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Abstract: One crucial stage in the data preparation procedure for breast cancer classification involves extracting a selection of
meaningful genes from microarray gene expression data. This stage is crucial because it discovers genes whose expression patterns can
differentiate between different types or stages of breast cancer. Two highly effective algorithms, CONSISTENCY-BFS and CFS-BFS,
have been developed for gene selection. These algorithms are designed to identify the genes that are most crucial in distinguishing
between different types and stages of breast cancer by analysing large volumes of genetic data. A noteworthy advancement is a refined
2-Stage Gene Selection technique specifically designed for predicting subtypes in breast cancer. The initial phase of the 2-Stage Gene
Selection (GeS) approach relies on the CFS-BFS algorithm, which plays a crucial role in effectively eliminating unnecessary, distracting,
and redundant genes. The initial filtering process plays a crucial role in simplifying the dataset and identifying the genes that have
the highest potential to shed light on the category of breast cancer. The CONSISTENCY-BFS algorithm guarantees that only the
most pertinent genes are retained by further refining the gene selection process. This stage is essential for eliminating any remaining
uncertainty and enhancing the overall efficiency of the algorithm. This innovative approach represents a significant advancement in
the field of bioinformatics as it offers a more accurate and targeted method for selecting genes based on their relevance to breast
cancer classification. When the 2-Stage GeS is constructed using Hidden Weight Naive Bayes, remarkably, it yields more precise and
dependable outcomes. The indicators that demonstrate positive outcomes encompass recollection, accuracy, f-score, and fallout rankings.
The Kaplan-Meier Survival Model was employed to further validate the top four genes, namely E2F3, PSMC3IP, GINS1, and PLAGL2.
Presumably, precision therapy will specifically focus on targeting the genes E2F3 and GINS1.
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1. Introduction
Breast Cancer (BC) is a wide variety of diseases with

highly adaptable medical behaviours, not a single disease
[1] [2]. Histological Grade (HG) is a well-described prog-
nostic factor that reflects the morphological characteristics
of the tumour as well as the clinical behaviour of the
disease. Diagnosticians have long recognised this mor-
phological multiplicity, which is replicated in histological
grades with dissimilar microscopic appearances and corre-
lated with medical outcomes [3] [4]. HG, which stands for
the morphologic assessment of tumour genetic traits, is a
well-established prognostic factor that has been successful
in generating significant evidence regarding the clinical
behaviour of the disease [5] [6]. The HG scheme shown
in Table I typically takes the patient’s severity into account.
These anomalies give clinicians tasks to look for likely
targets for the best BC detection and diagnosis [7].

Patients with grade 3 tumours, for example, re-
quire prompt consideration of neoadjuvant or adjuvant

chemotherapy during the process of systematic treatment
selection. On the other hand, patients with grade 1 tumours
may benefit from long-term follow-up. As a result of the
fact that grade 2 breast tumours represent an intermediate
and highly variable state in terms of morphology, underlying
biology, and risk of distant metastasis recurrence, it may be
challenging to determine the appropriate treatment for thirty
to sixty percent of breast tumours that have been diagnosed.
Because of this, patients who have been diagnosed with
these tumours run the risk of receiving either insufficient or
excessive treatment. It has been proposed that only grades 1
and 3 should be considered when deciding on treatment, and
that grades 2 should not be considered informative in the
absence of additional metrics. In light of this, the accurate
stratification of grade-2 tissues presents many complicated
challenges. A higher grade may develop and quickly blow
out, requiring immediate aggressive treatment. A lower
grade denotes slow-growing cancer with a better prognosis.
It is still impossible to develop an accurate medical indicator
that will commit for improving prognosis and grade-related
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TABLE I. Description of histological grade.

Grade
Types

Growth [8] Mitotic Count Tubular Differen-
tiation

Nuclear Pleomorphism

Grade 1 Slowly, well-
differentiated

≤ 7 mitoses ≥ 75% Small nuclei, no nucleoli, and uniform
cells.

Grade 2 Moderate 8-15 mitoses 10 - 75% Bigger cells using open vesicular nuclei,
moderate in shape and size, visible nucle-
oli.

Grade 3 Faster, poor
differentiation

≥ 16 mitoses ≤ 10% Cells with variation in size, shape,
vesicular nuclei, and prominent nucleoli,
marked.

data [7]. To express a tumor’s antagonistic behaviour, HG
aims to combine measurements of cellular differentiation
and replicative potential into a composite score. The Not-
tingham Grading System (NGS) is the utmost extensively
used technique for BC tumour grading. The grading system
of tumour cells is grounded on a microscopic estimation
of cytologic and morphologic characteristics, which also
include nuclear pleomorphism, mitotic count, and degree
of tubule formation [7] [8] [9].

The summation of the grading scores classified breast
tumours into the following grades:

1) G1 - grade 1 (slow-growing, exceptionally differen-
tiated)

2) G2 - grade 2 (slightly differentiated)
3) G3 - grade 3 (inadequately differentiated, highly

proliferative) malignancies.

HG acts as an imperative part in the prognosis, diagno-
sis, and survival of BC patients. It is becoming a key area
to categorize the patients into the correct category and stage
of BC. The Genetic Grade (GG) was consistently conceived
in multivariate analyses to be a self-determining prognostic
symbol of disease reappearance proportionate to lymph
node and tumour size status [10] [11] [12] [13]. When
combined with the Nottingham Prognostic Index (NPI), GG
improved the identification of patients with less damaging
and destructive tumours who would benefit sufficiently
from adjuvant treatment. The findings of Anna et al. show
that a GG signature can advance, improve, and facilitate
prognosis planning for BC patients, as well as provide
comfort that high-grade and low-grade ailment, as stated
genetically, replicate separate pathobiological entities rather
than a continuation of cancer development [10]. In BC,
Micro-Array Gene Expression (MAGE) has the potential to
judge thousands of genes simultaneously. Machine Learning
(ML) technique has optimized this analysis task. According
to research, MAGE-based profiling can provide better and
self-determining prognostic information for patients with
BC. MAGE data contains many genes, the majority of
which are irrelevant or unimportant in the diagnosis of
BC. Gene selection will aid in the discovery of relevant
genes, and it is useful in a variety of real-world applications,

such as identifying relevant genes for a specific disease
in microarray data [14] [15]. The Best-First Search (BFS)
method produces excellent results [13], even when accuracy
rankings are average. It also has the greatest influence on
the prognostication model. The CFS built on BFS selects
the fewest possible features on its own [16] [17] [18] [19].
To reduce the genes further with a motive to find biomarker
genes, Consistency-BFS is beneficial. Integrating the Hid-
den Naı̈ve Bayes with 2-Stage GeS has been discussed in
detail to predict BC accurately.

