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Abstract: Cloud computing has transformed data management with its scale and flexibility. Cloud resources are transient and diversified, 
making task scheduling difficult. This paper proposes Double Deep Q-Network (DDQN) reinforcement learning model to solve the cloud 
computing task scheduling problem. Double Deep Q-Network (DDQN) is a powerful reinforcement learning system that improves on 
Deep Q-Networks (DQN). The target network and the online network are the two distinct neural networks that DDQN presents. To create 

a more consistent and less unpredictable learning process, the target network is updated on a regular basis to imitate the Q-value estimations 
of the online network. Traditional DQN can have problems with overestimation bias, which is something that this dual-network architecture 
helps to alleviate. DDQN is a reliable and efficient tool for solving complex reinforcement learning problems. It excels in learning optimal 
strategies through iteratively improving its Q-value estimations. DDQN presents a robust framework for addressing the challenges inherent 
in cloud computing task scheduling. Its dual-network architecture and iterative learning process offer a promising avenue for enhancing 
the efficiency and effectiveness of resource allocation in cloud environments. Through its continuous refinement of Q-value estimations, 
DDQN emerges as a valuable asset in navigating the complexities of modern data management within cloud infrastructures. 
Keywords: Cloud computing, Data management, Task scheduling, Double Deep Q-Network (DDQN), Reinforcement learning, Deep Q-
Networks (DQN), Target network, Online network 

1. INTRODUCTION 

Task scheduling is a crucial element in the dynamic field 

of cloud computing, playing a major role in ensuring the 

efficient operation of services hosted on the cloud [1]. The 

core of task scheduling is its capacity to strategically 
distribute computing work among the available cloud 

resources. This process directly affects the performance, 

cost efficiency, and user happiness in cloud settings [2]. 

Conventional scheduling techniques, primarily static or 

heuristic-driven, have historically been the primary 

approach to addressing this problem. Nevertheless, as 

cloud computing environments become more intricate and 

ever-changing, these traditional methods frequently prove 

inadequate. The need for a scheduling solution that is more 

flexible and intelligent is highlighted by the inability to 

adjust to changing workloads and resource availability in 
real-time, as well as the issues provided by the 

unpredictable nature of cloud needs. This context provides 

the opportunity to investigate sophisticated machine 

learning methods, including those related to Deep 

Reinforcement Learning (DRL), as possible catalysts for 

transforming task scheduling in cloud systems [3]. 

The incorporation of Deep Reinforcement Learning 

(DRL) into cloud task scheduling offers the potential for 
algorithms that possess the ability to acquire knowledge, 

adjust, and make choices in ever-changing and 

unpredictable settings [4]. Double Deep Q-Network 

(DDQN) is a notable method among the different DRL 

techniques, mostly because of its improved stability and 

efficiency in learning policies. This is particularly 

advantageous in situations that involve intricate state-

action spaces. The strength of DDQN lies in its capacity to 

separate the selection and evaluation of activities, which 

represents a notable advancement compared to its 

predecessor, the Deep Q-Network (DQN) [5]. This 
characteristic renders it very appropriate for the 

complexities of cloud task scheduling, wherein decisions 

must be made taking into account a multiplicity of criteria 

such as job priority, resource availability, execution time, 

and cost. Within a cloud environment characterized by 

unpredictable fluctuations in resource demands and 
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varying availability of computing resources, a DDQN-

based approach can adaptively allocate tasks to optimize 

multiple objectives, such as minimizing delays, balancing 

workloads, and maximizing resource utilization [6]. The 

investigation of DDQN in cloud task scheduling not only 

expands the possibilities in cloud computing research but 

also offers concrete enhancements in the operational 

efficiency of cloud services, potentially resulting in more 

economical and user-focused cloud computing models. 

