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Abstract: In recent times, an upsurge of highly sophisticated and intricate malware has emerged, becoming one of the most insidious
and perilous attack techniques targeting critical information technology infrastructures. Android, the widely anticipated and open-source
smartphone operating system has experienced exponential growth. However, this progress has been impeded by the escalating threat of
Android malware, which exploits smartphones to carry out malicious acts. Malware employs a plethora of techniques to circumvent
detection systems, presenting novel obstacles to reliable detection. Detecting Android malware efficiently and accurately is crucial in
ensuring the security of Android OS users. Machine learning techniques have been widely employed to address this problem, and
feature selection algorithms have been introduced to enhance the detection process. This paper investigates the impact of feature
selection algorithms specifically applied to permission and API method information in detecting Android malware using different
machine learning algorithms. Experiments were conducted to compare the performance of feature selection algorithms, focusing on
Principal Component Analysis (PCA) feature selection, F-Score, Recursive feature selection, and Stochastic Neighbor Embedding
(SNE). The results demonstrate the effectiveness of the PCA algorithm-based approach in selecting relevant features for malware
detection, showing advantages over all feature selection algorithms and reducing the model-building time significantly. The findings
highlight the importance of feature selection in optimizing the machine learning-based malware detection system. By selecting pertinent
features, the detection process becomes more efficient, improving both accuracy and speed. The PCA algorithm-based feature selection
approach outperformed the Feature selection method, showcasing its ability to effectively identify features relevant to Android malware
detection.

Keywords: Android Malware, F-Score,Recursive Feature (RFE) Elimination,Stochastic Neighbor Embedding (SNE),Principal
Component Analysis (PCA).

1. INTRODUCTION
Android is an open-source operating system primarily

designed for mobile devices, such as smartphones and
tablets. Developed by Google, Android has become one
of the most widely used mobile platforms globally. Its
flexibility, customizability, and vast ecosystem of apps have
contributed to its popularity among both users and develop-
ers. Android provides a rich set of features and capabilities,
allowing users to perform various tasks, including commu-
nication, web browsing, multimedia consumption, gaming,
and productivity. It offers a user-friendly interface, seamless
integration with Google services, and support for a wide
range of hardware devices. One of the key strengths of
Android is its app ecosystem. The Google Play Store offers
millions of applications that cater to diverse user needs
and preferences. From social networking and entertainment
to education and productivity, Android apps cover a broad
spectrum of categories. This extensive app ecosystem has

fueled innovation and transformed the way people interact
with their mobile devices.

Android’s open-source nature has fostered a vibrant
community of developers, contributing to the continuous
evolution and improvement of the platform. The Android
Open Source Project (AOSP) enables developers to cus-
tomize and modify the Android source code to create
tailored versions of the operating system. Android also
offers seamless integration with other Google services, such
as Google Maps, Gmail, Google Drive, and Google Assis-
tant, providing a cohesive user experience across different
devices and services. In addition to smartphones and tablets,
Android has expanded into other domains, including smart
TVs, smart watches, smart home devices, and automotive
systems. This versatility has positioned Android as a per-
vasive platform that powers a wide range of connected
devices.
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Given the widespread use of smartphones and the in-
creasing number of malware threats targeting the Android
platform. Traditional signature-based detection methods of-
ten struggle to keep up with the rapidly evolving malware
landscape, necessitating the adoption of more advanced
techniques such as machine learning. Machine learning
has emerged as a powerful approach for Android malware
detection due to its ability to analyze large volumes of data
and learn patterns that differentiate between normal and
malicious behaviors. By training machine learning models
on labeled datasets containing both benign and malicious
samples, it becomes possible to develop robust and effective
malware detection systems.

However, there are challenges in Android malware de-
tection using machine learning, including the imbalance
between the number of benign and malicious samples,
feature selection, and the potential for adversarial attacks
that attempt to evade detection. Android malware detection
using machine learning offers a promising approach to
combat the evolving threat landscape. By leveraging the
power of data analysis and pattern recognition, machine
learning models can provide effective protection against
malware, ensuring the security and privacy of Android
devices and their users.