This study aims to identify prognostic biomarkers on
microarray datasets to forecast the diagnosis and prognosis
of breast cancer based on histologic grade subtypes. In
future cancer research, the proposed novel architecture
demonstrates a cost-effective and powerful predictive tool.

The topic of motivation is addressed in section 2,
the literature review is examined in Section 3, Section 4
provides a detailed analysis of the GeS method, Hidden
Weight Nave Bayes, and the GeS method, and Section 5
focuses on the proposed model. Section 6 covers the topics
of datasets and experimentation analysis. The final section
contains the conclusion and discussion.

2. Motivation
When it comes to advancing our understanding and

treatment of this complicated disease, research on breast
cancer that makes use of feature selection is an essential
component. An improvement in diagnostic accuracy is one
of the primary reasons for its significance, and it is only
one of many. There is no such thing as uniform breast
cancer; rather, it is comprised of numerous subtypes, each
of which possesses unique characteristics and behaviors.
A more precise and individualized diagnostic approach is
made possible through the use of feature selection, which
assists in identifying the most pertinent biomarkers and
factors associated with these subtypes. Researchers can
develop diagnostic tools that can differentiate between the
various types of breast cancer by focusing on specific
characteristics. This enables clinicians to receive diagnoses
that are more accurate and timely. Additionally, the research
makes a significant contribution to the understanding of the
biology that lies beneath breast cancer, which is a significant
contribution. A significant obstacle is presented by the

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


Int. J. Com. Dig. Sys. 16, No.1, 85-100 (Jul-24) 87

heterogeneity of the disease; however, feature selection
helps determine the primary factors that are responsible
for the disease’s development, progression, and response
to treatment. To gain valuable insights into the complex
molecular mechanisms that are at play in breast cancer, it
is necessary to identify fundamental characteristics. With
this more in-depth understanding, the groundwork has been
laid for the development of targeted therapies, which will
open up new avenues for treatment strategies that are more
precise and individualized.

Furthermore, an efficient and effective method of anal-
ysis is required because of the sheer volume of data
that is involved in the research on breast cancer. By
reducing the dimensionality of the data, feature selection
helps researchers address this challenge and enables them
to concentrate on the aspects of the data that are most
pertinent to their work. This not only makes the process of
analysis more efficient but also makes it easier to recognize
important characteristics that might otherwise be obscured
due to the large amount of information contained in the
dataset. To discover new associations and patterns, which
in turn helps to advance both clinical practice and scientific
knowledge, it is essential to have the ability to navigate and
distil this vast amount of information. The incorporation
of feature selection into breast cancer research has the
potential to revolutionize clinical practice as a result of
the advancements that have been made. Improved patient
outcomes are a direct result of the development of diag-
nostic tools that are more accurate and treatment strategies
that are more individualized. By basing their decisions
on the specific characteristics of an individual’s breast
cancer, clinicians can make more informed decisions, which
ultimately results in interventions that are more tailored
and effective. At the same time, the scientific community
reaps the benefits of a more in-depth understanding of the
complexities of breast cancer, which paves the way for
ongoing innovation and the ongoing refinement of treatment
approaches. Research on breast cancer that makes use of
feature selection is, in essence, a cornerstone in the quest for
improved diagnostics, a deeper understanding of the biology
of the disease, and the development of treatment modalities
that are both personalized and effective. Not only does this
multidimensional approach improve clinical outcomes, but
it also advances scientific knowledge, which in turn helps
to foster a comprehensive and ever-evolving understanding
of breast cancer.

3. Literature Survey
The initial prognostic staging system for BC, the Not-

tingham Prognostic Index (NPI), which was established
upon the basis of lymph node stage (1–3), histological
grade (1–3), and primary tumour size, continues to be
implemented in numerous centres. It remains one of the
most economically viable and user-friendly prognostic in-
struments in BC. The principal purpose of BC staging is to
risk stratify patients who warrant therapeutic consideration,
rather than to ascertain the precise therapeutic approach.

It is noteworthy to mention that tumour behaviour may be
altered during therapy, and the initial estimated risk may
undergo a revision in light of treatment. Consequently, two
predicted estimates comprise the risk classification for BC:
the initial therapy-naive risk and the posttreatment risk.

Sankara et al. [9] proposed a comprehensive method-
ology aimed at identifying grade-specific biomarkers for
breast cancer (BC). Differentially Expressed Genes (DEGs)
were utilised in their approach, which involved the con-
struction of networks that were based on grade-specific
molecular interactions within cancer Grades 1, 2, and 3.
A Grade 3 molecular network that is intricately associated
with cancer-related processes was discovered as a result of
their investigation, which focused on a particular field of
study.Through the identification of the top ten differentially
expressed genes (DEGs), the research brought attention to
the significance of Grade 3 within this network. Particularly
noteworthy is the fact that the analysis focused on the re-
markable increase in the expression of CCNB2 and UBE2C
genes in Grade 3, in comparison to the expression of these
genes in other grades. An indication of a possible role
for these genes in the distinct molecular landscape that is
characteristic of Grade 3 breast cancer was provided by the
differential expression shown here. In addition, the research
demonstrated that certain genes, such as CCNB2, UBE2C,
CDK1, KIF2C, CCNB2, and NDC80, are particularly sig-
nificant in comparison to others. Researchers discovered
that the expressions of these genes were extremely strong
in a variety of breast cancer subtypes. It is intriguing to
note that the increased expression of these genes was linked
to a decrease in the patient survival rate, which suggests
that these genes may play a role in the progression of the
disease. Based on the findings that Sankara and colleagues
came up with, it is clear that the genes that they discovered,
particularly CCNB2 and UBE2C, have the potential to be
helpful in both the diagnosis and prediction of breast cancer.
Their differential expression across grades suggests that they
play a role in determining the severity of the disease, and
the correlation with patient survival rates highlights the
potential utility of these genes in predicting outcomes. This
research not only makes a significant contribution to our
understanding of the molecular mechanisms that underlie
breast cancer, but it also paves the way for the development
of targeted diagnostic and prognostic approaches that can
be utilised in the clinical management of this complicated
disease.

