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Abstract: Aircraft detection is an essential and noteworthy area of object detection that has received significant interest from scholars,
especially with the progress of deep learning techniques. Aircraft detection is now extensively employed in various civil and military
domains. Automated aircraft detection systems play a crucial role in preventing crashes, controlling airspace, and improving aviation
traffic and safety on a civil scale. In the context of military operations, detection systems play a crucial role in quickly locating aircraft
for surveillance purposes, enabling decisive military strategies in real time. This article proposes a system that accurately detects
airplanes independent of their type, model, size, and color variations. However, the diversity of aircraft images, including variations
in size, illumination, resolution, and other visual factors, poses challenges to detection performance. As a result, an aircraft detection
system must be designed to distinguish airplanes clearly without affecting the aircraft’s position, rotation, or visibility. The methodology
involves three significant steps: feature extraction, detection, and evaluation. Firstly, deep features will be extracted using a pre-trained
VGG19 model and transfer learning principle. Subsequently, the extracted feature vectors are employed in One Class Support Vector
Machine (OCSVM) for detection purposes. Finally, the results are assessed using evaluation criteria to ensure the effectiveness and
accuracy of the proposed system. The experimental evaluations were conducted across three distinct datasets: Caltech-101, Military
dataset, and MTARSI dataset. Furthermore, the study compares its experimental results with those of comparable publications released
in the past three years. The findings illustrate the efficacy of the proposed approach, achieving F1-scores of 96% on the Caltech-101
dataset and 99% on both Military and MTARSI datasets.
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1. Introduction
At the core of computer vision lies the principle of

object detection, a process that involves the identification
and categorization of objects by employing rectangular
bounding frames. This method serves the dual purpose of
localizing and classifying the identified objects, making it
an integral part of the broader field of computer vision.
Object detection is closely intertwined with related tasks,
including object classification, semantic segmentation, and
instance segmentation, collectively contributing to the un-
derstanding of visual data [1], [2]. The significance of object
detection extends across a diverse spectrum of practical
applications, encompassing domains such as autonomous
driving, robotics, and video surveillance. It plays a pivotal
role in enabling machines to perceive and interact with their
surroundings effectively [3].

Recently, there was an increasing scholarly focus on the
utilization of object detection techniques to the detection
of aircraft within the domain of computer vision. This
application serves critical functions in contexts like airport
control, search operations for crashed aircraft, monitoring
the dynamics of potentially hostile aircraft, and finds rele-

vance in both civil and military sectors [3], [4].

Deep learning, as an advanced methodology within
computer vision, has emerged as a powerful tool for extract-
ing precise image characteristics and analyzing data. This
specific category of machine learning techniques, referred
to as deep learning, introduces complexity into models,
ultimately enhancing their capabilities. Deep learning has
demonstrated the potential to significantly improve accu-
racy across various domains, encompassing classification,
segmentation, as well as object detection [5].

In recent times, deep learning played a pivotal role in
autonomously extracting feature representations from data,
leading to significant advancements in object detection [6].

A notable contribution by Liu et al. involved the de-
velopment of an aircraft detection method utilizing corner
clustering and Convolutional Neural Networks (CNN). The
methodology comprised two primary phases: region detec-
tion and classification. It initiated with the identification of
potential regions through the application of mean-shift clus-
tering on corners observed in binary images. Subsequently,
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CNNs were employed for feature extraction and classifica-
tion of regions likely to contain aircraft. The aircraft’s pre-
cise location was ultimately ascertained through subsequent
refinement and evaluation. The study utilized optical remote
sensing images from the Remote Sensing Object Detection
(RSOD) dataset that yielded a classification accuracy of
98.29% [7].