2. LITERATURE SURVEY
Android Permissions Demystified provides a compre-

hensive analysis of the Android permission system and its
implications for security. It discusses the challenges and
limitations of the permission system, including the use of
overly broad permissions and the potential for user confu-
sion [1].Behavior-Based Malware Detection System for An-
droid highlight the limitations of traditional signature-based
approaches and emphasize the importance of analyzing
the behavior of applications to identify potential malware.
They explain the components of Crowdroid, including the
instrumentation framework, system monitoring, and behav-
ior analysis modules [2].The paper begins by addressing
the issue of repackaging, where malicious actors modify
legitimate applications to introduce malicious behaviors
or bypass security checks. The authors propose a novel
detection technique called ”Kirin,” which utilizes a combi-
nation of static and dynamic analysis to identify repackaged
applications. [3]. Focusing on the problem of detecting
Android malware using machine learning algorithms as an
effective approach to identify malicious applications [4].

The DREBIN system employs a combination of static
and dynamic analysis techniques to detect Android mal-
ware. To evaluate the effectiveness of DREBIN, the authors
used a large dataset of over 120,000 android applications,
the results showed that DREBIN achieved high accuracy
in detecting Android malware while providing detailed
explanations for the detection decisions [5].The AndroD-
Tector approach leverages ensemble learning by training
multiple base classifiers on different subsets of the dataset.
They compared the detection accuracy of AndroDTector

with several other popular machine learning algorithms and
observed significant improvements in terms of precision,
recall, and F1-score [6].

By considering multiple indicators of malicious behav-
ior, such as permissions and API calls, machine learning-
based classification models can effectively distinguish be-
tween benign and malicious applications [7]. Effective mal-
ware detection approach by leveraging machine learning
techniques and focusing on the analysis of permissions
requested by Android applications. The paper begins by first
extract the permission requests from Android applications
[8]. They then use various machine learning algorithms,
such as Support Vector Machines (SVM) and Random
Forests, to train classification models based on these per-
missions [9]. Emphasize the importance of considering
both the permissions requested by an application and the
API calls it makes, as these can provide valuable insights
into its behavior and potential malicious activities. In their
proposed method, the authors first extract the requested
permissions and API calls from Android applications. They
then construct feature vectors based on these extracted
information. To classify applications as benign or malicious,
they utilize machine learning algorithms, such as Support
Vector Machines (SVM) and Random Forest, to train and
build prediction models using labeled datasets [10].

Highlighting the increasing prevalence of Android mal-
ware and the challenges associated with its detection a
comprehensive understanding of an application’s behavior
and identify potential malicious activities is required. To
evaluate the effectiveness of their approach, the authors con-
ducted experiments using real-world Android applications
[11]. They measured the accuracy, precision, recall, and F1-
score of their models to assess the detection performance.
The results demonstrated that their method achieved high
detection rates and effectively identified malicious applica-
tions [12].The analysis of permission patterns has shown
promising results in improving Android malware detection
accuracy and reliability [13]. Furthermore, the combined
analysis of both permissions and API calls significantly en-
hances detection accuracy compared to using either feature
alone [14], [15].

3. AndroidMalware Classification
Android malware classification is a process that involves

analyzing and categorizing Android malware samples based
on their characteristics and attributes. The goal is to identify
and classify different types of malware to understand their
behavior, potential risks, and develop effective countermea-
sures. There are several approaches and techniques used in
Android malware classification.

A. Static Analysis
Static analysis of Android malware detection involves

examining the properties and characteristics of Android
applications (APK files) without executing the code. It
focuses on analyzing the structure, behavior, and other static
features of the malware to determine if it exhibits malicious
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behavior or poses a security risk. This analysis is performed
by automated tools or security researchers to identify and
classify malware samples. Here are some key aspects of
static analysis in Android malware detection.

1. Manifest File Analysis: The AndroidManifest.xml
file provides essential information about the application,
including its package name, requested permissions, declared
activities, services, and receivers. By analyzing the mani-
fest file, it is possible to identify suspicious permissions,
excessive privileges, or unexpected components that may
indicate malicious behavior [16].

2. Permission Analysis: Android apps request permis-
sions to access various resources and functionalities of the
device. Analyzing the requested permissions can provide
insights into the potential behavior of the app [17]. Suspi-
cious or unnecessary permissions, especially those related
to sensitive data or system-level operations, may indicate
malicious intent.

3. Code Analysis: Static analysis involves examining the
actual code of the Android application. This can include
analyzing the Java bytecode, decompiling the APK file to
obtain the source code, and analyzing the structure and logic
of the code [18]. Various static analysis techniques, such as
control flow analysis and data flow analysis, can be applied
to identify potentially malicious or suspicious code patterns.