The study by Engström et al. explores the molecular
subcategories of breast cancer (BC) and their effects on
diagnosis and prognosis. Cases were systematically re-
diverted into distinct molecular subcategories, including
LumA, LumB (HER2-), LumB (HER2+), Basal, HER2
subcategory, and five negative phenotypes [20] [21]. Us-
ing immunohistochemistry and in situ hybridization, this
categorization was investigated as a potential alternative to
the analysis of gene expression. The Kaplan-Meier Survival
(KMS) models and the Cox proportional hazards models
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were among the analytical tools that were utilised in the
research. The findings demonstrated that the prognosis
of breast cancer is complex and varied, depending on
the molecular subcategories. HER2 was found to have
the most unfavourable prognosis and diagnosis, whereas
LumA displayed the most favourable outcomes, along with
the five negative phenotypes, particularly in the first five
years after the investigation. It is important to note that
Grade 2 tumours exhibited subcategory-related changes in
BC survival, which highlights the significance of tumour
grading in comprehending the progression of the disease.
The histopathological grade or molecular subcategory did
not have a significant impact on the survival rate of breast
cancer patients after diagnosis. However, significant prog-
nostic factors such as the involvement of lymph nodes, the
grade of the tumour, and the size of the tumour played
critical roles. There was a correlation between the non-
luminal subcategory and negative outcomes, particularly in
high-grade cases [21] [22] [23] [24]. This makes molecular
subtyping an important tool for predicting outcomes.

To determine whether or not the division of breast cancer
into molecular subtypes (Non-Luminal and Luminal) pro-
vides more accurate information than the use of traditional
histological grade (HG) alone, the purpose of this study
was being investigated. The purpose of this study was to
investigate the survival of BC-specialized variants across
a wide range of molecular and grade subcategories. In
particular, the first five years after diagnosis were marked by
significant variations in prognosis based on molecular sub-
types. Luminal A displayed the best prognosis and HER2
subcategory, while the phenotypes of the five negatives
displayed the worst prognosis. In addition to this, the re-
search acknowledged the ever-changing nature of prognosis
and prediction following the diagnosis of breast cancer.
Molecular subtyping, in particular the examination of Gene
Expression Profiles (GEP), has emerged as an additional
source of data that can be used for prognostic assessment
and prediction. The clinical and medical implications of
molecular subtyping in breast cancer have not been fully
appreciated, even though this potential existence exists.

The findings of the study highlighted the fact that Grade
1 tumors were associated with the most accurate diagnosis,
whereas Grade 3 tumors displayed the most inaccurate re-
sults. Since they were more heterogeneous, tumors of grade
2 demonstrated transitional prognoses, which were similar
to those of both grade 1 and grade 3 cases. It was also
known that analyzing the Gene Expression Profiles (GEP)
of patients across a variety of grades and molecular subtypes
could be of assistance in gaining an understanding of how
diseases begin and in developing personalized treatment
plans. In general, the research contributes to a more nuanced
understanding of the prognosis and diagnosis of breast can-
cer. It highlights the significance of molecular subtyping in
addition to the utilization of traditional histological grading.

The molecular classification of breast cancer has

emerged as a transformative aspect in the understanding
and treatment of breast cancer. It provides a wealth of
additional information that paves the way for individual-
ized therapies. This classification not only improves our
understanding of the disease, but also reveals new genes
that are known to be cancer drivers and potential biomark-
ers that could be targeted for more effective treatments.
There has been some progress made in determining how
patients with various types of breast cancer will fare, but
the situation is not yet resolved to everyone’s satisfac-
tion. Neoadjuvant chemotherapy (NACT) and conventional
chemotherapy are two types of chemotherapy that are
used to treat triple-negative and basal-like breast cancers
(TNBC/BLBC). This is especially true when chemotherapy
is administered. Despite the progress that has been made,
there are still obstacles to overcome when it comes to
transferring potential assays from the laboratory bench
to the bedside of the patient. In addition to being time-
consuming, the process is fraught with challenges that are
associated with the unpredictability of gene alterations that
culminate in therapeutic responses. In addition, there are
concerns regarding the cost-effectiveness and quality control
of these assays, which further complicate the process of
implementing them in routine clinical practice. Taking into
consideration the varied genetic landscape of breast cancer,
there is an urgent need for more specific predictive assays
to meet the requirements of personalized therapy. Even
though the clinical application of these molecular findings
is still in its infancy, there is a significant possibility
that they will improve prognostic stratification and, as a
result, refine therapeutic interventions. There is a palpable
anticipation for therapies that are more precise and targeted,
which promises better outcomes for patients suffering from
breast cancer. However, it is essential to keep in mind that
molecular classification should not be utilised in place of
or in addition to routine histopathologic evaluation when it
comes to the diagnosis and treatment of breast cancer [25].

Through a meticulous process of feature selection, the
study, as indicated by the reference [24], establishes a
complex connection between the Histologic Grade of breast
cancer and its prognosis. The consideration of an initial
feature set is the first step in this process. The initial
feature that is sent can either be complete or partial. The
methodology makes use of a progressive approach that is
known as forwarding selection. This approach involves the
methodical addition of features to broaden the scope of the
exploration space. The next step is to conduct a backward
search, which involves removing one gene at a time in an
iterative manner in order to reduce the amount of space
designated for exploration.

The two-step feature selection employed in this study
serves as the backbone of the entire research endeavor,
contributing to the following key components:

1) Identification of Appropriate Genes: The objective
of the study is to identify the genes that are most
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meaningfully associated with breast cancer using
an exhaustive analysis that includes correlation and
consistency measures. The use of a best-first search
allows for a comprehensive investigation into the
correlation between a variety of breast cancer char-
acteristics and the prognosis of the disease, which
makes the selection process easier to carry out.

2) Experimental Evaluation of Identified Genes: Ex-
periments are conducted to evaluate the genes that
have been identified, going beyond the simple act
of identifying them. To thoroughly investigate the
significance and relevance of the genes that have
been chosen about breast cancer, requires the utiliza-
tion of a variety of classification techniques. These
genes have the potential to be useful in classification
scenarios, and this step provides a practical under-
standing of that potential.

3) Ranking of Important Genes: The development of
a ranking system for the genes that have been
identified is an important part of the research that is
being conducted. Specifically, this is accomplished
by employing a GeS (Gene Selection) strategy that
consists of two stages, which provides an additional
layer of refinement to the selection process. In the
context of breast cancer prognosis, this ranking sys-
tem contributes to a more nuanced understanding of
the relative importance of each gene that has been
identified.

