
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail: radhikabssv@gmail.com

 http://journals.uob.edu.bh

Efficient Task Scheduling in Cloud using Double Deep Q-

Network

S Radhika

1,3
, Sangram Keshari Swain

1
, S Adinarayana

2
 and BSSV Ramesh Babu

4

1 Department of CSE, Centurion University of Technology and Management, Odisha, India.

2Department of CSSE, Andhra University college of Engineering, Visakhapatnam, Andhra Pradesh, India.
3Department of CSE, Raghu Engineering college, Visakhapatnam, Andhra Pradesh, India.
4Department of ECE, Raghu Engineering college, Visakhapatnam, Andhra Pradesh, India.

E-mail address: radhikabssv@gmail.com, sangrambapun@gmail.com, prof.sadinarayana@andhrauniversity.edu.in,

rameshbssv@gmail.com

Abstract: Cloud computing has transformed data management with its scale and flexibility. Cloud resources are transient and diversified,
making task scheduling difficult. This paper proposes Double Deep Q-Network (DDQN) reinforcement learning model to solve the cloud
computing task scheduling problem. Double Deep Q-Network (DDQN) is a powerful reinforcement learning system that improves on
Deep Q-Networks (DQN). The target network and the online network are the two distinct neural networks that DDQN presents. To create

a more consistent and less unpredictable learning process, the target network is updated on a regular basis to imitate the Q-value estimations
of the online network. Traditional DQN can have problems with overestimation bias, which is something that this dual-network architecture
helps to alleviate. DDQN is a reliable and efficient tool for solving complex reinforcement learning problems. It excels in learning optimal
strategies through iteratively improving its Q-value estimations. DDQN presents a robust framework for addressing the challenges inherent
in cloud computing task scheduling. Its dual-network architecture and iterative learning process offer a promising avenue for enhancing
the efficiency and effectiveness of resource allocation in cloud environments. Through its continuous refinement of Q-value estimations,
DDQN emerges as a valuable asset in navigating the complexities of modern data management within cloud infrastructures.
Keywords: Cloud computing, Data management, Task scheduling, Double Deep Q-Network (DDQN), Reinforcement learning, Deep Q-
Networks (DQN), Target network, Online network

1. INTRODUCTION

Task scheduling is a crucial element in the dynamic field

of cloud computing, playing a major role in ensuring the

efficient operation of services hosted on the cloud [1]. The

core of task scheduling is its capacity to strategically
distribute computing work among the available cloud

resources. This process directly affects the performance,

cost efficiency, and user happiness in cloud settings [2].

Conventional scheduling techniques, primarily static or

heuristic-driven, have historically been the primary

approach to addressing this problem. Nevertheless, as

cloud computing environments become more intricate and

ever-changing, these traditional methods frequently prove

inadequate. The need for a scheduling solution that is more

flexible and intelligent is highlighted by the inability to

adjust to changing workloads and resource availability in
real-time, as well as the issues provided by the

unpredictable nature of cloud needs. This context provides

the opportunity to investigate sophisticated machine

learning methods, including those related to Deep

Reinforcement Learning (DRL), as possible catalysts for

transforming task scheduling in cloud systems [3].

The incorporation of Deep Reinforcement Learning

(DRL) into cloud task scheduling offers the potential for
algorithms that possess the ability to acquire knowledge,

adjust, and make choices in ever-changing and

unpredictable settings [4]. Double Deep Q-Network

(DDQN) is a notable method among the different DRL

techniques, mostly because of its improved stability and

efficiency in learning policies. This is particularly

advantageous in situations that involve intricate state-

action spaces. The strength of DDQN lies in its capacity to

separate the selection and evaluation of activities, which

represents a notable advancement compared to its

predecessor, the Deep Q-Network (DQN) [5]. This
characteristic renders it very appropriate for the

complexities of cloud task scheduling, wherein decisions

must be made taking into account a multiplicity of criteria

such as job priority, resource availability, execution time,

and cost. Within a cloud environment characterized by

unpredictable fluctuations in resource demands and

IJCDS 1571017581

1

mailto:radhikabssv@gmail.com
mailto:radhikabssv@gmail.com
mailto:sangrambapun@gmail.com
mailto:prof.sadinarayana@andhrauniversity.edu.in
mailto:rameshbssv@gmail.com

2 S Radhika: Efficient Task Scheduling in Cloud using Double Deep Q-Network (DDQN)

http://journals.uob.edu.bh

varying availability of computing resources, a DDQN-

based approach can adaptively allocate tasks to optimize

multiple objectives, such as minimizing delays, balancing

workloads, and maximizing resource utilization [6]. The

investigation of DDQN in cloud task scheduling not only

expands the possibilities in cloud computing research but

also offers concrete enhancements in the operational

efficiency of cloud services, potentially resulting in more

economical and user-focused cloud computing models.