The main focus of this study is to provide a task scheduling 
mechanism that is efficient and can adjust to the ever-

changing and uncertain conditions of cloud settings. The 

goal is to minimize the time it takes to complete tasks and 

maximize the use of resources, while also maintaining 

fairness and preventing conflicts over resources. The 

suggested approach utilizes Double Deep Q-Network 

(DDQN) [7] to efficiently manage job scheduling in cloud 

environments. The capability of DDQN to manage input 

spaces with a large number of dimensions and acquire 

optimal policies in intricate situations makes it highly 

suitable for cloud job scheduling [8]. The suggested 
Double Deep Q-Network (DDQN) model is specifically 

developed to iteratively acquire knowledge and adjust its 

scheduling approach in response to real-time input 

obtained from the cloud environment. 

This work presents the following significant contributions: 

• The framework presented is a novel approach to 

job scheduling in cloud computing, utilizing a 

DDQN-based method. 

• The text provides a thorough examination of the 

effectiveness of the suggested framework in 

comparison to conventional scheduling methods. 

• The study offers valuable information on the 

scalability and adaptability of DDQN in 

managing various cloud computing situations. 

The subsequent sections of the paper are structured in the 

following manner: Section II provides an overview of 
previous research conducted in the field of cloud task 

scheduling and Deep Reinforcement Learning (DRL). 

Section III provides a comprehensive explanation of the 

methodology employed in the proposed task scheduling 

system, which is based on the Double Deep Q-Network 

(DDQN) approach. Section IV outlines the experimental 

configuration and assessment criteria. Section V presents 

the findings and evaluates the effectiveness of the 

proposed system in comparison to established approaches. 

Section VI serves as the final section of the work, 

providing a conclusion and delineating potential avenues 

for further research. 

2. LITERATURE SURVEY 

Kaixuan Kang al [9] presented an energy-efficient cloud 

computing job scheduling system called Adaptive Deep 

Reinforcement Learning-based (ADRL). Initially, we 

provide a Change Detection method designed to identify 

significant changes in the workload. Using this 

foundation, we developed an Automatic Generation 

network that can adaptively modify the discount factor of 

Deep Reinforcement Learning (DRL) based on variations 

in workload. This allows for quicker and more precise 

learning. We are now using adaptive Deep Reinforcement 

Learning (DRL) to determine the most effective strategy 

for dispatching incoming user requests. The objective is to 

decrease task response time and increase resource usage 
by optimizing the incentive system. 

Mohan Sharma et al [10] presented a novel approach for 

optimizing task scheduling in an energy-efficient manner 

by using supervised neural networks. The primary 

objective is to minimize the makespan, energy 

consumption, execution overhead, and the number of 

active racks. The proposed artificial neural network-based 

scheduler utilizes incoming tasks and the existing state of 

the cloud environment as input to anticipate the most 

suitable computing resource for a particular job as output, 

aligning with our objective. 
Shashank Swarup et al [11] addressed the issue of job 

scheduling for cloud-based applications and seeks to 

reduce the computational expenses while adhering to 

resource and schedule limitations. To achieve this 

objective, we suggest using a clipped double deep Q-

learning algorithm that incorporates the target network and 

experience relay approaches, in addition to leveraging the 

reinforcement learning strategy. 

Zhou Zhou et al [12] suggested a new method called 

MGGS, which is a combination of a modified genetic 

algorithm (GA) and a greedy approach. The approach 
described utilizes a modified genetic algorithm (GA) in 

conjunction with a greedy strategy to enhance the 

optimization of the job scheduling process. Contrary to 

current algorithms, MGGS has the ability to discover an 

optimum solution with a reduced amount of repetitions. In 

order to assess the effectiveness of MGGS, we conducted 

a comparative analysis of its performance against several 

established algorithms. This evaluation was based on 

metrics such as the overall completion time, average 

response time, and quality of service (QoS) characteristics. 

Huanhuan Hou et al [13] conducted a study and analysis 

of energy consumption models used for scheduling 
objectives, provide a summary of the Deep Reinforcement 

Learning (DRL) algorithms utilized in existing research, 

and quantitatively assess the variations in Markov 

Decision Process components. In addition, we provide a 

concise overview of the experimental platforms, datasets, 

and neural network architectures used in the DRL method. 