4. API Call Analysis: Android applications interact with
the device’s operating system and other system components
through APIs (Application Programming Interfaces). Ana-
lyzing the API calls made by the application can reveal
its intended functionality and potential malicious activities.
Patterns of API calls associated with known malware be-
haviors or unauthorized operations can be used to detect
and classify malware [19].

5. Code Obfuscation Analysis: Malware authors often
employ code obfuscation techniques to make the analysis
and reverse engineering of their malware more challenging.
Static analysis techniques can be used to identify and
deobfuscate the code, uncovering the hidden functionalities
and potential malicious activities [20].

6. Signature-based Analysis: Signature-based analysis
involves comparing the fingerprints or signatures of known
malware samples with the analyzed application [21]. This
approach relies on maintaining a database of known mal-
ware signatures and matching them against the analyzed
APK file to identify known threats.

B. Dynamic Analysis
Dynamic analysis in Android malware detection in-

volves monitoring the behavior and activities of an appli-
cation during runtime. It focuses on observing how the
application interacts with the device, accesses resources,
communicates with external entities, and executes code
[22]. By analyzing the dynamic behavior of an application,

it is possible to detect and classify malware based on their
malicious activities or deviations from normal behavior.
Here are some key aspects of dynamic analysis in Android
malware detection.

1. Emulation or Execution: Dynamic analysis often in-
volves running the application in a controlled environment,
such as an emulator or a virtual machine, to observe its
behavior. This allows for the monitoring of system calls,
API calls, network traffic, file operations, and other runtime
activities [23].

2. System Call Monitoring: Dynamic analysis tools
intercept and monitor system calls made by the appli-
cation. System calls provide access to various operating
system services and resources. By analyzing the sequence
and parameters of system calls, it is possible to identify
suspicious or unauthorized operations, such as file system
modifications, network communication to malicious servers,
or attempts to escalate privileges [24][20].

3. API Call Monitoring: Similar to system call monitor-
ing, dynamic analysis tools also monitor API calls made by
the application. Android applications interact with various
APIs to access system services, hardware functionalities,
and external resources. By analyzing the APIs invoked by
the application, it is possible to identify potential malicious
behaviors or deviations from normal usage patterns [25].

4. Network Traffic Analysis: Dynamic analysis involves
capturing and analyzing the network traffic generated by
the application. This allows for the detection of communi-
cation with suspicious or malicious servers, data exfiltration
attempts, or the use of insecure protocols. Network traffic
analysis can help identify malware that relies on command-
and-control (CC) infrastructure or data exfiltration tech-
niques.

5. Behavioral Analysis: Dynamic analysis involves ob-
serving the application’s behavior during runtime. This
includes monitoring activities such as the creation and
deletion of files, access to sensitive data or resources,
background processes or services, and interactions with
the user interface. Deviations from expected or normal
behavior can indicate malicious activities, such as stealthy
data collection, unauthorized access, or privacy violations
[26].

6. Malware Signature Matching: Dynamic analysis can
also involve comparing the observed behavior of the ap-
plication against known malware signatures or behavioral
patterns. This approach helps identify previously identified
malware based on their characteristic behavior or specific
actions they perform [27].

Dynamic analysis is particularly effective in detecting
sophisticated malware that employs evasion techniques,
runtime code loading, or behavior that only manifests during
execution. However, it can be more resource-intensive and
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time-consuming compared to static analysis.

C. Hybrid approach
A hybrid approach in detecting Android malware refers

to the combination of multiple detection techniques and
strategies to improve the accuracy and effectiveness of mal-
ware detection. It leverages both static and dynamic analysis
methods, as well as other complementary techniques, to
achieve a more comprehensive and robust detection capabil-
ity. The hybrid approach aims to overcome the limitations
and weaknesses of individual detection techniques by lever-
aging their strengths in a complementary manner. Here are
some key components and techniques commonly used in a
hybrid approach for Android malware detection [28].

1. Static Analysis: Static analysis involves examining
the application’s code and resources without executing it.
It includes techniques such as examining the permissions
requested by the application, analyzing the manifest file,
scanning for known malware signatures or patterns, and
inspecting the bytecode or source code for potentially
malicious behavior. Static analysis helps identify suspicious
or potentially malicious applications before they are even
installed or executed [22].

2. Dynamic Analysis: Dynamic analysis, as discussed
earlier, involves monitoring the behavior and activities of
an application during runtime. It focuses on observing how
the application interacts with the device, accesses resources,
communicates with external entities, and executes code.
Dynamic analysis helps detect malware based on their
actual behavior, deviations from expected behavior, or the
presence of specific malicious activities [29]. It can capture
system calls, API calls, network traffic, and other runtime
events to identify potential malware behavior.