The main focus of this study is to provide a task scheduling
mechanism that is efficient and can adjust to the ever-

changing and uncertain conditions of cloud settings. The

goal is to minimize the time it takes to complete tasks and

maximize the use of resources, while also maintaining

fairness and preventing conflicts over resources. The

suggested approach utilizes Double Deep Q-Network

(DDQN) [7] to efficiently manage job scheduling in cloud

environments. The capability of DDQN to manage input

spaces with a large number of dimensions and acquire

optimal policies in intricate situations makes it highly

suitable for cloud job scheduling [8]. The suggested
Double Deep Q-Network (DDQN) model is specifically

developed to iteratively acquire knowledge and adjust its

scheduling approach in response to real-time input

obtained from the cloud environment.

This work presents the following significant contributions:

• The framework presented is a novel approach to

job scheduling in cloud computing, utilizing a

DDQN-based method.

• The text provides a thorough examination of the

effectiveness of the suggested framework in

comparison to conventional scheduling methods.

• The study offers valuable information on the

scalability and adaptability of DDQN in

managing various cloud computing situations.

The subsequent sections of the paper are structured in the

following manner: Section II provides an overview of
previous research conducted in the field of cloud task

scheduling and Deep Reinforcement Learning (DRL).

Section III provides a comprehensive explanation of the

methodology employed in the proposed task scheduling

system, which is based on the Double Deep Q-Network

(DDQN) approach. Section IV outlines the experimental

configuration and assessment criteria. Section V presents

the findings and evaluates the effectiveness of the

proposed system in comparison to established approaches.

Section VI serves as the final section of the work,

providing a conclusion and delineating potential avenues

for further research.

2. LITERATURE SURVEY

Kaixuan Kang al [9] presented an energy-efficient cloud

computing job scheduling system called Adaptive Deep

Reinforcement Learning-based (ADRL). Initially, we

provide a Change Detection method designed to identify

significant changes in the workload. Using this

foundation, we developed an Automatic Generation

network that can adaptively modify the discount factor of

Deep Reinforcement Learning (DRL) based on variations

in workload. This allows for quicker and more precise

learning. We are now using adaptive Deep Reinforcement

Learning (DRL) to determine the most effective strategy

for dispatching incoming user requests. The objective is to

decrease task response time and increase resource usage
by optimizing the incentive system.

Mohan Sharma et al [10] presented a novel approach for

optimizing task scheduling in an energy-efficient manner

by using supervised neural networks. The primary

objective is to minimize the makespan, energy

consumption, execution overhead, and the number of

active racks. The proposed artificial neural network-based

scheduler utilizes incoming tasks and the existing state of

the cloud environment as input to anticipate the most

suitable computing resource for a particular job as output,

aligning with our objective.
Shashank Swarup et al [11] addressed the issue of job

scheduling for cloud-based applications and seeks to

reduce the computational expenses while adhering to

resource and schedule limitations. To achieve this

objective, we suggest using a clipped double deep Q-

learning algorithm that incorporates the target network and

experience relay approaches, in addition to leveraging the

reinforcement learning strategy.

Zhou Zhou et al [12] suggested a new method called

MGGS, which is a combination of a modified genetic

algorithm (GA) and a greedy approach. The approach
described utilizes a modified genetic algorithm (GA) in

conjunction with a greedy strategy to enhance the

optimization of the job scheduling process. Contrary to

current algorithms, MGGS has the ability to discover an

optimum solution with a reduced amount of repetitions. In

order to assess the effectiveness of MGGS, we conducted

a comparative analysis of its performance against several

established algorithms. This evaluation was based on

metrics such as the overall completion time, average

response time, and quality of service (QoS) characteristics.

Huanhuan Hou et al [13] conducted a study and analysis

of energy consumption models used for scheduling
objectives, provide a summary of the Deep Reinforcement

Learning (DRL) algorithms utilized in existing research,

and quantitatively assess the variations in Markov

Decision Process components. In addition, we provide a

concise overview of the experimental platforms, datasets,

and neural network architectures used in the DRL method.

Tingting Dong et al [14] proposed a technique, RLTS,

utilizes a deep reinforcement learning architecture to

dynamically schedule tasks with priority connection to

cloud servers. Its objective is to reduce the time used for

task execution. Meanwhile, the Deep-Q-Network, a kind

2

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 3

http://journals.uob.edu.bh

of deep reinforcement learning method, is used to address

the issue of complexity and high dimensionality.

Zihui Zhao et al [15] presented an intelligent cloud task

scheduler based on deep reinforcement learning (DRL).

This scheduler generates optimum scheduling decisions

solely based on learning from its own experience, without

relying on any past information. The task scheduling issue

is modeled as a dynamic optimization problem with

constraints. To identify the best task assignment solution

that satisfies performance and cost limitations, we use the
deep deterministic policy gradients (DDPG) network. We

introduce a correlation-aware state representation

approach to capture the fundamental attributes of requests,

and we construct a dual reward model to discover the ideal

strategy for task allocation.