In another comparative evaluation, Alganci et al. as-
sessed the efficacy of three object detection models: Faster
Region-based Convolutional Neural Networks (R-CNN),
YOLO-v3, and Single Shot MultiBox Detector (SSD)
specifically for aircraft detection within very high-resolution
(VHR) satellite imagery. The evaluation aimed to handle the
challenge of limited labeled data by leveraging the Dataset
for Object deTection in Aerial Images (DOTA), which
comprised satellite image patches from various sources.
Among the models, YOLO achieved a precision rate of
99.6%, while SSD exhibited a precision rate of 87.9%, and
Faster R-CNN attained 81.2% [8].

Shi et al. introduced a two-stage airplane detection
approach called DPANet (Deconvolution operation with
Position Attention mechanism). This method incorporated
deep neural networks with deconvolution operations and a
Position Attention mechanism to enhance aircraft recogni-
tion in aerial imagery. Evaluations were performed on the
DOTA and DIstill Observations to Representations (DIOR)
datasets, resulting in a notable average precision (AP)
increase to 85.95% [4].

Furthermore, Wang et al. proposed the Efficient
Weighted Feature Fusion and Attention Network (EWFAN)
for aircraft detection. This unique deep neural network
integrated a module for weighted feature fusion and spatial
attention mechanisms. The experiment utilized large-scale
Gaofen-3 SAR images with a resolution of 1 m to assess the
efficiency of the proposed architecture, ultimately achieving
a detection rate of 95.4% and a false alarm rate of 3.3%
[9].

Hu et al. introduced a cascade framework inspired by
the YOLOv5 architecture for aircraft detection in remote
sensing images. Their dataset, sourced from various satellite
platforms, included 17,506 instances of aircraft belonging to
13 different types. The proposed approach achieved a mean
average precision of 83.7%. However, the accurate detection
of small objects against low-resolution and complex back-
grounds remains a challenge. Additionally, the accuracy of
direction prediction and recall rate is deemed inadequate,
indicating the need for further improvements [10].

Xiao et al. introduced an adjustable deformable network
(ADN) incorporating peak feature fusion (PFF) to recognize
airplanes in SAR pictures. The primary objective of the
PFF approach is to maximize the utilization of the solid
scattering properties of aircraft. This involves extracting the
most prominent features and combining them. The Harris
detector and eight-domain pixel detection of local maxima

extract peak features. Subsequently, multichannel blending
is utilized to improve the visibility of airplanes in different
imaging situations. The ADN comprises an adaptive spatial
feature fusion (ASFF) module and a deformable convolution
module (DCM). The ASFF module addresses scale incon-
sistencies, enhancing the feature pyramid’s ability to char-
acterize features across scales and improving multi-scale
aircraft identification performance. The DCM dynamically
calculates and determines the 2-D differences in feature
maps, enhancing the representation of aircraft with different
shapes in geometric modeling. The experimental findings
on the GaoFen-3 (GF3) dataset indicate that PFF-ADN is
highly effective, as evidenced by its F1-score of 91.11%
and average precision of 89.34% [11].

A novel framework was presented by Chen et al. for
detecting aircraft within Remote Sensing Images (RSIs).
They employed a region suggestion technique relying on
circular intensity filtering to find probable targets at different
scales. In addition, they utilized the Vector of Locally
Aggregated Descriptors (VLAD) method to characterize the
rotation-invariant Fourier Histogram of Oriented Gradients
(HOG) feature. This approach provides a more condensed
representation and improved descriptive capability while
disregarding the rotation behavior of the target. The optical
Remote Sensing Indices (RSIs) utilized in this research
were obtained via the RSOD dataset, that consists of 446
remote sensing images, including a total of 4993 aircraft
objects. The images used in this study were obtained from
Google Earth and Tianditu. They had different levels of
detail, with spatial resolutions ranging from 0.5 to 2 meters.
The image from Google Earth was 1072 x 975 pixels, while
the one from Tianditu had a size of 1116 x 659 pixels.
The results demonstrated that the proposed technique could
achieve faster and more accurate detection of aircraft targets
in RSIs, thereby enhancing overall performance, with an
average precision of 93.4%. Analysis of the failure results
revealed that in intricate background scenarios, including
the concourse of an airport building, might potentially result
in misdirected targets. Conversely, the similarity in color
between the airplane fuselage and the ground, caused by
irregular lighting and aircraft paint, could result in potential
missed detections [12].