4) Medical Validation through Kaplan Meier Survival
Model: Using the Kaplan Meier survival model,
the research utilizes medical validation to determine
whether or not the genes that were identified have
any clinical significance. A powerful instrument for
determining the influence of particular genes on
the survival outcomes of patients is this model.
The research helps to bridge the gap between the
findings of computational analysis and the clinical
implications that are being experienced in the real
world.

In essence, this all-encompassing method not only identifies
genes that are linked to breast cancer, but it also assesses
the practical significance of these genes through the use
of experimental methods and ranks them according to the
importance they exhibit. Bringing together computational
discoveries with potential clinical applications is made
possible through the incorporation of medical validation,
which further strengthens the translational aspect of the
research. An intricate interplay between feature selection
and gene analysis is the focus of this study, which is a
multifaceted investigation to advance the understanding of
the prognosis of breast cancer.

4. GeS Technique
The GeS approach to feature exploration concluded with

the finest subgroups of features, and an attempt to discover
a subgroup amongst the challenging 2X candidate groups.
The necessity of this approach is its stopping condition:

it avoids comprehensive exploration of subgroups. The
GeS technique (shown in Figure 1) primarily involves the
following four steps [15]:

1) Creating the succeeding candidate subgroup for the
assessment using the generation technique

2) Estimating the candidate subgroup utilizing the esti-
mation function.

3) When to stop exploring is indicated by the stopping
condition, and

4) Validate the subgroups using the validation tech-
nique.

The generation technique employs an exploratory strat-
egy to generate subgroups of features for evaluation. It be-
gins by employing all or no features or a random subgroup
of features. An estimation function helps in the generation
of a subgroup, an optimum subgroup is constantly compared
to an estimation function like the linear correlation coeffi-
cient [26] [27]. In the absence of an appropriate stopping
condition, the GeS procedure might run, repeatedly ending
up as a liability for the exploration approach. The generation
technique and estimation function can affect the judgment
or preference aimed at a stopping condition. Instances
of stopping conditions grounded based on the generation
technique comprise either a predefined count of features
or a predefined count of repetitions attained. There are
times when a halting condition based on an estimation
function either makes it easier to add or remove any feature,
creating a better subgroup, or it achieves the best subgroup.
The GeS procedure stands still by outputting the chosen
subgroup of features. i.e., later authenticated. There are
numerous variations to this GeS method, but the vital
stages of generation, estimation, and stopping condition are
performed in almost every procedure. The authentication
practice is not an essential fragment of the GeS method
itself. It checks to see if the chosen subgroup is real by
comparing and verifying the results with results that have
already been found or with results from challenging the GeS
approach using real-world or fake datasets.

To deal with dimensionality reduction, Gene Selection
[7] [15] [17] [28] is a potent method. GeS is utilized to
discover an “optimum” subgroup of significant features,
therefore the comprehensive accuracy is amplified although
the data size is made smaller, and the comprehensibility
is enhanced in the case of classification. GeS approaches
comprise two vital characteristics one is the estimation of
a candidate feature subgroup and the second is exploration
using the feature space.

The GeS is implemented using two techniques named:

1) Correlation measures correspond to correlation either
among features or among classes and features.

2) Inconsistency measure corresponds to a feature sub-
group i.e. Unpredictable as at least two illustrations
through equivalent feature principles through distinc-

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


90 Monika Lamba, et al.: Two-Stage Gene Selection Technique For Identifying Significant Prognosis

Figure 1. GeS approach

Figure 2. Flowchart of 2 Stage GeS

tive class markers.

Contrasting inconsistency measure with correlation mea-
sure and studying Best-First Search (BFS) as an inspecting
approach.

5. ProposedModel
1) Step 1: Data Pre-processing

In the current study, an innovative 2-GeS model
for BC categorization into Histologic Grade subtype
is proposed with a Hidden Weight Naı̈ve Bayes
(HWNB) classifier shown in Figure 2. In the begin-
ning pre-processing of data is done in the form of
Gene Mapping, replacing probe-ids with their corre-
sponding gene IDs utilizing the GEOquery library of
R Studio [29], systematizing the gene data employ-
ing the min-max method. After mapping, SMOTE
and Discretization are performed on the datasets to
beat the problem of class unevenness [28] [30] [31].
The pre-processed data contains thousands of genes,
of which only a small number are important. To
generate the subgroup of relevant genes, 2-Stage GeS
is performed where CFS (Correlation-Based Search-
ing) and Best-First Search (BFS) is applied at the
first stage. Consistency is used as an evaluator and

best-first search is applied in the second stage to find
the final genes after relevant genes have been chosen
using CFS-BFS (Correlation Feature Selection and
Best-First Search). Further, the classification of BC
is carried out using different supervised machine-
learning algorithms. Gene produced using 2-stage
GeS has enhanced the performance of HWNB over
other ML methods.
Since the data is imbalanced, so it creates an extreme
repercussion on the performance of the ML algo-
rithms. To resolve this issue, SMOTE is executed
after discretization; the inclusion of discretization
and SMOTE aided in improving performance results.
The problematic issue concerns the imbalance in
the datasets. In SMOTE, synthetic examples are
generated with the k-NN (k-nearest neighbor) tactic
for the smaller class to resolve the problem of
imbalanced data. The following steps are taken for
the oversampling task:
Step 1: Identifying the marginal class set Q, for
every b ∈ Q, k-NN of b is produced by calculating
the distance between b and each instance present in
Q.
Step 2: For every b ∈ Q, the sampling rate T is
calculated as liable on the imbalanced proportion.
T instances t1,t2,. . . t (≤ m) are selected aimlessly
amongst k-NN, therefore, producing the set Q1.
Step 3: For each example tm ∈ Q1(m =
1, 2, 3, . . . . . . ,T ),
the stated method is utilized to generate the new
instances

tnew = t + rand(0, 1) ∗ ||(t − tm)|| (1)

Where tnew is a new instance, and rand(0, 1) will
produce a number that lies on [0, 1].