Yaoyao Ping et al [16] presented two different sequence

creation techniques for the purpose of constructing

scheduling sequences of many composite jobs before

scheduling. Additionally, a Deep Q-Networks (DQN)-

based scheduling method and a Double DQN-based

scheduling algorithm are presented, respectively, in
conjunction with this.

Saravanan Muniswamy et al [17] presented a hybrid

optimal and deep learning strategy for dynamic scalable

task scheduling (DSTS) in a container cloud environment.

In order to increase the virtual resources of containers, we

propose an enhanced version of the multi-swarm coyote

optimization (MMCO) technique, which enhances the

fulfillment of client service level agreements. In order to

ensure scheduling based on priority, we develop a

modified pigeon-inspired optimization (MPIO) technique

for grouping tasks together and a rapid adaptive feedback
recurrent neural network (FARNN) for allocating pre-

virtual CPUs. The task load monitoring system is

constructed using a deep convolutional neural network

(DCNN), enabling the implementation of dynamic

priority-based scheduling.

Qirui Li et al [18] suggested a cloud-based Time-Space

Resource Allocation (TSRA) framework using deep

learning (DL) techniques. The solution addresses the

challenges of managing various task queues and virtual

machine (VM) clusters in TSRA issues by integrating

multiple deep neural networks (DNNs) as the job

scheduler for the cloud system. The DNNs are partitioned
into an exploration component and an exploitation

component. During each scheduling time step, the model

stores the most optimal outputs of all scheduling rules

from each DNN in the experienced sample memory pool

(SMP). Periodically, random training samples are chosen

from the SMP to train each DNN in the exploitation

section.

3. PROPOSED MODEL: DOUBLE DEEP Q-

NETWORK (DDQN)

Deep Q-Network (DQN) is a reinforcement learning

algorithm. The DQN algorithm revolutionized the field by

integrating traditional Q-learning with deep neural

networks. This breakthrough allowed for the effective

management of complex state spaces, such as those found

in video games. Nevertheless, the Deep Q-Network

(DQN) exhibited a proclivity for overestimating Q-values
as a result of the intrinsic noise present in the training data,

hence resulting in inefficient policy learning.

3.1 Neural Network Architectures

Neural networks are now a crucial tool for maximizing

cloud resources because they can effectively handle

intricate and ever-changing settings, enabling them to

make intelligent judgments based on data. Neural

networks are highly proficient in detecting patterns in

extensive datasets, making them essential in cloud

environments that are characterized by immense volumes

of data. By examining historical usage patterns,

performance indicators, and workload characteristics, they
are able to predict future needs and determine the

necessary resources. The ability to forecast future

outcomes allows for proactive allocation of resources,

resulting in reduced waste and improved efficiency. Cloud

infrastructures are inherently volatile, with changing

demands and diverse workload characteristics. Neural

networks, particularly deep learning models, have the

ability to adapt to these changes by constantly acquiring

new knowledge and modifying their forecasts and choices.

They have the ability to efficiently allocate compute

power, storage, and network bandwidth in real-time.

3.1.1 QNetwork
The QNetwork is a neural network specifically developed

to forecast the quality (Q-values) of executing particular

actions in specified states within an environment. It is a

fundamental component of Q-learning, which is a type of

reinforcement learning. The architectural design consists

of multiple fully connected layers. These layers, also

referred to as dense layers, establish connections between

each neuron in one layer and all neurons in the subsequent

one. This enables the network to acquire intricate patterns

within the data.

Functionality:

• Input: The current condition of the environment.

Cloud resources pertains to the present state or

arrangement of the resources in the cloud.

• Output: The output consists of Q-values assigned

to each action within the action space. These

numbers indicate the anticipated usefulness of

each action based on the current condition, which

3

4 S Radhika: Efficient Task Scheduling in Cloud using Double Deep Q-Network (DDQN)

http://journals.uob.edu.bh

helps in choosing the most efficient action to

optimize resource utilization.

3.1.2 TargetQNetwork

The TargetQNetwork is intricately connected to the

QNetwork but fulfills a slightly distinct objective. It is
employed to predict the future value of actions, offering a

consistent objective for the QNetwork to acquire

knowledge from. The TargetQNetwork possesses an

identical architecture to the QNetwork, however with

distinct weights.

Functionality:

• Periodically Updated: The weights of the

TargetQNetwork are periodically updated with

the weights from the QNetwork. This update is

less frequent to provide stability to the learning

process.

• Input: The next state of the environment, which

is the state following the current action.

• Output: Q-values for each action in the action

space, but calculated for the next state. These

values are used to compute the target Q-value in

the Q-learning update rule.

3.2 DDQN AGENT CLASS

The DDQN Agent Class is a notable breakthrough in the

realm of reinforcement learning, specifically in handling

intricate decision-making tasks such as optimizing cloud

resources. It improves upon the original Deep Q-Network

(DQN) by implementing a crucial adjustment that

specifically tackles the underlying problem of
overestimation bias in the DQN's methodology. This

improvement not only improves the precision of the

learning process but also makes the training phase more

stable, resulting in a DDQN model that is more resilient

and dependable for real-world applications. The core of

DDQN is its dual-network structure, which utilizes two

separate but interconnected neural networks - the

QNetwork and the TargetQNetwork - both of which are

crucial in the agent's learning and decision-making

process.

