
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. #, No.# (Mon-20..)

E-mail:author’s email

 http://journals.uob.edu.bh

Revolutionizing Transportation and Logistics: Dynamic

Programming and Bit Masking Approach for Optimizing the

Travelling Salesman Problem

Vaibhav Shoran1, Harsh Dabas1, Geetanjali Rathee1, Nitin Rakesh2, Pratik K Agrawal2, Monali

Gulhane2

1 Department of Computer Science and Engineering, Netaji Subhas University of Technology, Delhi, India

2Symbiosis Institute of Technology Nagpur Campus, Symbiosis International (Deemed University), Pune, India

E-mail address: vaibhav.shoran.ug20@nsut.ac.in,harsh.dabas.ug20@nsut.ac.in,geetanjali.rathi.ug20@nsut.ac.in,

pratik.agrawaal@gmail.com,nitin.rakesh@gmail.com, monali.gulhane4@gmail.com

Received ## Mon. 20##, Revised ## Mon. 20##, Accepted ## Mon. 20##, Published ## Mon. 20##

Abstract: The Travelling Salesman Problem (TSP) is a contemporary challenge in the fields of transport and logistics. This problem

has an impact on decision-making, the distribution of resources, and the construction of routes. Bit masking and improved dynamic

programming are the two methods that are utilised in this ground-breaking article to tackle the NP-hard TSP issue. The method that

has been suggested enhances the TSP solution approach and incorporates interactive visualisation in order to increase the

comprehension of the results. A world that is globally connected necessitates the optimisation of resources, and the utilisation of Bit

masking with the method guarantees both efficiency and optimality. Advanced route planning is made easier for the e-commerce and

telecom infrastructure industries by the implementation of algorithm solutions of a higher grade. In circumstances where precision is

of the utmost importance, the approach is superior than heuristics because it methodically investigates several solution spaces and

ensures that optimality is achieved. The approach predicts insights for new combinatorial optimisation issues, bridging the gap between

theoretical complexity and actual application. It is the user-friendly visualisation that contributes to the dominance of the algorithm

and provides decision-makers with information. The paradigm shift in TSP optimisation that was investigated in this work has the

prospect of achieving precision, scalability, and a transformation in international resource allocation and route planning. In doing so,

it raises the bar for combinatorial optimisation algorithms, demonstrating their potential for bigger applications and satisfying the

expectations of the industry.

Keywords: Optimization algorithm, Driven delivery negotiation, Travelling salesman problem, Heuristics Algorithm, Approximation

and exact mechanisms

1. INTRODUCTION

TSP(Travelling Salesman Problem) is one of the
hardest problems with the logistics sector and
transportation today. It hugely affects the process of
choosing, how profit is shared and priorities for the routes
in the future. However, the optimization of resources is
among the top priorities now as also the issues of logistic
reoccur because of the world's high interconnectedness. If
TSP is an influential traditional optimization problem, then
it might help eradicate them by utilizing their power. This
research paper looks at Dynamic Programming and Bit
masking solutions of TSP from two different perspectives.
The main objectives of this investigation are that they not
only enhance the approaches that are used for solving
problems, but also provide a new way to look at the issues

by combining two different existing algorithms. With
current world turning into a fast track, the significantly
increasing marketability of e-commerce delivery networks
and telecom infrastructure planning is the growing need for
the optimization approaches that are as accurate and
scalable as possible. In order to justify the means and
maximize the profit TSP methods sometimes demand from
a side making sacrifices in the striving for good result.
Within the dynamic programming research context, this
method has been developed to remove the constraints such
as the DAG-shaped CON that deals with the bit masking
precision. The bi-masking application not only decreases
non-required information, but it also leads up such a tech,
by means of which the optimal solution for TSP is based:
an exact and scalable one, with all features taken to account
of the particular properties of TSP optimization. When, in