3. Machine Learning: Machine learning techniques are
often employed in a hybrid approach to improve the ac-
curacy of malware detection. Machine learning models
are trained on large datasets containing both benign and
malicious samples to learn patterns and characteristics of
malware [30]. These models can then be used to classify
new and unknown applications as either benign or malicious
based on their features and behavior. Machine learning
algorithms such as decision trees, random forests, support
vector machines, and neural networks are commonly used
in Android malware detection [31].

4. Behavior-based Analysis: Behavior-based analysis
focuses on the dynamic behavior of an application dur-
ing runtime [32]. It involves monitoring and analyzing
the activities and interactions of the application with the
device, system, and external entities. By defining a set of
expected or normal behaviors and identifying deviations
from this baseline, behavior-based analysis can detect and
classify malware based on their malicious activities [33].
This approach is particularly effective in detecting novel or
zero-day malware that may not have known signatures or
patterns.

5. Signature-based Detection: Signature-based detection
involves comparing the characteristics or signatures of an
application against a database of known malware signatures.
This approach is useful for detecting well-known malware
strains and variants [29]. Hybrid approaches may incorpo-
rate signature-based detection as one of the components
to quickly identify and classify known malware, while
leveraging other techniques to detect unknown or variant
malware [15].

A hybrid approach combines the strengths of these
techniques, often using a combination of automated analysis
tools, machine learning models, and expert-driven analysis,
to enhance the accuracy and efficiency of Android malware
detection [33]. By leveraging multiple detection methods, it
becomes possible to detect a wider range of malware and
improve the overall detection rate while minimizing false
positives. Implementing a hybrid approach requires careful
consideration of the chosen techniques, their integration,
and the optimization of detection algorithms.

4. ExperimentalMethodology
In this section, we delve into the experimentation con-

ducted to detect android malware through permission analy-
sis. Our exploration encompasses several crucial aspects, in-
cluding a comprehensive description of the dataset, followed
by an examination of feature extraction techniques, the
process of feature selection, and, finally, the implementation
of machine learning methodologies. To commence, we
provide an in-depth overview of the dataset employed in
our analysis, shedding light on its composition, structure,
and relevant characteristics. This allows us to gain valuable
insights into the underlying data and establish a solid
foundation for subsequent analyses.

Next, we delve into the intricate realm of feature ex-
traction, wherein we extract pertinent attributes and charac-
teristics from the dataset. By employing rigorous evaluation
methodologies, we aim to identify the subset of features that
best contribute to the accurate detection and classification
of Android malware. Finally, armed with a refined set of
features, we proceed to implement state-of-the-art machine
learning techniques. These powerful algorithms, carefully
selected and fine-tuned for our specific task, enable us to
train robust models capable of accurately detecting and clas-
sifying Android malware. Through iterative experimentation
and model refinement, we strive to achieve optimal perfor-
mance and reliability in our malware detection system. By
thoroughly investigating each of these critical components,
we aim to provide a comprehensive understanding of the ex-
perimentation process undertaken in our pursuit of effective
Android malware detection based on permission analysis.

A. Data Set Acquisition
The dataset utilized in this study is the CICAndMal2017

Android malware dataset, which comprises a total of 10,854
applications. Among these, 4,354 applications are classi-
fied as malware, while the remaining 6,500 are benign
applications. The dataset is sourced from diverse origins,
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Figure 1. Malware Families from different Sources used in the
dataset

ensuring its representativeness and inclusivity. The dataset
is organized into four distinct categories, namely Adware,
Ransomware, Scareware, and SMS Malware [16] shown in
the figure 1. Each category encompasses specific types of
Android malware, allowing for a comprehensive analysis of
different malware variants.

To ensure diversity and breadth in the analysis, multi-
ple families of datasets have been considered. From each
category, a selection of 10-15 families has been included in
the study. However, it is noteworthy that only 17 families
have been specifically chosen from the swpeng family,
as demonstrated in the figure 1. This selective approach
enables a focused investigation while still capturing a
representative sample of each category, thereby facilitating
a comprehensive understanding of the Android malware
landscape.