The main advancement of the DDQN Agent Class is its
strategy of segregating the action selection and action

evaluation procedures, which effectively mitigates the

issue of overoptimistic value estimates commonly

encountered in single-network Q-learning methods. The

QNetwork, which is in charge of action selection, interacts

with the environment and obtains input in the form of state

transitions and incentives. Meanwhile, the

TargetQNetwork, which is kept separate from direct

learning, offers a consistent set of Q-values that are used

to compare and modify the outputs of the QNetwork. This

division guarantees a more impartial assessment of

actions, resulting in more efficient and logical decision-

making. In addition, the DDQN utilizes other essential

techniques such as action selection through an epsilon-

greedy approach, computation of target Q-values,

calculation of loss, optimization of the model, and regular

updates of the TargetQNetwork. Every one of these

elements has a crucial function in the agent's capacity to

acquire knowledge and adjust to a constantly changing
environment, rendering DDQN a potent instrument for

jobs that demand advanced, data-based decision-making.

3.2.1 Initialization

The initialization step establishes the DDQN agent by

defining crucial characteristics and configurations

required for its functioning.

• State Dimensions: State dimensions refer to the

magnitude or quantity of variables in the state

representation of the environment.

• Action Dimensions: This term refers to the total

number of potential actions that the agent is

capable of taking.

• Learning Rate: Dictates the speed at which the

agent acquires new knowledge. An increased rate

may result in accelerated learning but can also

induce instability.

• Discount factor: The discount factor (gamma) is

a numerical value ranging from 0 to 1 that

quantifies the significance of future rewards in

the decision-making process of the agent.

The exploration parameter, also known as epsilon,

regulates the equilibrium between exploration, which

involves experimenting with new strategies, and

exploitation, which entails utilizing existing knowledge.

Usually begins with a high level and gradually decreases

over a period of time. The QNetwork and

TargetQNetwork are initialized, each with their own
optimizers. These networks are essential for calculating Q-

values.

3.2.2 Methods for Training

• Select_action Method: This strategy is crucial for

the agent's interaction with the environment. It determines

the course of action to be taken at each individual phase.

The epsilon-greedy technique is of utmost importance in

this context. The agent has the option to either explore the

environment by randomly selecting an action, or use its

existing knowledge by choosing the action with the

greatest estimated Q-value, as determined by the

QNetwork. The likelihood of exploration is determined by

the epsilon parameter. This equilibrium guarantees that the

agent avoids being trapped in a suboptimal solution and

consistently acquires knowledge about the surroundings.

4

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 5

http://journals.uob.edu.bh

Usually, epsilon is adjusted to decrease progressively as

the agent gains more knowledge about the environment,

resulting in reduced random exploration and increased

utilization of the learnt policy.

• Method for Computing q_target Details of

Computation: The goal Q-value is an essential

element in the update rule of Q-learning. The

target Q-value for a specific state-action

combination is computed by adding the reward

obtained from executing that action to the

discounted Q-value of the optimal action in the

subsequent state, as predicted by the

TargetQNetwork. This approach guarantees the

policy is consistently revised to align with a long-

term optimal strategy, taking into account

forthcoming incentives. By utilizing the

TargetQNetwork for this computation, the

approach circumvents the frequent updates that

may arise from employing the QNetwork, hence

offering a more consistent target for the

QNetwork to acquire knowledge from.

• compute_q_loss Method Calculation of Loss:

This technique computes the mean squared error

loss by comparing the predicted Q-values

obtained from the QNetwork with the target Q-

values obtained from the compute_q_target

method. The loss is the discrepancy between the

current estimated value of a state-action

combination and the model's expected value for

that pair. The calculated loss is utilized to modify

the weights of the QNetwork. By reducing this

loss, the QNetwork's predictions gradually

improve over time, resulting in enhanced

decision-making.

• optimize_model Method: During this step, the

QNetwork's weights are modified using gradient

descent algorithms. The gradients are computed

using the loss obtained from the compute_q_loss

technique. This method is crucial for the agent's

learning as it ensures that the anticipated Q-

values are in line with the observed rewards and

the long-term value of future states. Usually, this

procedure is referred to as being executed after

every individual action or a group of actions to

guarantee the agent's policy is continuously

learning and adapting.

• update_target_network Method: This method is

responsible for synchronizing the weights of the

TargetQNetwork with the weights from the

QNetwork. The frequency of this update is often

lower than that of the learning updates to the

QNetwork. An established method involves

updating the TargetQNetwork after a

predetermined number of steps or episodes. The

few changes to the TargetQNetwork contribute to

the stabilization of the learning process. The

TargetQNetwork ensures the provision of

consistent target Q-values for the QNetwork's

learning process. Its slower adaption serves to

prevent detrimental feedback loops, wherein the

QNetwork may swiftly alter its policy based on

its own recent updates.