2) Step 2: Feature Section
To find out the subgroup of relevant genes, a com-
bination tactic is utilized which includes two GeS
methods. The first is CFS-BFS at the first stage and
Consistency-BFS at the second stage, in which CFS
and Consistency act as gene evaluators and BFS acts
as an exploration method for gene subgroups. The
BFS technique falls under supervised Gene Selection
(GeS). By indicating which genes, the algorithm
thinks, fit the data the best, and chooses the rele-
vant and significant genes. The algorithm encounters
several difficulties as it learns to determine which
genes are relevant and which ones to eliminate.
Determining the best genes for the algorithm is
therefore GeS’s primary goal. The choice of the
best gene for the ML technique by filter approach
depends on the gene-to-gene correlation and gene
subgroup selection, which are important to ascertain.
The CFS method is a reliable one because it gener-
ates a ranking of genes grounded on associativity
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determined by the empirical valuation function. By
examining each gene’s unique ability to predict how
much attrition will occur among them, CFS can
estimate the value of a subgroup of an attribute.
Although there is little association, the subgroup of
highly interrelated genes with the class is selected
[17]. Though, a few extremely predictive genes were
disregarded which might worsen the performance of
ML. Ac signifies CFS’s gene subgroup assessment
function given as:

Ac =
f Crp√

f + f ( f − 1)cpp
(2)

Ac is the experimental ‘merit’ of a gene subgroup,
including of genes, (cpp) demonstrates genegene in-
tercorrelation and epitomizes the geneclass associa-
tion.
According to studies [32], CFS produces results that
are comparable to those of the wrapper that outper-
formed them well on small datasets. In addition, CFS
is implemented much more quickly than wrapper; as
a result, CFS is used to select the final appropriate
genes.
The Consistency BFS GeS method [33] determines
how valuable a subgroup of qualities is in terms of
the class standards although training events in the
subgroups of qualities are predictable. The consis-
tency of the subgroup cannot, under any circum-
stances, be less than the consistency of the entire
set of qualities. As a result, the standard training
is to use this subgroup evaluator in aggregate with
an exhaustive or random search, which looks for
the smallest subgroup with consistency that is equal
to the consistency of the entire set of qualities. On
the training dataset, consistency measures (CM) are
handled uniquely because they have a lot of support
and use minimum genes to choose a subset of genes
[34]. The goal of min-genes is to define consistency
theories over the fewest number of genes possible. It
searches for the smallest subgroup size that satisfies
the user-specified required consistency rate. It is a
filter method because it is not dependent on any
one classifier that the GeS approach might use to
use the output from the carefully selected gene [34]
[35]. The suggested metric is the dataset’s overall
inconsistency rate for a particular gene set. A portion
of an occurrence known as an outline lacks the
class label subset in the explanation that follows. It
consists of a gene’s subset.
Aimed at a given gene subset Z with ag1 , ag2 ,
ag3 , ........., agz count of values for genes g1, g2,
g3,.............,gz correspondingly, there are at most mg1 ,
mg2 , mg3 ,. . . . . . mgz outline.
The inconsistency rate (CM) is determined by per-
forming the calculations described as: For a sample,
an inconsistency is obtained by the existences (0
1, 0) and (0 1, 1) where the two genes make

the correspondent principles in the two existences
even though the character of class fluctuates and
the concluding value in the existence. A pattern is
hypothetical to be inconsistent and uncertain, there
occur at least two occurrences like they associate
all but with their class markers. The inconsistency
count for a gene subgroup’s outline is equal to the
number of data epochs it examines minus the largest
number of inconsistent class labels. For the sake of
the sample, let’s consider an outline that appears in
instances of a gene subgroup where instances have
class tags 1, 2, and 3, where b1+b2 + b3 = ay. If b3
is the largest among the three, then the inconsistency
count is (a - b3). The sum of entirely ays concluded
by the different outline y that occur in the data of the
gene subgroup X is the overall count of occurrences
(P) in the dataset, i.e.,

∑
y = P.

The inconsistency rate (IR) of a gene subgroup T is
equal to the sum of all the overall designs that do not
match up in the data for that gene subgroup divided
by the power (P). The following is how CM is still
being used for gene selection. CM remains utilized
in the gene selection task as follows. Assumed a
contender gene subgroup T, inconsistency rate IR(T)
is calculated. If IR(T ) ≤ α where α is a user-
specified IR threshold, the subgroup T is called to
be consistent. The characteristics of CM are gathered
in the description. A gene subgroup may not be able
to satisfy the strict condition at that time because
real-world data is frequently noisy and uncertainty
α is set to 0%. The hashing mechanism makes it
possible to compute IR with time complexity O(T)
[33]. CM utilizes data with discrete value features.
In this case, features must first be discretized if the
data is continuous [36].
To identify the most advantageous genes, it is ad-
vantageous to correlate BFS with CFS and Consis-
tency as a gene evaluator. It advocates eliminating
unnecessary, obtrusive, and redundant genes once
their significance is not largely dependent on other
genes. Using greedy hill-climbing techniques that are
aided by the ability to go back, BFS investigates
the space of attribute subgroups. By combining BFS,
CFS, and consistency, fifty percent of the genes are
eliminated. The accuracy of classification is typically
superior to or equal to the minimal set of genes in
judgment to the complete set of genes in the vast
majority of cases. BFS starts with a null group of
genes and uses the entire set of genes to accomplish
forward searching. Later, it initiates at any point,
looks backward, and examines both ways, subse-
quently removing or including genes. Subsequently
identifying suitable, minimized, and pertinent genes,
the next step is to classify the samples to assess the
significance of a smaller subset of important genes,
independent of the entire gene cluster present in the
datasets. By addressing some noise that is modeled
as a proportion of data inconsistencies, CM helps
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to eliminate redundant and inappropriate genes. A
subgroup of genes is continually being checked by
this multi-variate measure. In light of this, CM is
quick, multi-variate, monotonic, capable of handling
data noise, and multi-variate before removing inap-
propriate genes. CM appears to be more expensive
than CFS.

3) Step 3: Bayesian Classification
Classification is an important task in pattern recog-
nition and data mining [37]. Due to its easiness
of construction but amazing effectiveness, Naı̈ve
Bayes (NB) seems to be the top machine learning
tactic [38]. It provides pure semantics utilizing the
knowledge of probability. The tactic is used in
supervised initiation tasks which helps to achieve
good accuracy with predicted class for testing and
training data including class information [39]. This
classifier is termed as naı̈ve due to the postulation
that foretold features are conditionally sovereign in
each class and it concludes that no secluded (hidden)
features influence the forecast method. These pos-
tulates reinforce efficient algorithms for learning as
well as classification. Let A be the arbitrary variable
symbolizing the class of an example like gene name,
B be a vector of arbitrary genes symbolizing the
experimental attribute values, a symbolize a specific
class label like types of Grades and b signify the
precise detected value vector. Assuming a test case
b to categorize, one uses Bayes’ rule to figure out the
likelihood of each class given the vector of detected
values for the foretold genes and then forecasts the
utmost probable class.