Liu et al. introduced the YOLO-extract algorithm that
improves the model architecture of the YOLOv5 method.
The strategy eliminates the feature layer and prediction
head. which have limited feature extraction capabilities,
replacing them with a new feature extractor with higher
abilities within the network. Furthermore, YOLO-extract
leverages the concept of residual networks to integrate
Coordinate Attention into the network seamlessly. The
algorithm further enhances the capacity of the shallow layer
to extract feature and position information by pairing mixed
dilated convolution with the redesigned residual structure,
optimizing the model’s feature extraction ability for targets
of various scales. The experiment results on the DOTA
dataset indicate that YOLO-extract exhibits quicker conver-
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gence and reduces computational workload by 45.3GFLOPs
and parameter count by 10.526M, compared to the YOLOv5
algorithm. Additionally, YOLO-extract enhances the mean
average precision (mAP) by 8.1% and triples the detection
speed. However, the extraction of various aircraft target fea-
tures from remote sensing satellite images faces challenges
due to weather conditions, including skylight circumstances,
clouds, and fog. Additionally, the scarcity of datasets related
to aircraft types poses challenges for aircraft type detection
[13].

Zhang et al. introduced an innovative methodology for
identifying aircraft in Synthetic Aperture Radar (SAR)
images with a low signal-to-clutter-noise ratio (SCNR).
This approach utilized coherent scattering enhancement and
a fusion attention mechanism. They also improved the
Faster R-CNN by implementing a novel pyramid network
that incorporates mechanisms for local and contextual at-
tention. The contextual attention mechanism enables the
network to extract pertinent contextual information from the
image, whereas the local attention mechanism adaptively
emphasizes significant features by enhancing their unique
attributes. By effectively integrating local and contextual
attention, the network can detect aircraft. Considerable
experimentation was undertaken utilizing the TerraSAR-X
SAR datasets to establish benchmarks. The experimental
findings indicate that under conditions of low SCNR, the
suggested aircraft detection method attains an average pre-
cision of 91.7% [14].

This study presents a method specifically developed to
accurately detect airplanes, regardless of model, type, or
color modifications. Detection of airplanes in automated
activities is a significant difficulty due to their substantial
variations in scale, direction, and visual resemblance to
other objects. To address these challenges, an airplane
detection system must be engineered to achieve robust
discrimination, independent of factors such as rotation,
pose, or resolution of the airplanes.

The paper is structured into four primary sections.
Section 2 provides an in-depth discussion of the key al-
gorithms and techniques utilized in this study. Section 3
presents the proposed system. The ensuing section, Sec-
tion 4, delves into a comprehensive presentation of the
experimental results. This is followed by a comparative
analysis and discussion with recent related works in Section
5. Finally, Section 6 offers a concise summary of the paper’s
conclusion.

2. Methods
This section primarily concentrates on the presentation

of the VGG19 model, an exploration of the one-class
Support Vector Machines (OCSVM) algorithm and transfer
learning concept.

A. VGG19 model
The VGG19 model, introduced by Simonyan and Zisser-

man in 2014, is a convolutional neural network consisting of

19 layers. VGG19 comprises five architectural blocks. The
convolutional and pooling layers are present in the first and
following blocks. Two convolutional layers and one pooling
layer are present in the third and fourth blocks, respectively.
Four convolutional layers are in the final block. 3 × 3
modest filters are employed [15]. It includes 16 convolution
layers and three fully connected layer. VGG19 is trained
using the ImageNet dataset, which consists of more than
one million images categorized into 1000 distinct categories
[16].