Tingting Dong et al [14] proposed a technique, RLTS, 

utilizes a deep reinforcement learning architecture to 

dynamically schedule tasks with priority connection to 

cloud servers. Its objective is to reduce the time used for 

task execution. Meanwhile, the Deep-Q-Network, a kind 
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of deep reinforcement learning method, is used to address 

the issue of complexity and high dimensionality. 

Zihui Zhao et al [15] presented an intelligent cloud task 

scheduler based on deep reinforcement learning (DRL). 

This scheduler generates optimum scheduling decisions 

solely based on learning from its own experience, without 

relying on any past information. The task scheduling issue 

is modeled as a dynamic optimization problem with 

constraints. To identify the best task assignment solution 

that satisfies performance and cost limitations, we use the 
deep deterministic policy gradients (DDPG) network. We 

introduce a correlation-aware state representation 

approach to capture the fundamental attributes of requests, 

and we construct a dual reward model to discover the ideal 

strategy for task allocation. 

Yaoyao Ping et al [16] presented two different sequence 

creation techniques for the purpose of constructing 

scheduling sequences of many composite jobs before 

scheduling. Additionally, a Deep Q-Networks (DQN)-

based scheduling method and a Double DQN-based 

scheduling algorithm are presented, respectively, in 
conjunction with this. 

Saravanan Muniswamy et al [17] presented a hybrid 

optimal and deep learning strategy for dynamic scalable 

task scheduling (DSTS) in a container cloud environment. 

In order to increase the virtual resources of containers, we 

propose an enhanced version of the multi-swarm coyote 

optimization (MMCO) technique, which enhances the 

fulfillment of client service level agreements. In order to 

ensure scheduling based on priority, we develop a 

modified pigeon-inspired optimization (MPIO) technique 

for grouping tasks together and a rapid adaptive feedback 
recurrent neural network (FARNN) for allocating pre-

virtual CPUs. The task load monitoring system is 

constructed using a deep convolutional neural network 

(DCNN), enabling the implementation of dynamic 

priority-based scheduling. 

Qirui Li et al [18] suggested a cloud-based Time-Space 

Resource Allocation (TSRA) framework using deep 

learning (DL) techniques. The solution addresses the 

challenges of managing various task queues and virtual 

machine (VM) clusters in TSRA issues by integrating 

multiple deep neural networks (DNNs) as the job 

scheduler for the cloud system. The DNNs are partitioned 
into an exploration component and an exploitation 

component. During each scheduling time step, the model 

stores the most optimal outputs of all scheduling rules 

from each DNN in the experienced sample memory pool 

(SMP). Periodically, random training samples are chosen 

from the SMP to train each DNN in the exploitation 

section. 

 

 

 

3. PROPOSED MODEL: DOUBLE DEEP Q-

NETWORK (DDQN) 

Deep Q-Network (DQN) is a reinforcement learning 

algorithm. The DQN algorithm revolutionized the field by 

integrating traditional Q-learning with deep neural 

networks. This breakthrough allowed for the effective 

management of complex state spaces, such as those found 

in video games. Nevertheless, the Deep Q-Network 

(DQN) exhibited a proclivity for overestimating Q-values 
as a result of the intrinsic noise present in the training data, 

hence resulting in inefficient policy learning. 

3.1 Neural Network Architectures 

Neural networks are now a crucial tool for maximizing 

cloud resources because they can effectively handle 

intricate and ever-changing settings, enabling them to 

make intelligent judgments based on data. Neural 

networks are highly proficient in detecting patterns in 

extensive datasets, making them essential in cloud 

environments that are characterized by immense volumes 

of data. By examining historical usage patterns, 

performance indicators, and workload characteristics, they 
are able to predict future needs and determine the 

necessary resources. The ability to forecast future 

outcomes allows for proactive allocation of resources, 

resulting in reduced waste and improved efficiency. Cloud 

infrastructures are inherently volatile, with changing 

demands and diverse workload characteristics. Neural 

networks, particularly deep learning models, have the 

ability to adapt to these changes by constantly acquiring 

new knowledge and modifying their forecasts and choices. 

They have the ability to efficiently allocate compute 

power, storage, and network bandwidth in real-time. 