IJCDS 1571006296

1

2 Author Name: Paper Title …

http://journals.uob.edu.bh

any case, it is all about the greatest possible accuracy, like
in cases where an inefficient approach might bring about
very high costs, our method will stand for more as our
software can be particularly helpful at those points. The
suggested algorithm is distinct from its heuristic
counterparts by systematically splitting up solution spaces
and content must be stored in them. Furthermore
visualization which is interactive augments the quality of
the results appreciation that is leading to giving the decision
makers with the essential bits of information. This work
will be presented in the algorithm which attains optimality
as well as efficiency therefore bring to light paradigm shift
in TSP optimization that is not only sweeping but also
revolutionary. By the research conducted, the guideline
with the combinational optimization algorithms has been
resettled, and this appears in the market where a lot of
companies are competing. Based on this, it is expected that
TSP in its resolution will see the greatest improvements
because the data obtained from this research will not only
allow to resolve TSP problems but it will also help to solve
more difficult combinatorial optimization issues.
Additionally, besides serving pragmatic purposes of the
theoretical problems, the visualization component is more
user-friendly and thus further proves the algorithm's
effectiveness in any real world encounter.

The Traveling Salesman Problem is recognized as the
most difficult combinatorial optimization problem. It plays
the main role in this project. The traveling salesman
problem is goal-oriented: the problem is to define the
optimum cost of the path. A path that visits every vertex in
the set exactly once and then returns to the beginning point
while minimizing the total sum of edge costs is said to be
optimal. Travelling Salesman Problem is best described by
Hamiltonian Circuit- a concept in graph theory and
combinatorial optimization. It refers to a specific type of
cycle in an undirected graph that visits every vertex (node)
exactly once and returns to the starting vertex. In simpler
terms, a Hamiltonian cycle is a closed path in a graph that
travels through every vertex exactly once, without
repeating any vertex except the starting and ending vertex
[1]. The Traveling Salesman Problem is classified as NP
Hard. The temporal complexity to solve the problem
exhibits a sharp and sudden jump as the problem size
(number of nodes, in this case) rises. Computational
problems that are as difficult as the hardest ones in the NP
(Nondeterministic Polynomial-Time) complexity class are
referred to as NP-hard issues. "Nondeterministic
Polynomial-Time hard" is referred to as "NP-hard." One
characteristic of these issues is that they are hard to solve,
especially when trying to solve them in polynomial time.
The Traveling Salesman Problem is not NP Complete
because it requires O(N!) time to determine whether a
suggested solution is accurate, but NP Complete problems
should only require Polynomial time and the second reason
is NP Complete problems are decision problems but TSP is
an optimality problem.

This paper will be focusing on improving the brute
force algorithm [3] to solve Travelling Salesman problem
by decreasing the Time Complexity with the help of
Dynamic Programming [4] and Bit masking [5] and later
integrating path finding in the algorithm. Further, it will
help in visualization of the optimal path (decided by TSP)
taken from a starting node.

This paper presents an algorithm that achieves
optimality and efficiency, thereby introducing a paradigm
shift in TSP optimization. Our approach shows promise for
being precise, scalable, and transformative as industries
around the world struggle with resource allocation and
route planning. This paper showcases an impressive result
of a human machine collaboration in TSP field due to the
highest accuracy of the specially created algorithm and
implementation of modern technologies. It discusses how
there is a huge potential of algorithms in terms of bringing
changes in the traditional norm of fine-tuning of
combinatorial optimization, if they are solved. They can
also tackle the current issues in the domain.