B. Feature Extraction
In this section, we will explore the process of extracting

features from the dataset. As our dataset is quite large,
extracting and selecting the most suitable features from it
poses a significant challenge. To address this, we opted
to install a feature extraction library specifically designed
for the Android platform. The library we utilized is called
Androguard, and it can be easily installed using the pip
command in Python. We organized all the applications into
a single folder and employed a Python script to extract
216 static features from these applications. The algorithm
employed for feature extraction is outlined below algorithm.

The algorithm outlined above provides a comprehensive
insight into the intricate process of feature extraction. Ini-
tially, all the application features are consolidated within

a single folder, and through the utilization of the ‘get()‘
method, these diverse features are diligently accumulated
into a python list. Subsequently, this amalgamation of
features is diligently preserved as a structured CSV file,
ensuring the accessibility and organization of the valuable
data.Once the feature compilation is successfully achieved,
a transformative step ensues, wherein a binary paradigm is
ingeniously applied. This entails the replacement of feature
occurrences with either the binary representation of 1 or 0,
signifying their presence or absence within the applications.

C. Feature Selection
The aim of feature selection techniques in machine

learning is to find the best set of features that allow us
to come up with optimized model. In this section we will
go through different feature selection techniques and their
results and then compare their results to see which one is
giving the best possible results.

1) Feature Selection Using F-Score
F-value feature selection, also known as ANOVA (Anal-

ysis of Variance), is a statistical technique used to assess
the significance of the relationship between a feature and
the target variable in a dataset [34]. It helps identify the
features that are most relevant or influential in predicting the
target variable [35]. Features selected using this algorithm
is shown in figure 1.

To assess the performance of the feature selection al-
gorithms, we created charts comparing the accuracy and
F1 score obtained by each feature selection method.figure
4, figure5 depicts graphs representing the top ten Fea-
tures along with their mean F-Value respectively and thier
powerBi visual figure 6. These charts figure4 provide a
visual comparison of the performance achieved by each
method of feature selection. Method:

θ (w, ε) = 1/2 ∥ω∥2 +
∑n

e=1 ε (1)

subject to: yi(w,xi+b) ≥ 1 − εi, εi ≥ 0

Where i is corresponding to the target variable.The
optimization problem is solved in a dual form.

w(α) =
∑m

i=1 αi − 1/2
∑m

i, j=1 yiy jαiα jxi.x j

subject to: 1) 0≤ αi ≤ C, i = 1...m

2)
∑m

x=i αiyi = 0 (2)

W =
∑

keS V ykak xk (3)

wi = 1/2α7Kα − 1/2α7K(−i)α (4)

The mathematical model of RFE involves iteratively
fitting the estimator E on different feature subsets and
evaluating the importance of each feature. At each iter-
ation, the least important feature is eliminated, and the
process continues until the desired number of features (k)
is reached.RFE is a heuristic algorithm that aims to find
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the subset of features that maximizes the performance of
the chosen estimator. It reduces the dimensionality of the
dataset by eliminating less relevant features and selecting
the most informative ones for the given task Fig below
shows the top ten features selected using RFE and fig shows
the correlational heatmap for the selected features.

D. Feature Selection using Stochastic Neighbor Embedding
(SNE)
SNE (Stochastic Neighbor Embedding) is a dimension-

ality reduction technique used for data visualization. SNE
aims to capture the local relationships between data points
in high-dimensional space and represent them in a lower-
dimensional space while preserving these relationships as
much as possible [36].

SNE starts by constructing a probability distribution
over pairs of high-dimensional data points, where nearby
points have a higher probability of being chosen as neigh-
bors [37]. It then creates a similar probability distribution
in the low-dimensional space. The goal is to minimize the
difference between these two distributions by optimizing the
positions of the low-dimensional points.

The algorithm uses a stochastic approach, where it iter-
atively adjusts the positions of the low-dimensional points
to minimize the divergence between the high-dimensional
and low-dimensional probability distributions. This adjust-
ment process is guided by the perplexity parameter, which
controls the balance between preserving local and global
structure in the visualization [38].

SNE is particularly useful for visualizing complex, high-
dimensional data in two or three dimensions, allowing
analysts to gain insights into the underlying structure of the
data . It has been widely used in various domains, including
natural language processing, bioinformatics, and computer
vision.

Method: C = KL(P∥ Q) =
∑

i
∑

j Pi jlog Pi j

qi j

Where

qi j =
exp(−∥yi−y j∥

2)∑
k,l exp(−∥yk−yl∥

2) (5)

E. Feature Selection Using Principal Component Analysis
(PCA)
Principal Component Analysis (PCA) is a statistical

technique used for dimensionality reduction and data visual-
ization [39]. It aims to identify the most important patterns
or features in a dataset and represent them in a lower-
dimensional space.

