set. Its simplicity made it

possible for the quadtree with threshold zero to work

efficiently, with a resulting file’s size 14% of the

original. The was improved with threshold 10 to become

just 3% of the original size. Even for the image

resolution reduction by a round of 10, then quadtree

applied with zero threshold, the file well compressed to

11% of its size. The JPEG algorithm performed well, but

not the best, with reduction to 6% of its original size.

Finally, our algorithm achieved a file reduction to 34% of

its size.

4) House Image

In the house image, the quadtree with threshold zero

performed badly with a resulting file bigger than the

original, for the same reasons mentioned before in Lena

and Barbara images. For the quadtree with threshold 10,

a better grouping was performed, with the file reduced to

54% of its original size. For the third method of the

image resolution reduced by a round of 10, then quadtree

applied with zero threshold, the file was slightly

compressed 92% of its size. The JPEG algorithm

achieved the best compression with the file reduced to

just 20% of its original size. Finally, our algorithm

achieved a file reduction to 44% of its size with 28705

nodes.

5) Moon Image

The last test was done on an image of the moon. The

quadtree with threshold zero also performed badly with a

resulting file bigger than the original as in all other non-

uniform images. For the quadtree with threshold 10, the

file was reduced to 52% of its original size due to a

better grouping. When the image resolution reduced by a

round of 10, then quadtree applied with zero threshold,

the file failed to be compressed and became larger in

size. The JPEG algorithm achieved the best compression

with the file reduced to 19% of its original size. Finally,

our algorithm achieved a file reduction of 40% of its

original size.

The results are shown and compared in the next two

tables, the first with the size in bytes, and the other with

compression percentage (new size divided by original

size):

TABLE I. COMPARISON: ORIGINAL AND AFTER COMPRESSION

FILE SIZE IN BYTES FOR THE TESTED COMPRESSION TECHNIQUES

The tables I and II show that JPEG is clearly by far the

most compact method in most of the scenarios, except in

21 shades of grey image. As for the others using

quadtree, our method seems to be exceeding all the others

in at least 3 out of 5 scenarios.

As for the images accuracy, the best is the quadtree

with threshold zero because it is lossless, followed by

JPEG and our algorithm with equal accuracy, then by the

quadtree with threshold 10 and the reduced image with

quadtree.

Method Picture Name

 Lena Barbara Grey House Moon

Original Bitmap
Size(3 dimensions)

192KB 192KB 192KB 192KB 192KB

Original Bitmap
Size (1 dimension)

65536 65536 65536 65536 65536

Quadtree
(threshold zero)

86713 87193 9445 74505 87337

Quadtree
(threshold 10)

31357 51713 1901 35293 34173

Reduced image
with quadtree

65465 75557 3189 60513 78821

JPEG 15073 18350 4129 13369 12452

DCT, quantization,
quadtree (Th=0)

36557 44761 22281 28705 26453

8

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 9

http://journals.uob.edu.bh

TABLE II. COMPARISON: AFTER COMPRESSION FILE % OF

ORIGINAL FILE FOR THE TESTED COMPRESSION TECHNIQUES

6. CONCLUSION

In this paper, an algorithm based on
DCT/Quantization and Quadtrees was suggested for
image compression. This algorithm was tested and will
be compared with other techniques mostly using
quadtrees: quadtree with zero threshold, quadtree with
threshold 10, reduced image resolution with quadtree. It
was also compared with JPEG algorithm which is based
on DCT. The simulation shows that although JPEG is
superior to all the others in the comparison, our
algorithm based on DCT with quadtree performed well
with respect to the all other applied methods based on
quadtrees.

REFERENCES

[1] Neethu John, Amitha Viswanath, Sowmya V and Soman K P.
Analysis of Various Color Space Models on Effective Single
Image Super Resolution. Intelligent Systems Technologies and
Applications, 2016, Volume 384. ISBN : 978-3-319-23035-1

[2] Types of Bitmaps - Windows Forms .NET Framework | Microsoft
Learn. Article 02/06/2023. https://learn.microsoft.com/en-
us/dotnet/desktop/winforms/advanced/types-of-
bitmaps?view=netframeworkdesktop-4.8

[3] M. Sharma, Compression using Human coding, IJCSNS
International Journal of Computer Science and Network Security,
10(5) (2010), 133-141.