3.1.1 QNetwork 
The QNetwork is a neural network specifically developed 

to forecast the quality (Q-values) of executing particular 

actions in specified states within an environment. It is a 

fundamental component of Q-learning, which is a type of 

reinforcement learning. The architectural design consists 

of multiple fully connected layers. These layers, also 

referred to as dense layers, establish connections between 

each neuron in one layer and all neurons in the subsequent 

one. This enables the network to acquire intricate patterns 

within the data. 

Functionality: 

• Input: The current condition of the environment. 

Cloud resources pertains to the present state or 

arrangement of the resources in the cloud. 

• Output: The output consists of Q-values assigned 

to each action within the action space. These 

numbers indicate the anticipated usefulness of 

each action based on the current condition, which 
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helps in choosing the most efficient action to 

optimize resource utilization. 

 

3.1.2 TargetQNetwork 

The TargetQNetwork is intricately connected to the 

QNetwork but fulfills a slightly distinct objective. It is 
employed to predict the future value of actions, offering a 

consistent objective for the QNetwork to acquire 

knowledge from. The TargetQNetwork possesses an 

identical architecture to the QNetwork, however with 

distinct weights. 

Functionality: 

• Periodically Updated: The weights of the 

TargetQNetwork are periodically updated with 

the weights from the QNetwork. This update is 

less frequent to provide stability to the learning 

process. 

• Input: The next state of the environment, which 

is the state following the current action. 

• Output: Q-values for each action in the action 

space, but calculated for the next state. These 

values are used to compute the target Q-value in 

the Q-learning update rule. 

 

3.2 DDQN AGENT CLASS 

The DDQN Agent Class is a notable breakthrough in the 

realm of reinforcement learning, specifically in handling 

intricate decision-making tasks such as optimizing cloud 

resources. It improves upon the original Deep Q-Network 

(DQN) by implementing a crucial adjustment that 

specifically tackles the underlying problem of 
overestimation bias in the DQN's methodology. This 

improvement not only improves the precision of the 

learning process but also makes the training phase more 

stable, resulting in a DDQN model that is more resilient 

and dependable for real-world applications. The core of 

DDQN is its dual-network structure, which utilizes two 

separate but interconnected neural networks - the 

QNetwork and the TargetQNetwork - both of which are 

crucial in the agent's learning and decision-making 

process. 

The main advancement of the DDQN Agent Class is its 
strategy of segregating the action selection and action 

evaluation procedures, which effectively mitigates the 

issue of overoptimistic value estimates commonly 

encountered in single-network Q-learning methods. The 

QNetwork, which is in charge of action selection, interacts 

with the environment and obtains input in the form of state 

transitions and incentives. Meanwhile, the 

TargetQNetwork, which is kept separate from direct 

learning, offers a consistent set of Q-values that are used 

to compare and modify the outputs of the QNetwork. This 

division guarantees a more impartial assessment of 

actions, resulting in more efficient and logical decision-

making. In addition, the DDQN utilizes other essential 

techniques such as action selection through an epsilon-

greedy approach, computation of target Q-values, 

calculation of loss, optimization of the model, and regular 

updates of the TargetQNetwork. Every one of these 

elements has a crucial function in the agent's capacity to 

acquire knowledge and adjust to a constantly changing 
environment, rendering DDQN a potent instrument for 

jobs that demand advanced, data-based decision-making. 

3.2.1 Initialization 

The initialization step establishes the DDQN agent by 

defining crucial characteristics and configurations 

required for its functioning. 

• State Dimensions: State dimensions refer to the 

magnitude or quantity of variables in the state 

representation of the environment. 

• Action Dimensions: This term refers to the total 

number of potential actions that the agent is 

capable of taking. 

• Learning Rate: Dictates the speed at which the 

agent acquires new knowledge. An increased rate 

may result in accelerated learning but can also 

induce instability. 

• Discount factor: The discount factor (gamma) is 

a numerical value ranging from 0 to 1 that 

quantifies the significance of future rewards in 

the decision-making process of the agent. 

The exploration parameter, also known as epsilon, 

regulates the equilibrium between exploration, which 

involves experimenting with new strategies, and 

exploitation, which entails utilizing existing knowledge. 