The key idea behind PCA is to transform a high-
dimensional dataset into a new coordinate system, where the
new axes, known as principal components, are orthogonal
(uncorrelated) and ranked based on the amount of variance
they explain in the original data. The first principal compo-
nent explains the maximum amount of variance, followed
by the second principal component, and so on [40].

Here are the steps involved in performing PCA:

1. Standardize the data: If the variables in your dataset
are measured on different scales, it is necessary to stan-
dardize them (subtract the mean and divide by the standard
deviation) so that they have comparable units [41].

2. Compute the covariance matrix: Calculate the covari-
ance matrix of the standardized data. The covariance matrix
shows how each variable in the dataset varies with every
other variable.

3. Compute the eigenvectors and eigenvalues: Find the
eigenvectors and eigenvalues of the covariance matrix. The
eigenvectors represent the directions or principal compo-
nents of the data, while the eigenvalues indicate the amount
of variance explained by each principal component [42].

4. Select the principal components: Sort the eigenval-
ues in descending order and choose the top k eigenvec-
tors (principal components) that correspond to the largest
eigenvalues. These principal components capture the most
important information in the data.

5. Project the data: Transform the original data onto
the new coordinate system formed by the selected principal
components. This involves multiplying the standardized
data by the eigenvectors of the chosen principal compo-
nents.

PCA is widely used in various fields, such as data
analysis, machine learning, image processing, and genetics.
It can help in reducing the dimensionality of a dataset,
visualizing high-dimensional data, removing noise, and
identifying important features or patterns [43].

Statistics behind Principal Component Analysis:

While diving deep into the PCA, we should have
knowledge about statistics used in the principal component
analysis, like standard deviation,variance, eigen values and
eigen vectors

Where X is arithmetic mean,n is the number of obser-
vations

V
¯

ariance: Another measure of the spread of data is
variance. It is defined as the mean of deviations of each
term from its arithmetic mean of whole data.

Var(X)=
∑n

i=1((Xi − X
′

)2/(n − 1)) (8)

Here X is the arithmetic mean, X-X’ is the deviation
from the arithmetic mean, and n is the number of observa-
tions. Covariance : Covariance is always measured between
two dimensions, if we have to measure between variables
A, B, C we have to measure between A and B, then B and
C, then C and A. The formula for covariance is very similar
to variance as shown in eq.9.

http:// journals.uob.edu.bh

6

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 195

Figure 2. Top Ten Features Using Recursive Feature Elimination as
Feature Selection Method

Figure 3. Corelational Heatmap for top ten features using Recursive
Feature Elimination

Cov(X,Y)=
∑n

i=1( f rac(Xi − X
′

)(Yi − Y
′

)/(n − 1)) (9)

Here X’ is the arithmetic mean of data Y’ is the arith-
metic mean of data Y.But while dealing with larger space,a
useful way is to find covariance between all variables and
put them in a matrix as shown

M∗N = (ci j), ci j = cov(Dimi,Dim j) (10)

Where C[M*N] is the matrix of M rows and N columns
and Dim[i,j] is the ith and jth dimensions.

Similarly we can frind the Eigen value and Eigen vectors
using eq 11 and 12 which contain the most important
information for feature selection

Au=λu (11)

(A-λI)u = 0 (12)

Where lambda is a scalar called eigen value associated
with eigen vector.

F. Machine Learning
In binary classification machine learning, the perfor-

mance of the model can be assessed using a confusion
matrix, as illustrated in Table 3. This matrix provides valu-
able information by comparing the predicted classification
results with the actual classification results. The confusion
matrix is typically presented in a tabular format with four
cells, as shown below.

1) True Positive (TP): This represents the number of
instances that were correctly predicted as positive, meaning
they were accurately classified as the positive class.

2) False Negative (FN): This refers to the number
of instances that were incorrectly predicted as negative,
meaning they were incorrectly classified as the negative
class instead of being positive.

3) False Positive (FP): This indicates the number of in-
stances that were incorrectly predicted as positive, meaning
they were mistakenly classified as the positive class instead
of being negative.