[4] C. Prudvi, D. Muchahary and A. S. Raghuvanshi, "Analysis of
Image Compression Techniques for IoT Applications," 2022 2nd
International Conference on Intelligent Technologies (CONIT),
Hubli, India, 2022, pp. 1-5, doi:
10.1109/CONIT55038.2022.9848206.

[5] N., Karthikeyan & Saravana Kumar, N.M. & Mugunthan, S.R..
(2018). Comparative study of lossy and lossless image
compression techniques. International Journal of Engineering and
Technology(UAE). 7. 950-953.

[6] A. M. Raid, W. M. Khedr, M. A. El-dosuky and Wesam Ahmed.
Jpeg Image Compression Using Discrete Cosine Transform - A
Survey. 2016. International Journal of Computer Science &
Engineering Survey (IJCSES) Vol.5, No.2, April 2014, pages 39-
46.

[7] Ken Cabeen and Peter Gent, Image Compression and the Discrete
Cosine Transform, Math 45, College of the Redwoods.

[8] Hanan Samet. The Quadtree and Related Hierarchical Data
Structures. Computing Surveys, Voi. 16, No. 2, June 1984, pages
187-260.

[9] Tassos Markas and John Reif. Quad Tree Structures for Image
Compression Applications. Information Processing &
Management Vol. 28, No. 6, pp. 707-721, 1992.

[10] Alsayyh, M.A.M.Y. & Mohamad, D. & Saba, Tanzila & Rehman,
A. & AlGhamdi, J.S.. (2017). A novel fused image compression
technique using DFT, DWT, and DCT. Journal of Information
Hiding and Multimedia Signal Processing. 8. 261-271.

[11] Iqbal Y, Kwon O-J. Improved JPEG Coding by Filtering 8 × 8
DCT Blocks. Journal of Imaging. 2021; 7(7):117.
https://doi.org/10.3390/ jimaging7070117.

[12] Alam, Lamia & Dhar, Pranab & Hasan, Mirza & Golam,
Mohammed & Bhuyan, Sarwar & Daiyan, Golam. (2019). An
Improved JPEG Image Compression Algorithm by Modifying
Luminance Quantization Table. IJCSNS International Journal of
Computer Science and Network Security, VOL.17 No.1, January
2017, 200-208.

[13] Ahmed L. Alshami and Mohammed Otair, “Enhancing Quality of
Lossy Compressed Images using Minimum Decreasing
Technique” International Journal of Advanced Computer Science
and Applications(IJACSA), 9(3), 2018.
http://dx.doi.org/10.14569/ IJACSA.2018.090353.

[14] Ebrahimi, Farzad & Chamik, Matthieu & Winkler, Stefan. (2004).
JPEG vs. JPEG2000: An objective comparison of image encoding
quality. Proceedings of SPIE - The International Society for
Optical Engineering. 5558. 10.1117/12.564835.

[15] F. Jiang, W.Tao, S. Zhang, J.
Ren,W.Shi,W.Zuo,X.Guo,andD.Zhao, “An End–to-End
Compression Framework Based on Convolutional Neural
Networks,” in 2017 Data Compression Conference (DCC), April
2017, pp.463–463.

[16] N. Johnston, et al., "Improved Lossy Image Compression with
Priming and Spatially Adaptive Bit Rates for Recurrent
Networks," in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 2018
pp. 4385-4393. doi: 10.1109/CVPR.2018.00461

[17] K. Dharavath and S. Bhukya, "A Novel Approach for Improving
Image Compression Ratio," 2022 IEEE 3rd Global Conference for
Advancement in Technology (GCAT), Bangalore, India, 2022, pp.
1-4, doi: 10.1109/GCAT55367.2022.9972021.