P(A = a/B = b) =
P((A = a)(P(B = b/A = a))

P(B = b)
(3)

Now B = b signify the event that B1 = b
∧

B2 =
b2
∧
.......Bk = bk. Since the occurrence is a combi-

nation of gene value assignments, and because these
genes are expected to be conditionally sovereign, one
attains

P(B = b/A = a) = P(
∧

Bi = bi/A = a),

= πP(Bi = bi/A = a)(4)
i.e., is modest to calculate for test cases and to
guess from training information. Usually, one does
not evaluate the distribution in the denominator of
Equation 3, as it is just a standardizing factor; as a
substitute, one disregards the denominator and then
standardizes so that the summation of P(A=a/B=b)
over all classes is one. A number between 0 and 1
that represents the likelihood that the gene B will
take on the value b when the class is a serves as
an example of P(A=a/B=b) for discrete features. In
contrast, each numeric gene is demonstrated by some
continuous likelihood distribution over the range of
that gene’s value. A mutual belief is that values

Figure 3. Structural representation of Naı̈ve Bayes and Hidden Naı̈ve
Bayes

of numeric genes are normally distributed and can
be characterized in terms of standard deviation and
mean. For continuous attributes, equations 5 and 6
are framed, where d signifies the probability density
function for a Gaussian distribution.

P(B = b/A = a) = d(C : µC, σC)where (5)

d(C : µ, σ) =
√

2πσ
e
−(C−µ)2

2σ2 (6)

NB disregards the attribute dependencies. A method
for learning an optimal Bayesian network that can
avoid computational complications and take the in-
spirations from all the genes into account. The con-
cept of creating a hidden parent for each gene that
trusts the inspirations from all the genes is termed
as Weight Hidden Naı̈ve Bayes [39] [40].
Assume Z is a class node i.e., Histologic Grade and
parent of all the attribute nodes. Figure 3 defines the
structure of NB and HWNB. Each attribute Yj has
hidden parent YhPj , j = 1, 2, 3, ...........,m, signified by
a dashed circle. The arc from the hidden parent YhPj

to Yj is signified by a dashed line, to differentiate it
from systematic arcs.
The joint distribution that HNB denotes is as follows:

P(Y, .........,Ym,Z) = P(Z)
∏

j=1.....m

P(Y j/YhPj,Z) (7)

where

P(Y j/YhPj,Z) =
∑

a=1,a,=b

T ba ∗ P(Yb/Ya,Z) (8)

and
∑

a = 1, a ,= bT ba = 1

The hidden parent YhPj for Yj is fundamentally a
combination of the weighted impacts from all other
attributes.

Considering the attributes Y1,. . . . . . ,Ym, P(Yj/YhPj ,Z) can be
thought of approximation of P(Y1),. . . . . . ,Ym). In Equation
6, an approximation depends on single estimators. Through
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the principle, arbitrary e-dependence estimators can be uti-
lized to state hidden parents. HNB represents any Bayesian
network if e = m-1. HNB is considered equivalent to a
Bayesian network in standings of expressive power. It is
favoured to outline hidden parents in demand to make the
learning procedure well-organized, efficient, and simple.
From equations 7 and 8, the method to regulate weights
T ba, b, a = 1, .....,m and a , b, is decisive for learning HNB.
There are two tactics to find it: one is executing a cross-
validation-based search, or the second is directly executing
the estimated values from the data. Adopted the latter
and made use of conditional mutual information amongst
attributes Ya and Yb as the weight of the P(Ya; Yb|Z). More
precisely, the weight is defined in eq. 9

T ba =
Mp(Yb; Ya|Z)∑

a=1,a,b Mp(Yb : Ya|Z)
(9)

where Mp (Yb: Ya|Z) is a conditional mutual information
defined as:

Mp(A; B|C) =
∑
a,b,c

P(a, b, c) log
P(a, b|c)

P(a|c)P(b|c)
(10)

where a,b and c are values of variables A,B, and C respec-
tively.

6. Datasets
The experimentations are conducted on six microarray

gene expression datasets extracted from National Centre
for Biotechnology Information (NCBI) and is detailed in
Table II. At the initial stage, the count of genes in the
datasets is in the thousands, so subsequently removing
irrelevant genes is required to gained insights from data
Table III, shows Grade-wise distribution of samples. The
number of relevant genes selected in 2-Stage GeS is shown
in Table 4. HG classification with three classifiers namely
Naı̈ve Bayes (NB), Hidden Weight Naı̈ve Bayes (HWNB),
and Correlation Weighted Feature Naı̈ve Bayes (CWNB)
in terms of precision, recall, f-score and fallout are given
in Table V-VIII. Out of these three classifiers, HWNB
outshines in terms of precision, recall, f-score, and fallout
highlighted in bold in Table VI. Eleven classifiers have
been used namely, Support Vector Machine (SVC), Deep
Learning (DL), Decision Table (DT), Random Forest (RF),
Logit Boost (LB), JRip, IBK, OneR, NB, CWNB, and
HWNB.

A. Experimentation Analysis
The proposed model consists of 2-stage GeS techniques

and Hidden Weight Naı̈ve Bayes classifier in which the
number of appropriate genes is chosen at the first stage
utilizing the CFS-BFS method and Consistency-BFS at
the second stage. The details of the count of genes chosen
are presented in Table IV. The number of genes selected
using CONSISTENCY-BFS is very few to the genes
chosen by the CFS-BFS method. The genes obtained at the
second stage are significantly reduced in comparison to the
complete set of genes in the original datasets and genes