Usually begins with a high level and gradually decreases 

over a period of time. The QNetwork and 

TargetQNetwork are initialized, each with their own 
optimizers. These networks are essential for calculating Q-

values. 

3.2.2 Methods for Training 

• Select_action Method: This strategy is crucial for 

the agent's interaction with the environment. It determines 

the course of action to be taken at each individual phase. 

The epsilon-greedy technique is of utmost importance in 

this context. The agent has the option to either explore the 

environment by randomly selecting an action, or use its 

existing knowledge by choosing the action with the 

greatest estimated Q-value, as determined by the 

QNetwork. The likelihood of exploration is determined by 

the epsilon parameter. This equilibrium guarantees that the 

agent avoids being trapped in a suboptimal solution and 

consistently acquires knowledge about the surroundings. 
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Usually, epsilon is adjusted to decrease progressively as 

the agent gains more knowledge about the environment, 

resulting in reduced random exploration and increased 

utilization of the learnt policy. 

 

• Method for Computing q_target Details of 

Computation:  The goal Q-value is an essential 

element in the update rule of Q-learning. The 

target Q-value for a specific state-action 

combination is computed by adding the reward 

obtained from executing that action to the 

discounted Q-value of the optimal action in the 

subsequent state, as predicted by the 

TargetQNetwork. This approach guarantees the 

policy is consistently revised to align with a long-

term optimal strategy, taking into account 

forthcoming incentives. By utilizing the 

TargetQNetwork for this computation, the 

approach circumvents the frequent updates that 

may arise from employing the QNetwork, hence 

offering a more consistent target for the 

QNetwork to acquire knowledge from. 

 

• compute_q_loss Method Calculation of Loss: 

This technique computes the mean squared error 

loss by comparing the predicted Q-values 

obtained from the QNetwork with the target Q-

values obtained from the compute_q_target 

method. The loss is the discrepancy between the 

current estimated value of a state-action 

combination and the model's expected value for 

that pair. The calculated loss is utilized to modify 

the weights of the QNetwork. By reducing this 

loss, the QNetwork's predictions gradually 

improve over time, resulting in enhanced 

decision-making. 

 

• optimize_model Method: During this step, the 

QNetwork's weights are modified using gradient 

descent algorithms. The gradients are computed 

using the loss obtained from the compute_q_loss 

technique. This method is crucial for the agent's 

learning as it ensures that the anticipated Q-

values are in line with the observed rewards and 

the long-term value of future states. Usually, this 

procedure is referred to as being executed after 

every individual action or a group of actions to 

guarantee the agent's policy is continuously 

learning and adapting. 

 

• update_target_network Method: This method is 

responsible for synchronizing the weights of the 

TargetQNetwork with the weights from the 

QNetwork. The frequency of this update is often 

lower than that of the learning updates to the 

QNetwork. An established method involves 

updating the TargetQNetwork after a 

predetermined number of steps or episodes. The 

few changes to the TargetQNetwork contribute to 

the stabilization of the learning process. The 

TargetQNetwork ensures the provision of 

consistent target Q-values for the QNetwork's 

learning process. Its slower adaption serves to 

prevent detrimental feedback loops, wherein the 

QNetwork may swiftly alter its policy based on 

its own recent updates. 

3.3 Training Loop 

The optimize_model function is crucial in the training and 

learning process of a DDQN (Double Deep Q-Network) 

Agent. This strategy is closely linked to the manner in 

which the agent engages with its surroundings and 
acquires knowledge from its encounters. To have a full 

understanding of the optimize_model method, let's 

analyze each step in the training loop individually. The 

training loop involves: 

• Selecting actions using the select_action method 

During each iteration, the agent must determine the 

optimal course of action to undertake based on the current 

condition of the environment. The select_action method is 

utilized to make this selection, commonly with an epsilon-

greedy technique. This approach achieves a harmonious 

equilibrium between exploration, which involves 

experimenting with novel actions, and exploitation, which 

entails utilizing the most optimal known action. This 
balance is crucial for the agent to efficiently acquire 

knowledge. The agent acquires useful data about the 

environment by choosing actions in different states and 

watching the resulting outcomes, which is essential for its 

learning. 