The VGG19 architecture follows a sequential pattern of
convolutional layers, interspersed with max-pooling layers,
to reduce spatial dimensions and increase the depth of
learned features. The convolutional layers employ rectified
linear unit (ReLU) activations, promoting faster conver-
gence and better training efficiency. The final layers consist
of fully connected layers with softmax activation, enabling
classification into multiple classes [17] , as shown in Figure
1.

Figure 1. The Architecture of VGG19

VGG19 has been a pivotal model in the field of deep
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learning, showcasing the significance of depth in neural
network architectures. It has become a popular choice for
numerous computer vision applications, including object
detection and localization, due to its ability to acquire
complex features [18], [19], [20]. In this study, the VGG19
model is employed to extract features from provided images
of airplanes.

B. One-Class Support Vector Machine (OCSVM)
The OCSVM is a machine learning algorithm primarily

used for anomaly detection or novelty detection tasks [21].
Unlike traditional Support Vector Machines (SVM), which
are designed for binary classification, One-Class SVM is
focused on learning and identifying a single class or a
specific region in the feature space that represents ”normal”
or typical instances [22].

In essence, One-Class SVM constructs a decision
boundary or a hyperplane that encapsulates the majority of
the training data, aiming to enclose the ”normal” data points
while minimizing the outliers or anomalies. This objective is
accomplished by identifying the hyperplane that optimizes
the margin among the point of origin as well as the nearest
points of data belonging to the target class, successfully
segregating it from the remaining data points [22], [23].
During the testing or inference phase, the algorithm then
identifies instances that fall outside the defined boundary
as potential anomalies or deviations from the established
norm [24].

Mathematically, the objective of One-Class SVM is to
find a hyperplane represented by the equation [25]:

wT + ϕ(x) − b = 0 (1)

where:

The weight vector, denoted as w, is orthogonal to the
hyperplane. Additionally, ϕ(x) represents a feature mapping
for the input data. The variable ”b” represents the bias term
[25].

The hyperplane effectively partitions the feature space
by maximizing the margin, which refers to the distance
from the hyper plane and the nearest data point, commonly
referred to as the support vector [23]. To accommodate a
certain level of error or deviation from the boundary, a
slack variable ξ is introduced, allowing some data points
to fall within the margin or on the wrong side of the
hyperplane. The optimization problem for One-Class SVM
can be formulated as [25]:

min
1
2

w2 +
1
νn

n∑
i=1

ξi − ρ (2)

Subject to:

wT + ϕ(xi) − b ≥ ρ − ξi, ξi ≥ 0; i = 1, . . . , n (3)

In these equations, the hyper parameter v regulates the
maximum proportion of margin errors, whereas ”ρ” repre-
sents the radius for the hyper sphere, which encompasses
the transformed average data points [22].

C. Transfer Learning (TL)
Deep learning, also known as deep structured learning,

represents an advanced category of machine learning meth-
ods that has significantly impacted the field of artificial
intelligence. The term ”deep” refers to the network’s depth,
indicating the presence of multiple layers, which enables
it to learn intricate patterns and features from data. Con-
volutional Neural Networks (CNNs) are a prominent deep
learning technique widely utilized for feature extraction
and data classification across various domains. A typical
CNN architecture comprises several layers, including input,
convolutional, pooling, fully connected, and output layers
[5].

Transfer learning (TL) is a valuable technique employed
to address data limitations by leveraging knowledge from
a different domain. Instead of training a neural network
from scratch, TL involves utilizing a pre-trained model’s
weights and architecture, which have been optimized on a
large dataset. This approach allows for the extraction of
common features and structures present in images, thereby
facilitating the recognition of distinctive features specific to
a particular dataset [15].

In TL, the pre-trained model’s lower layers, which
capture general features, are typically preserved, while the
upper layers, responsible for more task-specific features,
are fine-tuned to adapt to the new dataset. This transfer of
knowledge from the source task to the target task enables
the model to achieve good performance with minimal
data. However, it is important to note that the pre-trained
model’s last few layers, initially designed for the source
task, may require re-training to better suit the target task’s
characteristics. [26].