3.3 Training Loop

The optimize_model function is crucial in the training and

learning process of a DDQN (Double Deep Q-Network)

Agent. This strategy is closely linked to the manner in

which the agent engages with its surroundings and
acquires knowledge from its encounters. To have a full

understanding of the optimize_model method, let's

analyze each step in the training loop individually. The

training loop involves:

• Selecting actions using the select_action method

During each iteration, the agent must determine the

optimal course of action to undertake based on the current

condition of the environment. The select_action method is

utilized to make this selection, commonly with an epsilon-

greedy technique. This approach achieves a harmonious

equilibrium between exploration, which involves

experimenting with novel actions, and exploitation, which

entails utilizing the most optimal known action. This
balance is crucial for the agent to efficiently acquire

knowledge. The agent acquires useful data about the

environment by choosing actions in different states and

watching the resulting outcomes, which is essential for its

learning.

• Storing experiences in a replay buffer.

The gathered experiences (state, action, reward,

next_state) are kept in a data structure referred to as the

replay buffer. The buffer plays a crucial role in stabilizing

and enhancing the learning process. The replay buffer

enables the agent to retain and reuse previous experiences,

hence disrupting the association between consecutive

learning samples. This results in enhanced and resilient
learning.

• Sampling from this buffer to compute Q-targets

and Q-loss.

5

6 S Radhika: Efficient Task Scheduling in Cloud using Double Deep Q-Network (DDQN)

http://journals.uob.edu.bh

At regular intervals, the agent selects a set of events from

the replay buffer. This batch is utilized to calculate the Q-

values for both the present and subsequent states. The

target Q-values are computed using the TargetQNetwork

for the subsequent state, and these values are then

contrasted with the predicted Q-values derived from the

QNetwork for the present state-action pair. The disparity

between these values is calculated as the Q-loss, which

serves as a metric for assessing the degree to which the

agent's predictions correspond with the observed events.

• Regularly updating the TargetQNetwork to

stabilize training.

Based on environmental interactions, the training loop

updates the Policy and Value Networks using the train

approach. Continuous agent performance improvement

requires this loop. PPO-specific loss functions guide

updates, highlighting the need to balance exploration and

exploitation. The training loop helps the agent modify its

policies and value estimations over numerous rounds,

improving its capacity to traverse and adapt to complicated
settings.

4. EXPERIMENTAL ANALYSIS

The experimental setup has ten virtual instances with

different numbers of Virtual CPUs (VCPUs). These

instances' VCPU counts vary, which affects their

computational power. Table 1 completely lists each

instance's VCPU levels and other relevant data. We

assumed that a specific instance's computational

efficiency is directly proportional to its VCPU count to

match the simulated environment with practical settings.

Each VCPU receives 1000 compute units to normalize

comparisons.
TABLE 1: TYPE OF INSTANCE

Instance Type Number of VCPUs

High I/O 1

High CPU 2

High CPU 4

4.1 Performance evaluation under varying mean job

arrival rates

This study measures the efficiency of different scheduling

algorithms in handling the inflow of jobs at varying mean

arrival rates. The experiments are performed with mean
job arrival rates between 10 and 30, as this range was

sufficient to showcase the clear advantages of the

proposed algorithm. However, increasing the arrival rates

to higher, like 40, 50, or even 100, will not add any

significance to the findings. Based on the works in the

literature, the computing power needed for each task is

modeled using the normal distribution. The timing of job

arrivals follows a Poisson distribution, delivering a

realistic testing scenario. The virtual environment is

evenly split between high CPU and high I/O instances.

Similarly, the job types are balanced, with half being I/O

intensive and the other half computation intensive.

Figure 1: Cost Comparison of Different Scheduling

Algorithms

The Figure 1 compares mean job arrival rates for Random,

Round-Robin, Earliest, and DDQN methods. The Figure 1

shows each strategy's expenses at different job arrival

rates. Similarly, the Figure 2 shows work scheduling

algorithm success rates across mean job arrival rates.

These success rates show how well each algorithm

performs problems. The data shows fascinating algorithm

tendencies and performance variances. Different

algorithms manage tasks differently in work scheduling.
The Random method has modest success rates, fluctuating

but remaining stable throughout job arrival rates. The

Round-Robin approach works moderately, with a steady

success rate, especially in settings with a constant amount

of job arrivals.

Figure 2: Comparison of Job Scheduling Algorithm

Success Rates

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30

Cost

Random Round-Robin Ealiest DDQN

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30

Success Rate

Random Round-Robin Ealiest DDQN

6

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 7

http://journals.uob.edu.bh

The Earliest algorithm outperforms others in the 10 to 25

job arrival rate range. In certain situations, its arrival-time

efficiency is a strength. In this comparison, the DDQN

algorithm shines out. It consistently performs well across

all mean job arrival rates. This consistency shows its

resilience and dependability in effectively handling

incoming tasks, making it a tempting alternative for

situations requiring a reliable and high-performing

algorithm. Understanding these success rates helps choose

the best scheduling method for system needs. Workload
changes, job prioritizing, and effective task management

affect algorithm selection. The data highlights the

strengths and performance of each algorithm, with DDQN

showing a consistently high success rate, making it a

versatile option across job arrival circumstances.