selected by the CFS-BFS technique. All the genes chosen
are relevant and perform a significant role in the analysis
and prognosis of BC. The overall results of good f-score,
recall, and precision are shown by datasets GSE10886
and GSE29044. The highest precision of 96.4%, recall
of 96.3%, and f-score of 96.3% with CWNB have been
achieved in GSE10886. The second maximum precision of
96.1%, recall of 96%, and f-score of 96% with HWNB,
was obtained in GSE29044. The third highest precision
achieved is 95.2%, recall of 95%, and f-score of 95.1%
with Naı̈ve Bayes (NB) in GSE9044. The minimum fallout
of 1.4% with CWNB in GSE10886, followed by 2.2% with
HWNB, and NB is achieved in GSE10886. The graphical
description of results achieved by all the classifiers with
six datasets is shown in Figure 4-7. Figure 4, shows the
performance of various ML classifiers on six datasets
in terms of precision. Figure 5, displays the superiority
of CWNB classifier on Recall measure. Figure 6 shows
the performance of F-score with ML methods. Figure 7
shows the line graph comparing the fallout measure of
six datasets with ML methods. The overall results show
the superiority of HWNB with the remaining classifiers
shown in Table IX. Considering all the selected genes
by the 2GeS tactic, in each dataset where the correlation
coefficient is calculated to find the correlation among the
genes. Considering all selected gene’s coefficients, the
genes are ranked. Combining all the selected genes of
six datasets, the ranking of genes is shown in Table X.
Dataset-wise ranking of the top three selected genes is
shown in Table XI. As a result, the top four genes namely
E2F3, PSMC31P, GINS1, and PLAGL2 were identified by
2-Stage GeS. Later discovered the serious effects of the
top four genes in the existence of patients with BC. KMS
Plotter tools were utilized to the existence of patients with
BC by using publicly available datasets (2015 version;
http://kmplot.com/analysis/index.php? p=servicecancer=
breast) [40]. The subcategory of Histologic Grade in
MAGE can be distinguished into the category of good
and bad prognosis. Patients with lower Histologic Grades
typically have better survival rates than those with higher
Histologic Grades. KMS Model is used to validate whether
the proposed model can distinguish between patients
with poor and good prognosis using the Relapse-Free
Survival rate (RFS) data from the micro-array datasets.
The R-Survival project’s package was used to implement
the survival scrutiny with the Histologic Grade factor,
resulting in the RFS arcs of the proposed model, as shown
in Figure 8-11, which shows a clear separation between
the groups with good and poor prognoses based on grade.
A log-rank test was estimated to determine the p-value,
and it suggests that a lower p-value indicates a better
separation between grade subtypes. Figure 8-11, shows
the probability of survival analysis as high or low in BC
patients depending on all Grades, Grade 1, Grade 2, Grade
3, and Grade 4 respectively.

The grade of a BC is a predictor, a prognostic indicator,
and a marker of the tumor’s ”hostile potential.” Low-grade
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TABLE II. Detailed Description of Datasets

Datasets Genes Samples
GSE7390 13516 196

GSE10886 16380 74
GSE25055 13515 302
GSE25066 16383 486
GSE29044 16384 98
GSE42568 16384 104

TABLE III. Detailed distribution of different grades in each sample

Datasets Grade 1 Grade 2 Grade 3 Grade 4
GSE7390 30 83 83 0

GSE10886 7 25 42 0
GSE25055 19 117 151 15
GSE25066 32 180 259 15
GSE29044 3 53 42 0
GSE42568 11 40 53 0

TABLE IV. Count of features selected in both stages

First Stage Second Stage
Datasets CFS-BFS CONSISTENCY-BFS

GSE7390 102 16
GSE10886 46 7
GSE25055 193 12
GSE25066 212 13
GSE29044 66 10
GSE42568 91 8

TABLE V. Precision wise results of NB, CWNB and HWNB

Precision NB CWNB HWNB
Grade 1 78.58 78.58 84.53
Grade 2 81.7 81.7 83.17
Grade 3 90.05 90.05 91.02
Grade 4 74.2 74.2 71.9

TABLE VI. Recall wise results of NB, CWNB and HWNB

Recall NB CWNB HWNB
Grade 1 78.82 70.77 79.73
Grade 2 83.53 83.62 86.57
Grade 3 88.95 90.2 89.48
Grade 4 71.7 50 68.35

TABLE VII. F-Score wise results of NB, CWNB and HWNB

F-Score NB CWNB HWNB
Grade 1 80.07 76.87 81.93
Grade 2 82.48 81.8 84.77
Grade 3 89.48 88.93 90.2
Grade 4 71.3 52.65 68.45
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TABLE VIII. Fallout-wise results of NB, CWNB and HWNB

Fall out NB CWNB HWNB
Grade 1 3.63 2.43 2.42
Grade 2 10.06 11.6 9.77
Grade 3 7.98 10.28 7.28
Grade 4 1.95 2.8 1.9

TABLE IX. Performance of Proposed Model in comparison to remaining machine learning classifiers

Classifiers Precision Recall F-score Fall out
Proposed Model + DL 83.6833 82.5167 82.6167 9.01667

Proposed Model + SVC 85.4667 85.5 85.3167 9.21667
Proposed Model + DT 76 76.35 74.2333 15.9
Proposed Model + RF 86.65 86.5333 86.35 8.28333
Proposed Model + LB 85.5 85.4333 85.2333 9.15
Proposed Model + Jrip 79.6 79.3833 79.2 12.8833

Proposed Model + OneR 61.7333 59.7 59.0833 28.3333
Proposed Model + IBK 85.0333 84.7167 84.6667 9.01667
Proposed Model + NB 85.8333 85.6667 85.6667 8

Proposed Model + CWNB 85.3167 84.95 84.55 9.48333
Proposed Model (2-Stage GeS + HNB) 87.45 87.3667 87.3 7.45

cancers tend to be less aggressive than high-grade cancers.
Grade appears to be very important, and clinicians use this
information to help and direct treatment options for patients.
Looking at the prognosis of Histologic Grade, the proposed
model has taken into consideration of grade parameters to
check the importance of grade in terms of breast cancer
prognosis and detection. The result shows that the proposed
model works to divide BC patients into two groups based on
their RFS rate, which can tell them how likely it is that they
will have an event (relapsed at any site). Accordingly aids in
easy credentials of the patient’s group which might demand
less or more aggressive medication strategy. The Kaplan-
Meier curve and log-rank test scrutinizes discovered that the
increased E2F3, PSMC3IP, GINS1, and PLAGL2 mRNA
levels were meaningfully associated with the Relapse Free
Survival (RFS) of all the patients with BC shown in figure
8-11. It was thought that people with BC who had a lot
of mRNA for the E2F3, PSMC3IP, GINS1, and PLAGL2
genes would have a high RFS in Grades 1 and 2. But the
survival analysis is not significant with Grade 3.

The expression levels of E2F3 and GINS1 were higher
in BC tissues than in normal breast tissues. The Kaplan-
Meier Plotter database was used to look at survival rates. It
showed that high transcription levels of E2F3 were linked
with low relapse-free survival (RFS) in all breast cancer
patients. E2F3 is a potential target of precision therapy for
patients with breast cancer [41] [42]. Studies of survival
showed that higher levels of GINS1 were linked to bad
outcomes in all patients with BC [43] [44]. GINS1 was
associated with detrimental relapse-free survival (RFS). All
the experiments are performed using the WEKA software
and RStudio [29].