4) True Negative (TN): This represents the number of
instances that were correctly predicted as negative, meaning
they were accurately classified as the negative class. By
analyzing the values within the confusion matrix, various
evaluation metrics can be derived to assess the model’s
performance. Some commonly used metrics include accu-
racy, precision, recall (sensitivity), specificity (true negative
rate), and F1-score.Here’s a brief explanation of these
evaluation metrics: - Accuracy: This metric provides an
overall measure of the model’s correctness, calculated as
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(T P + T N)/(T P + FN + FP + T N) (13)

- Precision: This metric quantifies the proportion of
correctly predicted positive instances out of all instances
predicted as positive, calculated as

T P/(T P + FP) (14)

- Recall (Sensitivity or True Positive Rate): This metric
measures the proportion of correctly predicted positive
instances out of all actual positive instances, calculated as

T P/(T P + FN) (15)

- Specificity (True Negative Rate): This metric gauges
the proportion of correctly predicted negative instances out
of all actual negative instances, calculated as.

T N/(T N + FP) (16)

- F1-score: This metric is the harmonic mean of pre-
cision and recall, providing a balance between the two
metrics and taking their overall performance into account.
It is calculated as.

2 ∗ (Precision ∗ recall)/(Precision + Recall) (17)

By analyzing the confusion matrix and these evaluation
metrics, we can gain insights into the model’s performance,
identify any issues such as false positives or false negatives,
and make informed decisions for further model improve-
ments or adjustments.

5. Results and Discussions
The classification results of the experiment outlined

in Section 4 are presented in table 1, which summarizes
the accuracy and F1 score of three different methods.
The first method involves classification with F-Score as
feature selection, using the complete feature set. In this case
pipeline method which combines random forest and Knn,
performs best as compared to the individual algorithms.
The second method incorporates feature selection based on
recursive feature elimination (RFE) as shown in table 2,
while the third method utilizes feature selection through a
Principal Component Analysis (PCA) table 4.

Based on the experimental results, the optimal algorithm
for detecting malicious applications varies depending on the
method of feature selection. Specifically, SMO performs
best without feature selection, IBk performs best with
information gain-based feature selection, and Multilayer
Perceptron performs best with feature selection using a
genetic algorithm. In contrast, NaiveBayes’s performance
was consistently the lowest across all three cases.

1) Feature Selection Using Recursive Feature Elimination
Recursive Feature Elimination (RFE) is a feature se-

lection method used to select the most relevant features
from a given dataset. It is based on the idea of recursively
eliminating less important features until the desired number

Figure 4. Top Ten Features in a Data set Using their F-Value

Figure 5. Top Ten Features Using Their Mean F-Value

http:// journals.uob.edu.bh

8

http://journals.uob.edu.bh


Int. J. Com. Dig. Sys. , No. (Mon-20..)) 197

Figure 6. Mean value of Top Ten Features Using Their F-Value

of features is reached [44]. The Recursive Feature Elimi-
nation (RFE) algorithm can be described mathematically as
follows. Let X be the input dataset with n features (X =
[x1, x2, ..., xn]) and y be the corresponding target variable
[45].

Table 1, shows the result of individual algorithms along
with the combination of two algorithms in pipeline Random
forest and knn uisng F-Score feature selction.The results
shows the pipeline method improves the accuracy of the
model.Next feature selection method used is RFE ,which
works better than f-value method table 2.Third ,it is also
being observed that t-SNE is used as dimensionality re-
duction tool ,which also helps in increasing the model
accuracy table 3.After applying PCA ,the results are not
so good,becuase it works better with unsupervised machine
learnig table 5,but works better than all other feature
selection algorithms used in this work.

Based on the experimental results, the optimal algo-
rithm for detecting malicious applications varies depending
on the method of feature selection. Specifically, Random
Forest performs best without feature selection, Decision
tree performs best with recursive feature elimination, and
boost performs best with feature selection using a PCA.
In contrast, Knn’s performance was consistently the lowest
across all three cases.

To assess the performance of the feature selection algo-
rithms, we created charts comparing the accuracy and F1
score obtained by each feature selection method. Figures 7
depict graphs representing the accuracy and F1 score indica-

Figure 7. Performance of all the algorithm without pipeline method

tors, respectively. These charts provide a visual comparison
of the performance achieved by each method of feature
selection.

The results from the analysis indicate that the method
without feature selection (non-selection) generally outper-
formed the methods with feature selection (F-value, RFE,t-
SNE,PCA). However, the non-selection results only showed
small differences of less than 0.04 compared to all machine
learning algorithms figure 7. This observation suggests that
while feature selection techniques may eliminate a signifi-
cant number of features, the degradation in performance is
relatively low, at only 4 percentage points.