• Storing experiences in a replay buffer. 

The gathered experiences (state, action, reward, 

next_state) are kept in a data structure referred to as the 

replay buffer. The buffer plays a crucial role in stabilizing 

and enhancing the learning process. The replay buffer 

enables the agent to retain and reuse previous experiences, 

hence disrupting the association between consecutive 

learning samples. This results in enhanced and resilient 
learning. 

• Sampling from this buffer to compute Q-targets 

and Q-loss. 
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At regular intervals, the agent selects a set of events from 

the replay buffer. This batch is utilized to calculate the Q-

values for both the present and subsequent states. The 

target Q-values are computed using the TargetQNetwork 

for the subsequent state, and these values are then 

contrasted with the predicted Q-values derived from the 

QNetwork for the present state-action pair. The disparity 

between these values is calculated as the Q-loss, which 

serves as a metric for assessing the degree to which the 

agent's predictions correspond with the observed events. 

• Regularly updating the TargetQNetwork to 

stabilize training. 

Based on environmental interactions, the training loop 

updates the Policy and Value Networks using the train 

approach. Continuous agent performance improvement 

requires this loop. PPO-specific loss functions guide 

updates, highlighting the need to balance exploration and 

exploitation. The training loop helps the agent modify its 

policies and value estimations over numerous rounds, 

improving its capacity to traverse and adapt to complicated 
settings. 

4. EXPERIMENTAL ANALYSIS 

The experimental setup has ten virtual instances with 

different numbers of Virtual CPUs (VCPUs). These 

instances' VCPU counts vary, which affects their 

computational power. Table 1 completely lists each 

instance's VCPU levels and other relevant data. We 

assumed that a specific instance's computational 

efficiency is directly proportional to its VCPU count to 

match the simulated environment with practical settings. 

Each VCPU receives 1000 compute units to normalize 

comparisons. 
TABLE 1: TYPE OF INSTANCE 

Instance Type Number of VCPUs 

High I/O 1 

High CPU 2 

High CPU 4 

 

4.1 Performance evaluation under varying mean job 

arrival rates 

This study measures the efficiency of different scheduling 

algorithms in handling the inflow of jobs at varying mean 

arrival rates. The experiments are performed with mean 
job arrival rates between 10 and 30, as this range was 

sufficient to showcase the clear advantages of the 

proposed algorithm. However, increasing the arrival rates 

to higher, like 40, 50, or even 100, will not add any 

significance to the findings. Based on the works in the 

literature, the computing power needed for each task is 

modeled using the normal distribution. The timing of job 

arrivals follows a Poisson distribution, delivering a 

realistic testing scenario. The virtual environment is 

evenly split between high CPU and high I/O instances. 

Similarly, the job types are balanced, with half being I/O 

intensive and the other half computation intensive. 

 

 
Figure 1: Cost Comparison of Different Scheduling 

Algorithms 

The Figure 1 compares mean job arrival rates for Random, 

Round-Robin, Earliest, and DDQN methods. The Figure 1 

shows each strategy's expenses at different job arrival 

rates. Similarly, the Figure 2 shows work scheduling 

algorithm success rates across mean job arrival rates. 

These success rates show how well each algorithm 

performs problems. The data shows fascinating algorithm 

tendencies and performance variances. Different 

algorithms manage tasks differently in work scheduling. 
The Random method has modest success rates, fluctuating 

but remaining stable throughout job arrival rates. The 

Round-Robin approach works moderately, with a steady 

success rate, especially in settings with a constant amount 

of job arrivals. 

 

 
 

Figure 2: Comparison of Job Scheduling Algorithm 
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The Earliest algorithm outperforms others in the 10 to 25 

job arrival rate range. In certain situations, its arrival-time 

efficiency is a strength. In this comparison, the DDQN 

algorithm shines out. It consistently performs well across 

all mean job arrival rates. This consistency shows its 

resilience and dependability in effectively handling 

incoming tasks, making it a tempting alternative for 

situations requiring a reliable and high-performing 

algorithm. Understanding these success rates helps choose 

the best scheduling method for system needs. Workload 
changes, job prioritizing, and effective task management 

affect algorithm selection. The data highlights the 

strengths and performance of each algorithm, with DDQN 

showing a consistently high success rate, making it a 

versatile option across job arrival circumstances. 