Transfer learning is a technique that entails employing
pre-trained deep networks, which have been trained on
large datasets, to tackle particular tasks with restricted data.
Using the target dataset, it is customary to fine-tune the
concluding layers of the pre-trained network. This enables
the model to transfer information from the source task to
the targeting task. Nevertheless, it is important to note that
the ultimate layers, which were initially developed on the
source task, might not acceptable with the target goal [27].
Implementations of transfer learning that utilize pre-trained
models tend to be more efficient and reliable compared to
models trained from scratch [28].

In this study, two transfer learning approaches are em-
ployed:
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1) Feature Extraction Approach
The feature extraction technique involves utilizing

VGG19 network for the purpose of feature extraction,
retaining its original design and learned weights. This
approach entails using the network up to a predefined layer
as an arbitrary feature extractor, with the outputs of these
layers serving as features for further processing [28]. The
VGG19 model, known for its 16 convolutional layers and
three output layers, leverages its convolutional layers for
feature extraction, preserving the original features of input
images in the form of feature maps [17].

2) Fine-Tuning Approach
In the fine-tuning strategy, the pre-trained VGG19 archi-

tecture is adapted by replacing the original fully connected
layers with newly initialized ones. These new fully con-
nected layers are then trained to predict the input classes
[29]. Additionally, the last three layers of the VGG19
model are replaced with OCSVM to enhance the model’s
performance in specific tasks.

3. The Proposed System
The fundamental concept presented in this paper in-

volves utilizing the VGG19, which is modeled as a feature
extractor through the 16 convolutional layers. Subsequently,
these extracted features are then employed for airplane
detection using OCSVM.

The architecture for aircraft detection in the proposed
system comprises five primary stages, depicted in Figure
2. These stages encompass datasets, preprocessing, feature
extraction, detection, and evaluation. Pre-processing plays
a vital role in priming the aircraft images for subsequent
processing. During the feature extraction phase, deep learn-
ing filtering is employed to extract and filter out irrelevant
features. These features are then fed into the detection phase
to accurately detect airplanes. In the last stage, the system’s
performance is assessed by evaluating the results obtained.
Further elaboration on the system’s specifics is provided in
the subsequent subsections.

A. Dataset Stage
Three dataset used in this experiment. These are

Caltech-101 dataset, Military Aircraft dataset, and MTARSI
dataset that collected from the Kaggle website.

1) Caltech -101 Dataset
The Caltech -101 [26] is a widely used computer vision

dataset designed for object recognition tasks. It was created
by the California Institute of Technology (Caltech) and
contains a diverse set of images belonging to 101 different
object categories [10]. It comprises around 9146 images
distributed among 101 object classes and an additional
background clutter class. The number of images in each
class ranging between 40 to 800 images, as in the aircraft
category, which includes 800 images. The images have a
uniform dimension of 300 x 200 pixels.

Figure 2. The Proposed System Flowchart

2) Military Aircraft Dataset
This is a remote sensing image Military Aircraft Recog-

nition dataset. It consists of a total of 3,842 images, encom-
passing 20 distinct types of military aircraft. Each image
within the dataset has been meticulously annotated with
both horizontal boundary boxes and orientated bounding
boxes, resulting in a comprehensive collection of 22,341
instances.

3) MTARSI Dataset
MTARSI, short for Multi-type Aircraft of Remote Sens-

ing images [27] represents the initial publicly accessi-
ble dataset encompassing detailed aircraft classification
designed for remote sensing photos. A group of seven
esteemed professionals specializing in remote sensing im-
age interpretation diligently annotated each instance of the
provided images. Hence, the dataset exhibits significant
credibility [28]. MTARSI comprises 9,385 remote sensing
images derived from satellite imagery provided by Google
Earth. The collection of aircraft images includes 36 various
airports and 20 distinct type of aircrafts [29].