Figure 4. Performance of six datasets based on Precision

Figure 5. Performance of six datasets depending on Recall parameter
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TABLE X. Ranking of relevant Genes of six datasets after 2-Stage GeS

Genes Rank Genes Rank
E2F3 1 IL1R2 34

PSMC3IP 2 NM 002691 35
GINS1 3 PDHA1 36

PLAGL2 4 FOSB 37
MELK 5 CLTC-IT1 38
CCNB2 6 BC005884 39

FLJ20224 7 GTF3A 40
NMU 8 BTF3 41

SPTBN2 9 MAB21L1 /// MIR548F5 42
BM545088.1 10 NM 002266 43

TPD52L1 11 SDHA 44
C6 12 MUC5AC 45

ATP7B 13 MRPL40 46
I 1109138 14 V39326 47

MYL7 15 ANKRD7 48
HOXC8 16 ACSM2A /// ACSM2B 49
CIAO1 17 TGFBR3 50
RRM2 18 SNX21 51

PPM1G 19 WDR5B 52
BIRC5/// EPR-1 20 CYTH1 53

VSNL1 21 NM 000266 54
NM 001255 22 BECN1 55

EPB41L2 23 KHDRBS1 56
LOC10192 24 NM 006185 57

NM 006430 25 ZNF253 58
PARP4 26 MERTK 59
RRAS2 27 NM 000168 60

C1S 28 NM 003256 61
MZT2A /// MZT2B /// PHGDH 29 M95929 62

HAX1 30 NM 004694 63
PSMB4 31 PCNXL4 64

BG035989 32 RELA 65
NM 004219 33 FGD6 66

TABLE XI. Top three Genes after GeS.

Rank GSE7390 GSE42568 GSE10886 GSE25055 GSE25066 GSE29044
1 E2F3 CIAO1 FLJ20224 HAX1 NM 001255 EPB41L2
2 PSMC3IP PPM1G BM545088.1 CLTC-IT1 NM 006430 PARP4
3 GINS1 BIRC5/// EPR-1 ATP7B SDHA BG035989 C1S

Figure 6. Performance of six datasets based on F-score

7. Conclusion and Discussion
The purpose of this study was to propose a novel two-

stage GeS strategy for the prediction of BC subtypes. The
strategy was based on two methods and a Hidden Naı̈ve
Bayes classifier. The first stage involved the utilization of
CFS-BFS, while the second stage involved the utilization
of CONSISTENCY-BFS, which utilized histologic grade.
Additionally, the classification was carried out with the
Hidden Weight Naı̈ve Bayes classifier. It is preferable to use
Consistency-BFS because its complexity is linear, which
is denoted by the notation (O(N)). On the other hand,
CFS-BFS has a polynomial complexity, which is denoted
by the notation (O(N2)), where N is the total number of
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Figure 7. Performance of six datasets depending on Fallout

Figure 8. Prognostic Value of mRNA Level of top four genes with
RFS with all types of the histologic grade in Breast Cancer Patients
(Kaplan-Meier Plotter).

features. Six different microarray gene expression datasets
were utilized in the experiments that were carried out.
Using a limited number of appropriate genes from each
microarray gene expression dataset, the results validate an
impressive precision, recall, f-score, and fallout to forecast
breast cancer. The proposed 2-GeS tactic and Hidden Naı̈ve
Bayes classifier are responsible for the impressive results
that have been achieved. The majority of the selected genes
have been shown to have a correlation to breast cancer based
on previous research; however, only a few of these genes
have yet to be investigated.

Figure 9. Prognostic Value of mRNA Level of top four genes with
RFS with the histologic Grade 1 in Breast Cancer Patients (Kaplan-
Meier Plotter).

Figure 10. Prognostic Value of mRNA Level of top four genes
with RFS with all the histologic Grade 2 in Breast Cancer Patients
(Kaplan-Meier Plotter).
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Figure 11. Prognostic Value of mRNA Level of top four genes with
RFS with the histologic Grade 3 in Breast Cancer Patients (Kaplan-
Meier Plotter).

To concentrate research and analysis on a relatively
small subset of genes, this two-stage gene selection strategy
can be utilized. Particularly noteworthy is the fact that the
strategy has the potential to be useful for more complex
patient stratification in the future. For example, it could
be useful for subgroups that are formed by combining
platforms or for groups of patients that have been divided
based on how treatments have been received. It is possible to
precisely classify large populations of patients into specific
cancer subtypes or treatment groups with the assistance of
this combination tool. This is accomplished by regulating
the minimum number of genes that need to be screened.
The detection of subtle genetic variations is hampered by
smaller sample sizes in each stage, which may result in
a reduction in statistical power. This is another limitation.
Through the two-stage model, cooperative effects may be
overlooked due to the isolation of individual genes, which
may obscure important interactions within gene networks.
The future of cancer research and personalized medicine
appears to be greatly promising if the limitations related to
the identification of minimum relevant genes in two-stage
breast cancer analysis are overcome. Precision medicine
may enter a new era if issues like the intrinsic hetero-
geneity of breast cancer and our incomplete understanding
of genetic factors are addressed. Further investigation into
gene interactions and larger sample sizes may reveal more
reliable biomarkers that improve prognostic accuracy and
early detection. Thus, better treatment outcomes could result
from the creation of more potent therapeutic targets. Finding

new genes and pathways may be facilitated by integrating
diverse omics data and resolving data integration obstacles
to offer a more comprehensive understanding of breast can-
cer. Developments in the modeling of the time-dependent
nature of gene expression changes and the dynamic nature
of cancer progression can guide interventions at different
phases of development. Understanding the influence of
racial and ethnic diversity can result in more inclusive
research, ensuring that conclusions hold true for a range
of demographics. While longitudinal studies and real-world
data integration provide a comprehensive understanding
of the genetic landscape over time, leveraging artificial
intelligence and machine learning can reveal subtle patterns
within complex datasets. All things considered, getting
past these obstacles could completely transform the field
of cancer research and open the door to more inclusive,
individualized, and focused methods of diagnosing and
treating breast cancer.

The findings showed that the top two genes E2F3 and
GINS1 subunits might be new potential predictive biomark-
ers for BC. However, additional authentication studies are
still required to demonstrate the clinical significance of
E2F3 and GINS subunits in BC patients. In conclusion,
E2F3 and GINS subunits may serve as novel survival
biomarkers or therapeutic targets for BC patients. It is
expected that this research will improve the accuracy of
prognostication in BC patients.
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