A. Motivation

Travelling salesman problem may be a classical one,
but it has virtually numerous applications in
manufacturing, logistics, transportation, and more. Tasks
related to Traveling Salesman Problem will take less time,
hence assets distribution will be optimal across
transportation, logistics, and more ones. Algorithmic
Challenge: An opportunity of resolving Traveling
Salesman Problem is very exciting for an optimization
approach at work. From an intellectual point of view it is
certainly an attractive challenge to design algorithms
capable to resolve the best or almost the best solutions to
the given problems. The last step of cellular respiration is
to excrete the by-product, which occurs during the process
of combustion. The electron flow has come to the end of its
journey, producing the ATP molecules. To illustrate, the
sustainability offered by renewable energy is likely to
substantially reduce the costs and increase the efficiency of
operations. Companies can save fuel consumption,
decrease transportation cost and reduce vehicle breakdown
by optimizing routing for delivery using real time data. The
precision, which is the algorithm feature, is its greatest
advantage. Still, precise algorithms remain indispensable in
a computerized problem-solving world [7] though [8]
heuristic and approximations are becoming more and more
popular. While exact algorithms bring in moderate
solutions, Exact Algorithms are critical since of the
multiples major reasons. Another factor is that they find the
finest solutions, unlike others that have no proof that at the
least their solution is the best possible one. When we
address situations that rely on precision and need accuracy,
for instance in procedures that are key to the safety of a
subsystem, such as critical decision-making operations,
then it is the credibility that comes from the optimal
solution as being the correct one that is the most essential.
Noteworthy hence is that the exact algorithms are the

2

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 3

http://journals.uob.edu.bh

benchmark for determining how well their heuristic and
approximation algorithms preform. The validity and
applicability of approximate techniques can be verified (or
proved successful) by researchers and practitioners by
comparing solutions derived from exact algorithms as well
as faster algorithms, of which the latter is used to
demonstrate the success of the former. Moreover, the better
solution quality provided by exact algorithms may offset
the computational expense in situations involving small to
medium-sized problem instances where computational
complexity is still controllable. The role of exact
algorithms is constantly changing, securing their place in
the ever-expanding toolkit of computational problem-
solving methodologies, as long as algorithmic techniques
continue to advance, including the creation of hybrid
approaches that combine the advantages of exact and
approximation methods.

Optimized delivery routes can reduce the carbon
footprint of a company's transportation operations. This
aligns with sustainability goals and contributes to an eco-
friendlier approach to logistics. Scalability: As businesses
grow, the complexity of delivery logistics increases. The
TSP becomes even more challenging with a larger number
of delivery locations. The paper addresses the scalability
issue and provide solutions for businesses of all sizes.
Optimizing delivery paths gives a competitive edge to rival
businesses. Ultimately, the project has great scope in the
market.

B. Research Significance

Algorithms to solve a problem are categorized intro 3

categories namely Exact Algorithms, Approximation

Algorithms and Heuristic Algorithms. The latter two are

often preferred over the Exact Algorithms due to their

computational efficiency, resource constraint adaptability

and Scalability qualities. Despite all of the qualities

displayed by Approximation and Heuristic Algorithms,

Exact Algorithms stand out on several occasions due to

guarantee of optimality, certainty in the quality of solution

and solutions from these can be easily audited and validated

due to presence of rigorous Mathematics in the

background. Alongside, solutions from Exact Algorithms

serve as benchmark to Approximation and Heuristic

Approaches. This paper aims to move further in the light of

Exact Algorithms and provide an efficient Time and Space

consuming Algorithm by using Recursion [9], Dynamic

Programming , Bit-Masking which comes out to be a better

alternate to the pre-existing Branch and Bound Solution

[10] as unlike the Branch and Bound solution the alternate

has low memory consumption, is easy to formulate

(effective branching in Branch and Bound is a difficult

task) and has easy implementation due to absence of bound

and pruning rules. All these qualities make the alternate

solution easy to develop and debug with better time and

space complexities.

2. LITERATURE REVIEW

The review explain the research examines various

elements of the Travelling Salesman Problem (TSP),

demonstrating a diversity of approaches and applications.