Figure 3: Average Response Time of the Different

Task Scheduling algorithms

The Figure 3 shows the mean job arrival rates for various

scheduling methods at different job frequency. These rates

indicate each algorithm's task scheduling and processing

performance under varied workloads. Findings show

trends across algorithms. Random Scheduling has

somewhat greater mean job arrival rates than Round-

Robin, Earliest, and DDQN at lower job arrival

frequencies. As frequency rises, these algorithms' rates

diverge further. Round-Robin responds to workloads by

starting low and increasing rates moderately with task

frequency. Earliest Scheduling has constant rates like
Round-Robin but lower values. Meanwhile, DDQN

consistently has lower mean job arrival rates across all

frequencies, indicating a different method to managing

incoming tasks than the other algorithms.

These findings illuminate scheduling algorithm efficiency

and scalability. Since algorithm choice affects mean job

arrival rates, DDQN regularly has lower rates. This

suggests more efficient work management, particularly

under stress. Random and Round-Robin systems have

higher rates, especially as task frequencies grow,

suggesting scalability issues. The steady rates of Earliest

and DDQN algorithms suggest more consistent task

processing, emphasizing the relevance of algorithm

selection depending on workload and system performance.

4.2 Performance evaluation with different computing

intensive jobs

Similar to the previous, in this experiment, along with the

PPO, other scheduling techniques are tested with various

computing-intensive job percentages. For this experiment,

the mean job arrival rate is kept constant at 20, and
computing intensive jobs percentage is varied from 10%

to 90%. The infrastructure had 50% High CPU and 50%

High I/O instances.

Figure 4. Average Response Time of the proposed

algorithm with different computing intensive jobs

In Figure 4, the depicted data illustrates the average

response time of different scheduling algorithms under
varying levels of system load, denoted by the random,

round-robin, earliest deadline first (EDF), and deep double

Q-network (DDQN) approaches. The table presents the

average response time in seconds for each algorithm at

load factors of 0.1, 0.3, 0.5, 0.7, and 0.9. Notably, the

DDQN algorithm consistently demonstrates the lowest

average response times across all load levels, showcasing

its efficiency in managing task scheduling in comparison

to random, round-robin, and EDF algorithms. The values

in each cell represent the average response time

corresponding to the respective combination of scheduling
algorithm and system load, providing valuable insights

into the comparative performance of these strategies in

diverse operating conditions.

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30

Average Response Time

Random Round-Robin Ealiest DDQN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.3 0.5 0.7 0.9

Average Response Time

Random Round-Robin Earliest DDQN

7

8 S Radhika: Efficient Task Scheduling in Cloud using Double Deep Q-Network (DDQN)

http://journals.uob.edu.bh

Figure 5. Success Rate of the proposed algorithm with

different computing intensive jobs

Figure 5 displays a comparative examination of success

rates for several scheduling methods, including Random,

Round-Robin, Earliest, and DDQN (Deep Double Q-

Learning Network), under different job success
probability (0.1, 0.3, 0.5, 0.7, 0.9). The success rates

indicate the effectiveness of each scheduling algorithm in

accomplishing tasks within a certain probability range.

Upon examination of the outcomes, it is clear that the

DDQN algorithm constantly surpasses the other

scheduling approaches in terms of task success rates,

regardless of the varying probability of success.

Figure 6. Cost of the proposed algorithm with

different computing intensive jobs

Figure 6 presents a comparative examination of expenses

related to several scheduling algorithms, including

Random, Round-Robin, Earliest Deadline First (EDF),

and Double Deep Q Network (DDQN). The table

illustrates the expenses associated with different system

loads, which range from 0.1 to 0.9. The expenses

associated with each method under varying workloads are

shown in the respective columns of the table.

Significantly, when the system load rises, the expenses

linked to the scheduling algorithms display diverse

patterns. For example, the DDQN method regularly

exhibits reduced costs for various workloads in
comparison to the Random, Round-Robin, and EDF

algorithms. The user's text is empty.

4.3 Performance evaluation with different I/O

intensive jobs

This experiment examines the performance of different

scheduling techniques, including the proposed PPO, under

various high I/O instances. Here, the system is configured

with a mean job arrival rate of 20 and Computing-

intensive jobs at 50%, and the high I/O cases vary from
10% to 90%.

Figure 7. Average response time of the proposed

algorithm with different I/O intensive jobs

In Figure 7, the average reaction times of several

scheduling algorithms, including Random, Round-Robin,

Earliest, and DDQN (Deep Double Q-Learning Network),

are shown for different task arrival rates. These rates are

represented by the probabilities 0.1, 0.3, 0.5, 0.7, and 0.9.