Additionally, one more dataset was generated based
on the aforementioned Caltech-101 dataset. This generated
dataset involves converting images into object boundaries
using the Canny edge detection technique, a method known
for its effectiveness in identifying edges with reduced noise
and accurate edge localization in digital images. Figure 3
illustrates the main steps of the Canny algorithm.
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Figure 3. The Traditional Canny Method of Edge Detection

• Gaussian Smoothing (G) reduces noise in the im-
age, which can be caused by factors such as sensor
imperfections or compression artifacts. It also helps
in suppressing small, insignificant edges that might
be the result of noise. This is important because the
Canny algorithm aims to detect strong, meaningful
edges. Canny technique commonly employs a two-
dimensional Gaussian function as shown in equation
(1) to smooth and remove noise from images [30].

G(x, y) =
exp

[
−

(x2+y2)
2σ2

]
2πσ2 (4)

The symbol ”σ” represents the parameter of the
Gaussian filter, which governs the smoothing degree
of image.

• Gradient Calculation involves computing the gra-
dient magnitude and direction for each pixel in the
image. The gradient provides information about how
the intensity of the image changes at each point and
helps identify regions of rapid intensity change, which
often correspond to edges. Edges can be detected in
locations where the magnitudes of the picture gra-
dients exhibit significant values. The magnitudes are
obtained by convolving the image with the gradient
masks [31]. The partial derivatives about the x and y
axes can be represented as Px(i,j) and Py(i,j), respec-
tively, with the image I(x,y). The conversion from
rectangular coordinates to polar coordinates involves
transforming the given coordinates Px(i, j) and Py(i, j)
into the gradient amplitude M(i,j) and the gradient
direction θ(i,j) for a pixel. M(i,j) denotes the edge
strength of any point ( i , j), while θ(i,j) denotes the
normal vector of any point ( i, j) [32].

M(i, j) =
√

Px(i, j)2 + Py(i, j)2 (5)

θ(i, j) = arctan
(

Py(i, j)
Px(i, j)

)
(6)

• Non-Maximal Suppression plays a crucial role in
the Canny edge detection method by aiding in the
refinement of detected edges through thinning and
retaining only the most prominent ones. This step
ensures that the final edge map contains only thin,
single-pixel-wide edges by suppressing non-maximal

gradient values in the gradient magnitude image. To
refine the edge features, it is necessary to suppress all
values along the gradient line, with the exception of
the local maxima [31]. The NMS method can assist
in ensuring that each edge is one pixel wide. The
Canny technique utilizes 3 x 3 neighboring regions,
encompassing eight directions each, for interpolating
the gradient magnitude based on the direction of the
gradient. A potential edge point is identified when the
magnitude M(i,j) exceeds the cumulative interpolation
results along the gradient’s direction. In contrast, the
point is classified as non-edge if the magnitude is
smaller. The method yields the candidate edge image
as a result [30].

• Double Thresholding is a pivotal step in the Canny
algorithm that aims to classify the edges into strong,
weak, and non-edge pixels based on gradient magni-
tude values. This step involves applying two thresh-
olds to the gradient magnitude image to distinguish
between different levels of edge strength. Two thresh-
olds are used: a high threshold (THH) and a low
threshold (THL). A pixel is classified as a firm edge
if its gradient exceeds a threshold value, denoted as
THH. If the gradient value falls below the predeter-
mined threshold level (THL), excluding or erasing
the pixel corresponding to such a gradient value is
imperative [30], [31]. Figure 4 shows an example of
each dataset images.

B. Preprocessing Stage
Preprocessing plays a pivotal role in the preparation

of images for subsequent processes [33]. It involves a
series of transformations applied to an initial image, aimed
at improving its quality and rendering statistical analysis
more consistent and comparable [34]. In this study, various
preprocessing techniques are employed to optimize the
data, including resizing the images to a standard size of
(224,224). Additionally, for the purpose of data augmenta-
tion, methods such as data cropping and rotation are applied.