 

 
Figure 3: Average Response Time of the Different 

Task Scheduling algorithms 
 

The Figure 3 shows the mean job arrival rates for various 

scheduling methods at different job frequency. These rates 

indicate each algorithm's task scheduling and processing 

performance under varied workloads. Findings show 

trends across algorithms. Random Scheduling has 

somewhat greater mean job arrival rates than Round-

Robin, Earliest, and DDQN at lower job arrival 

frequencies. As frequency rises, these algorithms' rates 

diverge further. Round-Robin responds to workloads by 

starting low and increasing rates moderately with task 

frequency. Earliest Scheduling has constant rates like 
Round-Robin but lower values. Meanwhile, DDQN 

consistently has lower mean job arrival rates across all 

frequencies, indicating a different method to managing 

incoming tasks than the other algorithms. 

These findings illuminate scheduling algorithm efficiency 

and scalability. Since algorithm choice affects mean job 

arrival rates, DDQN regularly has lower rates. This 

suggests more efficient work management, particularly 

under stress. Random and Round-Robin systems have 

higher rates, especially as task frequencies grow, 

suggesting scalability issues. The steady rates of Earliest 

and DDQN algorithms suggest more consistent task 

processing, emphasizing the relevance of algorithm 

selection depending on workload and system performance. 

4.2 Performance evaluation with different computing 

intensive jobs 

Similar to the previous, in this experiment, along with the 

PPO, other scheduling techniques are tested with various 

computing-intensive job percentages. For this experiment, 

the mean job arrival rate is kept constant at 20, and 
computing intensive jobs percentage is varied from 10% 

to 90%. The infrastructure had 50% High CPU and 50% 

High I/O instances. 

 

 

Figure 4. Average Response Time of the proposed 

algorithm with different computing intensive jobs 

 

In Figure 4, the depicted data illustrates the average 

response time of different scheduling algorithms under 
varying levels of system load, denoted by the random, 

round-robin, earliest deadline first (EDF), and deep double 

Q-network (DDQN) approaches. The table presents the 

average response time in seconds for each algorithm at 

load factors of 0.1, 0.3, 0.5, 0.7, and 0.9. Notably, the 

DDQN algorithm consistently demonstrates the lowest 

average response times across all load levels, showcasing 

its efficiency in managing task scheduling in comparison 

to random, round-robin, and EDF algorithms. The values 

in each cell represent the average response time 

corresponding to the respective combination of scheduling 
algorithm and system load, providing valuable insights 

into the comparative performance of these strategies in 

diverse operating conditions. 

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30

Average Response Time

Random Round-Robin Ealiest DDQN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.3 0.5 0.7 0.9

Average Response Time

Random Round-Robin Earliest DDQN

7



 

 

8       S Radhika:  Efficient Task Scheduling in Cloud using Double Deep Q-Network (DDQN) 

 

 
http://journals.uob.edu.bh 

 

 
Figure 5. Success Rate of the proposed algorithm with 

different computing intensive jobs 

 

Figure 5 displays a comparative examination of success 

rates for several scheduling methods, including Random, 

Round-Robin, Earliest, and DDQN (Deep Double Q-

Learning Network), under different job success 
probability (0.1, 0.3, 0.5, 0.7, 0.9). The success rates 

indicate the effectiveness of each scheduling algorithm in 

accomplishing tasks within a certain probability range. 

Upon examination of the outcomes, it is clear that the 

DDQN algorithm constantly surpasses the other 

scheduling approaches in terms of task success rates, 

regardless of the varying probability of success. 

 

 
 

Figure 6. Cost of the proposed algorithm with 

different computing intensive jobs 

 

Figure 6 presents a comparative examination of expenses 

related to several scheduling algorithms, including 

Random, Round-Robin, Earliest Deadline First (EDF), 

and Double Deep Q Network (DDQN). The table 

illustrates the expenses associated with different system 

loads, which range from 0.1 to 0.9. The expenses 

associated with each method under varying workloads are 

shown in the respective columns of the table. 