The table displays the mean reaction time (measured in a

specific unit of time) for each scheduling method for

various arrival rates. The Earliest algorithm consistently

exhibits the lowest average reaction time for all arrival
rates, indicating its effectiveness in lowering job

completion durations. In contrast, the DDQN algorithm

demonstrates strong performance, especially when faced

with increased arrival rates, highlighting its efficacy in

dynamic task scheduling circumstances.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.3 0.5 0.7 0.9

Success Rate

Random Round-Robin Earliest DDQN

0

0.2

0.4

0.6

0.8

0.1 0.3 0.5 0.7 0.9

Cost

Random Round-Robin Earliest DDQN

0

0.1

0.2

0.3

0.4

0.5

0.1 0.3 0.5 0.7 0.9

Average Response Time

Random Round-Robin Earliest DDQN

8

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 9

http://journals.uob.edu.bh

Figure 8. Success rate of the proposed algorithm

with different I/O intensive jobs

Figure 8 displays a comparative examination of success
rates for several scheduling algorithms, including

Random, Round-Robin, Earliest Deadline First (EDF),

and Double Deep Q-Network (DDQN). Every row

corresponds to a unique experimental situation, while each

column indicates the success rates attained by the

corresponding scheduling algorithms in those instances.

The success rates, represented by numerical figures,

indicate the percentage of activities or processes that were

successfully completed in a certain experimental context.

For example, the Random algorithm achieves success rates

between 0.25 and 0.3 in various settings, whereas the
Round-Robin method has success rates ranging from 0.41

to 0.47. The Earliest Deadline First strategy has success

rates ranging from 0.45 to 0.5, whereas the Double Deep

Q-Network algorithm achieves success rates ranging from

0.525 to 0.725.

Figure 9. Cost of the proposed algorithm with

different I/O intensive jobs

Figure 9 displays a comparative examination of several

scheduling algorithms (Random, Round-Robin, Earliest,

and DDQN) in terms of their costs for different task arrival

rates (0.1, 0.3, 0.5, 0.7, and 0.9). The table presents the

cost figures, which are monitored as performance

indicators. The DDQN (Deep Double Q-Network)

algorithm consistently exhibits reduced costs for all arrival

rates in comparison to the Random, Round-Robin, and

Earliest scheduling techniques. These findings indicate

that DDQN is more effective in task management, leading
to a greater level of optimization in resource allocation.

The numbers in the table represent the comparative

efficiency of each algorithm, where lower cost values

imply superior performance in terms of job scheduling and

execution.

CONCLUSION

These experimental results clearly show that the DDQN

technique performs well under balancing. DDQN is

effective, responsive, and cost-effective when evenly

distributed instance types. The DDQN model
outperformed Random, Round-Robin and Earliest models

in success rate, average response time, and cost in all three

test conditions. DDQN model adapted nicely to varied

operational settings, such as job arrival rates, computation

intensive jobs, and high I/O instance jobs. Despite

operational changes, the DDQN model demonstrated its

stability and potential for complicated, real-time job

scheduling and resource management scenarios. The tests

show the ability of the DDQN model to optimize job

execution in various dynamic computing contexts.

REFERENCES

[1] Mangalampalli, Sudheer, Ganesh Reddy Karri,

Mohit Kumar, Osama Ibrahim Khalaf, Carlos

Andres Tavera Romero, and GhaidaMuttashar

Abdul Sahib. "DRLBTSA: Deep reinforcement

learning based task-scheduling algorithm in

cloud computing." Multimedia Tools and

Applications (2023): 1-29.

[2] Wang, Xiaohan, Lin Zhang, Yongkui Liu, and

Yuanjun Laili. "An improved deep reinforcement

learning-based scheduling approach for dynamic

task scheduling in cloud

manufacturing." International Journal of

Production Research (2023): 1-17.

[3] Shiva Rama Krishna, Mallu, and Sudheer

Mangalampalli. "A Novel Fault-Tolerant Aware

Task Scheduler Using Deep Reinforcement

Learning in Cloud Computing." Applied

Sciences 13, no. 21 (2023): 12015.

[4] Iftikhar, Sundas, Mirza Mohammad Mufleh

Ahmad, Shreshth Tuli, Deepraj Chowdhury,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.3 0.5 0.7 0.9

Success Rate

Random Round-Robin Earliest DDQN

0

0.2

0.4

0.6

0.8

0.1 0.3 0.5 0.7 0.9

Cost

Random Round-Robin Earliest DDQN

9

10 S Radhika: Efficient Task Scheduling in Cloud using Double Deep Q-Network (DDQN)

http://journals.uob.edu.bh

Minxian Xu, Sukhpal Singh Gill, and Steve

Uhlig. "HunterPlus: AI based energy-efficient

task scheduling for cloud–fog computing

environments." Internet of Things 21 (2023):

100667.