C. Feature Extraction Stage
Feature extraction stands as a critical phase in airplane

detection, as the model’s efficacy significantly hinges on the
quality and pertinence of the extracted features [35], [36].
This stage is dedicated to capturing pertinent visual char-
acteristics from images that aid in distinguishing airplanes
from other objects or backgrounds. As mentioned before the
VGG19 model comprised of sixteen convolutional layers, is
employed for this purpose.

D. Detecion Stage
The detection phase commences right after the com-

pletion of the feature extraction stage. To achieve this, the
final three layers of the VGG19 model configuration are
replaced with OCSVM. OCSVM is a robust and well-
regarded detector known for its effectiveness in object
detection, particularly in the case of aircraft.
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((a))

((b))

((c))

((d))

Figure 4. An Example of Used Datasets ((a)) CalTech-101 Dataset.
((b)) Military Aircraft Dataset, ((c)) MTARSI Dataset, ((d)) Canny
Object Boundaries Dataset

E. Evaluation Stage
The efficacy of the proposed method was assessed by

utilizing various assessment measures in the experimental
results. The criteria employed include F1-score and accu-
racy. The following are the most fundamentals [33], [37]:

True Positives (TP) refers to the rate at which the model
accurately classifies airplanes as positive.

True Negatives (TN) refers to the rate at which the
model accurately classifies airplanes as negative.

False Positives (FP) represents the number of airplanes
erroneously identifies as positive when, in reality, they are
actually negative.

False Negatives (FN) is the number of airplanes er-
roneously predicted as negative when, in reality,they are
actually positive.The metrics can be defined as following:

P(Precision) =
T P

T P + FP
(7)

R(Recall) =
T P

T P + FN
(8)

F1-score =
2 × P × R

P + R
(9)

Accuracy =
T P + T N

T P + T N + FP + FN
(10)

4. Experimental Results
The suggested system was executed on a personal

computer according to the given specifications: Windows
10 Pro operating system, an Intel(R) Core(TM) i7-8565U
CPU @ 1.80GHz 1.99 GHz, installed RAM 8.00 GB, and
system type 64-bit operating system. The proposed system
was designed using Python programming language, version
3.10, within a Jupyter Notebook environment, chosen for
its interactive and collaborative features.

For this study, the VGG19 and OCSVM methods were
selected to harness the advantages of CNN and SVM tech-
niques and demonstrate their efficacy in aircraft detection.
The training data undergoes feature extraction using VGG19
to determine class values. This involves putting all images
through the CNN network to extract relevant features, which
are then fed to OCSVM to perform the detection process.

Three datasets were chosen to showcase their outcomes,
which were subsequently examined in depth to measure
efficacy of the proposed methodology. Each data set was
separated manually into two subsets (70:30) : the training
set and the test set.

In the experimental evaluation, three detection models
were applied: VGG19, OCSVM, and the proposed system.
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To evaluate and compare the detection performance of the
proposed system, we utilized three datasets: Caltech-101,
the Military dataset, and MTARSI. In order to achieve
optimal outcomes and guarantee accurate evaluation of the
proposed system, It was configured with precise parameters,
as outlined in Table I below.

TABLE I. Related Parameters of the Proposed System

Parameter Value

kernal linear
gamma 0.01

nu 0.01
cache size 100

Figure 5 illustrates the training and validation loss as
well as the accuracy of the proposed system using the
Caltech-101 dataset.

Figure 5. The Loss and Accuracy of Training Phase Utilizing
Caltech-101

The effectiveness of the proposed system was assessed
by combining VGG19 with OCSVM. The results are de-
tailed in Table II.