Interestingly, the logistic algorithm showed an increase
in accuracy when feature selection was applied. This indi-
cates that the feature selection process was able to identify
relevant features for the logistic algorithm, resulting in
improved performance. Furthermore, the findings in Figure
6 demonstrate that the F1 scores exhibited similar trends
to the accuracy results. The F1 scores of the Gradient
Boost algorithm with feature selection (PCA) were higher
than those of the method without feature selection (non-
selection). This suggests that the feature selection tech-
niques were able to enhance the performance of the Random
Forest algorithm by identifying informative features. These
insights highlight the benefits of feature selection in reduc-
ing the dimensionality of the dataset without significantly
sacrificing performance.
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TABLE I. Estimated accuracy for algorithms based on multiple feature selection algorithms

Algorithm Feature Selection Method Accuracy F1 Score

Random Forest F-Value 0.86 0.85
Decision Tree F-Value 0.95 0.93

Logistic Regression F-Value 0.94 0.93
Gradient Descent F-Value 0.93 0.92

Support Vector Machine F-Value 0.94 0.93
K-Nearest Neighbor F-Value 0.92 0.91
Pipeline(RF,KNN) F-Value 0.94 0.93

Random Forest Principal Component Analysis 0.91 0.90
Decision Tree Principal Component Analysis 0.91 0.90

Logistic Regression Principal Component Analysis 0.90 0.89
Gradient Descent Principal Component Analysis 0.92 0.92

Support Vector Machine Principal Component Analysis 0.90 0.89
K-Nearest Neighbor Principal Component Analysis 0.91 0.90
Pipeline(RF,KNN) Principal Component Analysis 0.93 0.92

Random Forest Recursive Feature Elimination 0.85 0.84
Decision Tree Recursive Feature Elimination 0.86 0.85

Logistic Regression Recursive Feature Elimination 0.82 0.81
Gradient Descent Recursive Feature Elimination 0.83 0.82

Support Vector Machine Recursive Feature Elimination 0.83 0.82
K-Nearest Neighbor Recursive Feature Elimination 0.84 0.82
Pipeline(RF,KNN) Recursive Feature Elimination 0.92 0.91

A. Time Cost for Model Building
The analysis of accuracy and F1 scores indicates that

there is an advantage in not proceeding with feature se-
lection. However, it is important to consider the time
required for model building in the machine learning process.
Building a model with all features can be time-consuming
as it involves learning information from numerous features.
Therefore, it becomes necessary to compare the time cost
associated with model building Table II.

In some cases, using all features may not be beneficial
due to the increased time required. Feature selection tech-
niques can help mitigate this issue by reducing the dimen-
sionality of the dataset, allowing for faster model building.
By eliminating irrelevant or redundant features, the model
can focus on learning from the most informative features,
resulting in reduced training time. Hence, in addition to
accuracy and F1 scores, considering the time cost for model
building is crucial in determining the optimal approach
for the machine learning process. Balancing the trade-off
between feature selection, performance, and training time is
essential to make informed decisions and achieve efficient
and effective machine learning outcomes.

In summary, the results in Table 1 indicate that fea-
ture selection plays a crucial role in reducing the time
required for model learning. Principal Component Analysis,
in particular, demonstrates efficiency in terms of time con-
sumption compared to non-selected data and other feature
selection methods. These insights highlight the importance
of considering both performance metrics and the time cost
associated with feature selection when making decisions in

the machine learning process.

6. Conclusions and FutureWork
Efficient and accurate detection of Android malware is

of utmost importance for users of the Android OS. To
address this challenge, numerous studies have explored the
application of machine learning techniques for malicious
app detection, alongside feature selection methods to ex-
pedite the process. In our study, we conducted experi-
ments focusing on selecting permission and API method
information features, building upon existing research. The
results demonstrate that feature selection using a principle
component algorithm proved to be effective compared to
the commonly applied algorithm.

Despite a minor reduction in feature selection perfor-
mance of less than 3 percentage points (p) on average,
the pca algorithm-based approach still offers significant
advantages over non-selection. By employing the PCA,
the model building time is significantly reduced, making
the entire detection process more efficient. These findings
underscore the importance of feature selection techniques
in optimizing the machine learning-based malware detection
system. The use of PCA not only ensures a quick and accu-
rate identification of Android malware but also contributes
to reducing the computational overhead, enabling a more
streamlined and effective detection mechanism.
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