[18] Ranjan, R.; Kumar, P. An Improved Image Compression
Algorithm Using 2D DWT and PCA with Canonical Huffman
Encoding. Entropy 2023, 25, 1382.
https://doi.org/10.3390/e25101382.

[19] Fischer, R., Dittmann, P., Schröder, C., & Zachmann, G. (2020).
Improved Lossless Depth Image Compression. Journal of WSCG,
28, 168-176.

[20] Liu, Xiaoxiao & An, Ping & Chen, Yilei & Huang, Xinpeng.
(2022). An improved lossless image compression algorithm based
on Huffman coding. Multimedia Tools and Applications. 81.
10.1007/s11042-021-11017-5.

[21] F. Keissarian. A New Quadtree-based Image Compression
Technique using Pattern Matching Algorithm. International
Conference on Computational & Experimental Engineering and
Sciences (ICCES), vol.12, no.4, pp.137-143, 2009.

[22] Keissarian, F.: A new quad-tree segmented image compression
scheme using histogram analysis and pattern matching 2010.
https://ro.uow.edu.au/dubaipapers/254.

[23] Yunhai Chen and Xiong Luo. Type-2 Fuzzy Logic Based DCT for
Intelligent Image Compression. 2014 IEEE International
Conference on Computer and Information Technology.

[24] Nosratian, S., Moradkhani, M., & Tavakoli, M. B. (2021). Hybrid
data compression using fuzzy logic and Huffman coding in secure

Method Picture Name

 Lena Barbara Grey House Moon

Original Bitmap
Size (1 dimension)

100% 100% 100% 100% 100%

Quadtree
(threshold zero)

132% 133% 14% 114% 133%

Quadtree
(threshold 10)

48% 79% 3% 54% 52%

Reduced image
with quadtree

100% 115% 11% 92% 120%

JPEG 23% 28% 6% 20% 19%

DCT, quantization,
quadtree (Th=0)

56% 68% 34% 44% 40%

9

https://learn.microsoft.com/en-us/dotnet/desktop/winforms/advanced/types-of-bitmaps?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/advanced/types-of-bitmaps?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/advanced/types-of-bitmaps?view=netframeworkdesktop-4.8
http://dx.doi.org/10.14569/
https://ro.uow.edu.au/dubaipapers/254

10 Chadi F. Riman and Pierre E. Abi-Char: Using DCT and Quadtree for Image Compression

http://journals.uob.edu.bh

IOT. Iranian Journal of Fuzzy Systems, 18(1), 101-116. doi:
10.22111/ijfs.2021.5875

Chadi F. Riman received his PhD

degree at the University of

Versailles (UVSQ), France in 2008.

He is currently an Associate

Professor of Computer Engineering

at American University of the

Middle East, Kuwait. He previously

served as Department Chair of

Computer Engineering at the same

university. Previously, he was an

Assistant Professor and chairperson

of the Computer Engineering

department at Fahad Bin Sultan

University, KSA. His research interests include robotics and

software systems for handicap rehabilitation, image

compression techniques, cryptography algorithms, and

engineering ethics.

Pierre E. AbiChar (Member,

IEEE) received the M.S. degree in

computer engineering from

Balamand University, Lebanon, in

2000, and the Ph.D. degree in

computer engineering from Pierre

ET Marie Curie University (Paris

VI) and Telecom SudParis, Paris,

France, in 2010. From 2000 to

2009, he was a Research Assistant

with the college of engineering,

Balamand university, Lebanon.

From 2010 to 2014, he was an

Assistant Professor with the college of computer science and

information technology, American University of Technology,

Halat, Lebanon. He is currently working as an Associate

Professor with the College of Engineering and Technology,

American University of the Middle East, Kuwait. His current

research interests include applied cryptography, security

protocols, data security and privacy protection, key

management, wireless network security, security and privacy in

Internet of Things, cybersecurity, Cloud computing security.

10