TABLE II. Experimental Results of the Suggested System using
F1-score

Datasets Caltech-101 Military MTARSI

OCSVM 94% 95% 96%
VGG19 88% 96% 97%

Proposed System 96% 99% 99%

Table II reveals that the proposed system outperformed
both the VGG19 and OCSVM systems, achieving higher
F1-score results for all datasets. For the Caltech-101 dataset,
the F1-scores were 96% for the proposed system, 88%
for both VGG19 and 94% for OCSVM. In the case of
the military aircraft dataset, the obtained F1-scores were
99%, 96%, and 95% for the proposed system, VGG19,
and OCSVM respectively. Meanwhile, for the MTARSI
dataset, the proposed system exhibited an F1-score of 99%
as opposed to 97% for VGG19 and 96% for OCSVM.

Figure 6 showcases an example of the proposed system’s
results, demonstrating accurate and efficient detection of
aircraft in the testing image across all datasets.

Figure 6. The Results of the Proposed System for Airplane Detection

5. Comparison and Discussion
To measure the efficiency of the proposed method with

the chosen datasets, a comprehensive comparative analysis
was conducted. This analysis involved contrasting the ex-
perimental results with recent research findings concerning
the Caltech-101 and MTARSI datasets. The comparison
encompassed factors such as dataset size, and the employed
detection methodology. Table III presents a holistic view of
these comparisons with relevant studies focused on aircraft
detection.

TABLE III. A Comparison of the Proposed System with Recent
Related Works: F1-score and Accuracy metrics

Reference Dataset Detection
method

Evaluation
metrics

[30] MTARSI VGG16 87.5% AC
[38] Caltech R-CNN 90.4% F1
[39] Caltech (MEsSP) 78.4% F1
[40] Caltech Modified

Fuzzy
C-Mean

70.9% F1

[41] MTARSI VGG16 72.1% AC
Proposed
System

Caltech VGG19-
OCSVM

96% F1

MTARSI 99% F1

Table III clearly presents the performance results on the
Caltech-101 dataset. Akanksha et al. [38] achieved an F1-
score of 90.4% using R-CNN. In contrast, Rafique et al.
[39] attained a lower F1-score of 78.4% with their proposed
approach by using Maximum Entropy scaled Super Pixels
segmentation (MEsSP). Jalal et al. [40] used Modified
Fuzzy C-Mean and Maximum Entropy and achieved an F-
score of 70.9%. Remarkably, the method introduced in this

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


Int. J. Com. Dig. Sys. 16, No.1, 115-124 (Jul-24) 123

paper achieved an outstanding 96% F1-score, signifying a
significant enhancement over previous methodologies.

Turning to the MTARSI dataset, Wu et al. [30] in-
troduced MTARSI as the first public database for aircraft
remote-sensing images. Their VGG-16 model achieved an
accuracy of 87.5%. Similarly, Mo et al. [41] employed
VGG-16 and reached an accuracy of 72.10%. Conversely,
the approach suggested in this research demonstrated ex-
ceptional performance, achieving a flawless 99% F1-score,
surpassing the performance of other methods.

This study is limited in its focus on detecting a single
airplane within an image, without addressing scenarios in-
volving multiple airplanes, which are common in real-world
aerial imagery. This limitation reduces the generalizability
of the proposed approach, particularly in complex situations
where detecting and localizing multiple instances of the
same object class is necessary. Future research could focus
on extending the proposed method to effectively handle
the detection of multiple airplanes within a single image,
thereby enhancing its practical utility in applications such
as aerial surveillance and reconnaissance.

6. Conclusion
This paper presents an approach for detecting airplanes,

utilizing deep learning techniques and a transfer learning
methodology. Initially, VGG19 model was employed for
feature extraction. Then, the feature vector that has been
acquired is afterward inputted into the OCSVM algorithm
for aircraft detection. Following numerous experiments, the
results obtained from the proposed system demonstrated
notable performance improvements compared to traditional
unmodified systems (OCSVM, VGG19) and recent related
works.
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