Significantly, when the system load rises, the expenses 

linked to the scheduling algorithms display diverse 

patterns. For example, the DDQN method regularly 

exhibits reduced costs for various workloads in 
comparison to the Random, Round-Robin, and EDF 

algorithms. The user's text is empty. 

 

4.3 Performance evaluation with different I/O 

intensive jobs 

This experiment examines the performance of different 

scheduling techniques, including the proposed PPO, under 

various high I/O instances. Here, the system is configured 

with a mean job arrival rate of 20 and Computing-

intensive jobs at 50%, and the high I/O cases vary from 
10% to 90%.   

 

 
Figure 7. Average response time of the proposed 

algorithm with different I/O intensive jobs 

 

In Figure 7, the average reaction times of several 

scheduling algorithms, including Random, Round-Robin, 

Earliest, and DDQN (Deep Double Q-Learning Network), 

are shown for different task arrival rates. These rates are 

represented by the probabilities 0.1, 0.3, 0.5, 0.7, and 0.9. 

The table displays the mean reaction time (measured in a 

specific unit of time) for each scheduling method for 

various arrival rates. The Earliest algorithm consistently 

exhibits the lowest average reaction time for all arrival 
rates, indicating its effectiveness in lowering job 

completion durations. In contrast, the DDQN algorithm 

demonstrates strong performance, especially when faced 

with increased arrival rates, highlighting its efficacy in 

dynamic task scheduling circumstances. 
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Figure 8. Success rate of the proposed algorithm 

with different I/O intensive jobs 

 

Figure 8 displays a comparative examination of success 
rates for several scheduling algorithms, including 

Random, Round-Robin, Earliest Deadline First (EDF), 

and Double Deep Q-Network (DDQN). Every row 

corresponds to a unique experimental situation, while each 

column indicates the success rates attained by the 

corresponding scheduling algorithms in those instances. 

The success rates, represented by numerical figures, 

indicate the percentage of activities or processes that were 

successfully completed in a certain experimental context. 

For example, the Random algorithm achieves success rates 

between 0.25 and 0.3 in various settings, whereas the 
Round-Robin method has success rates ranging from 0.41 

to 0.47. The Earliest Deadline First strategy has success 

rates ranging from 0.45 to 0.5, whereas the Double Deep 

Q-Network algorithm achieves success rates ranging from 

0.525 to 0.725. 

 

 
Figure 9. Cost of the proposed algorithm with 

different I/O intensive jobs 

Figure 9 displays a comparative examination of several 

scheduling algorithms (Random, Round-Robin, Earliest, 

and DDQN) in terms of their costs for different task arrival 

rates (0.1, 0.3, 0.5, 0.7, and 0.9). The table presents the 

cost figures, which are monitored as performance 

indicators. The DDQN (Deep Double Q-Network) 

algorithm consistently exhibits reduced costs for all arrival 

rates in comparison to the Random, Round-Robin, and 

Earliest scheduling techniques. These findings indicate 

that DDQN is more effective in task management, leading 
to a greater level of optimization in resource allocation. 

The numbers in the table represent the comparative 

efficiency of each algorithm, where lower cost values 

imply superior performance in terms of job scheduling and 

execution. 

 

CONCLUSION 

These experimental results clearly show that the DDQN 

technique performs well under balancing. DDQN is 

effective, responsive, and cost-effective when evenly 

distributed instance types. The DDQN model 
outperformed Random, Round-Robin and Earliest models 

in success rate, average response time, and cost in all three 

test conditions. DDQN model adapted nicely to varied 

operational settings, such as job arrival rates, computation 

intensive jobs, and high I/O instance jobs. Despite 

operational changes, the DDQN model demonstrated its 

stability and potential for complicated, real-time job 

scheduling and resource management scenarios. The tests 

show the ability of the DDQN model to optimize job 

execution in various dynamic computing contexts. 
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