[5] Li, Kaibin, Zhiping Peng, Delong Cui, and Qirui

Li. "Sla-DQTS: SLA Constrained Adaptive

Online task scheduling based on DDQN in cloud

computing." Applied Sciences 11, no. 20 (2021):

9360.

[6] Chen, Zheyi, Junqin Hu, Xing Chen, Jia Hu,

Xianghan Zheng, and Geyong Min.

"Computation offloading and task scheduling for

DNN-based applications in cloud-edge

computing." IEEE Access 8 (2020): 115537-

115547.

[7] Kumaran, K., and E. Sasikala. "An efficient task

offloading and resource allocation using dynamic

arithmetic optimized double deep Q-network in

cloud edge platform." Peer-to-Peer Networking

and Applications 16, no. 2 (2023): 958-979.

[8] Mangalampalli, Sudheer, Ganesh Reddy Karri,

Mohit Kumar, Osama Ibrahim Khalaf, Carlos

Andres Tavera Romero, and GhaidaMuttashar

Abdul Sahib. "DRLBTSA: Deep reinforcement

learning based task-scheduling algorithm in

cloud computing." Multimedia Tools and

Applications (2023): 1-29.

[9] Kang, Kai Xuan, Ding Ding, Hua Mao Xie, Qian

Yin, and Jing Zeng. "Adaptive drl-based task

scheduling for energy-efficient cloud

computing." IEEE Transactions on Network and

Service Management (2021).

[10] Sharma, Mohan, and Ritu Garg. "An artificial

neural network based approach for energy

efficient task scheduling in cloud data

centers." Sustainable Computing: Informatics

and Systems 26 (2020): 100373.

[11] Swarup, Shashank, Elhadi M. Shakshuki, and

Ansar Yasar. "Task scheduling in cloud using

deep reinforcement learning." Procedia

Computer Science 184 (2021): 42-51.

[12] Zhou, Zhou, Fangmin Li, Huaxi Zhu, Houliang

Xie, Jemal H. Abawajy, and Morshed U.

Chowdhury. "An improved genetic algorithm

using greedy strategy toward task scheduling

optimization in cloud environments." Neural

Computing and Applications 32 (2020): 1531-

1541.

[13] Hou, Huanhuan, Siti Nuraishah Agos Jawaddi,

and Azlan Ismail. "Energy efficient task

scheduling based on deep reinforcement learning

in cloud environment: A specialized

review." Future Generation Computer

Systems (2023).

[14] Dong, Tingting, Fei Xue, Chuangbai Xiao, and

Juntao Li. "Task scheduling based on deep

reinforcement learning in a cloud manufacturing

environment." Concurrency and Computation:

Practice and Experience 32, no. 11 (2020):

e5654.

[15] Zhao, Zihui, Xiaoyu Shi, and Mingsheng Shang.

"Performance and cost-aware task scheduling via

deep reinforcement learning in cloud

environment." In International Conference on

Service-Oriented Computing, pp. 600-615.

Cham: Springer Nature Switzerland, 2022.

[16] Ping, Yaoyao, Yongkui Liu, Lin Zhang, Lihui

Wang, and Xun Xu. "Sequence generation for

multi-task scheduling in cloud manufacturing

with deep reinforcement learning." Journal of

manufacturing systems 67 (2023): 315-337.

[17] Muniswamy, Saravanan, and Radhakrishnan

Vignesh. "DSTS: A hybrid optimal and deep

learning for dynamic scalable task scheduling on

container cloud environment." Journal of Cloud

Computing 11, no. 1 (2022): 33.

[18] Li, Qirui, Zhiping Peng, Delong Cui, Jianpeng

Lin, and Hao Zhang. "UDL: a cloud task

scheduling framework based on multiple deep

neural networks." Journal of Cloud

Computing 12, no. 1 (2023): 114.

10

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 11

http://journals.uob.edu.bh

Author 1: S Radhika, Scholar,
Department of CSE,

Centurion University of
Technology and Management,
Paralakhemundi, Odisha,
India.
Email:
radhikabssv@gmail.com

 Author 2: Sangram Keshari
Swain, Professor

School of Engineering and
Technology, Department of
CSE, Centurion University of
Technology and Management,
Paralakhemundi, Odisha,
India.
Email:
sangrambapun@gmail.com

 Author3 :S.Adinarayana, Professor,

Department of CSE, Andhra
University college of Engineering,
Visakhapatnam, Andhra Pradesh,
India
Email:
prof.sadinarayana@andhrauniversity
.edu.in

Author3 :BSSV Ramesh Babu,
Associate Professor,
Department of ECE, Raghu
Engineering COllege,
Visakhapatnam, Andhra
Pradesh, India
Email:
rameshbssv@ieee.org

11

mailto:radhikabssv@gmail.com
mailto:sangrambapun@
mailto:prof.sadinarayana@andhrauniversity.edu.in
mailto:prof.sadinarayana@andhrauniversity.edu.in
mailto:rameshbssv@ieee.org