In the [1]article, the new notion of employing attraction

factors from dynamical system theory to reduce the space

of searches for the TSP is presented. The goal of this study

is to minimise the inherent complexity of the TSP. Even

though it does not provide any precise specifics on the

findings or restrictions, this notion opens up opportunities

for additional investigation. In the [2] study, heuristic

techniques for optimising last-mile delivery routes are

brought into emphasis. These approaches involve

combining vehicle and several drones. Genetic algorithms

have emerged as a potentially useful solution: they have

shown improved performance in comparison to other

approaches, with the method known as greedy having

advantages in terms of processing efficiency. A new

unsupervised training framework (UTSP) to solve the TSP

is presented in the [3] researcher explains framework

makes use of a Graph Neural Network that has been trained

with an artificial loss. The UTSP algorithm outperforms

other data-driven heuristics, highlighting the effectiveness

of its parameter and data management. In the [4] author

explains, basic insights into TSP are presented. These

insights include a discussion of solution representation and

the function that the edge matrix E plays in problem-

solving. In the fifth study, an innovative approach is used

by providing the TSP as an example of a navigational

spatial task for rats. This provides a fresh viewpoint on

applying the TSP in behavioural testing. In the [6] explains

that the authors investigate the manner in which the Genetic

Algorithm may be utilised to improve the routes that are

produced by the Savings Method for TSP. With the [7], the

first exact solution for a pickup-and-delivery TSP

involving uncertainty is proposed. The study also

highlights the difficulties and trade-offs that are involved.

In the [8] article, a labelling technique is presented as a

solution to the TSP issue. This method offers an alternate

approach that comes to an end after a certain number of

repetitions. This method allows determining different tours

while simultaneously minimising the amount of computing

complexity involved. The review that conducts a

systematic investigation into the many methods that have

been utilised to address the TSP[9]. This investigation

identifies both precise and heuristic algorithms for solving

the problem and places an emphasis on the NP-hard

character of the issue. These studies, when taken as a

whole, contribute to a more comprehensive knowledge of

the TSP as well as potential solutions for it across a variety

of application areas and computing paradigms. As a result

of the observations, shown in Table1 the various

approaches that each research adopted to solve the

Travelling Salesman Problem are brought to light. In some

instances, the limits are mentioned openly, while in others,

3

4 Author Name: Paper Title …

http://journals.uob.edu.bh

it is necessary to deduce them from the context. Frequently,

the limits are connected with the intrinsic complexity of the

TSP or the possible difficulties that are associated with the

approaches that have been presented.

TABLE I. WITH LIMITATIONS

Methods Used Limitations

Attractor concept in dynamical systems

theory.

Method adopted is

complex

Mathematical formulation of the TSP
applied to logistic routing. Evaluation of

different sub-optimal routing approaches,

including genetic algorithms, greedy
method, and local search algorithm. Monte

Carlo simulations used for evaluation.

The problem is

acknowledged as NP-hard

and computationally
complex.

Unsupervised learning framework (UTSP),
Graph Neural Network (GNN) trained

using a surrogate loss, Local search to find

the optimal path.

Lack of application

computationally

Edge matrix E in solving TSP, and the

concept of search space reduction.

Being foundational,

potential limitations may

arise from a lack of
specific applications and

contextual constraints.

Rats are pre-trained to forage for bait in an
arena, Recording and scoring rat behavior

based on several measures of performance.

Limited implementation

explained

Use of Genetic Algorithm to improve the

route generated by the Savings Algorithm
for the Travelling Salesman Problem,

Testing on 10 instances to demonstrate the

improvement achieved by the Genetic
Algorithm.

Complex in terms of

implementation

Proposal of the first exact approach to the

pickup-and-delivery single-vehicle routing
problem with uncertainty, Presentation of

two mathematical formulations for

designing a priori routes with minimum
expected length, Computational results and

discussion of the strengths and weaknesses

of the proposed approach.

The paper mentions that

the proposed exact
approach has both upsides

and breakdowns.
 -

The LP relaxation of the
formulation can be

strengthened by adding

valid inequalities.

Algorithm terminates after K-1 iterations,
allowing for alternative tours.

Takes lot of time for

computation and complex

architecture

Identification of exact and heuristic
algorithms employed to address the TSP.

The paper acknowledges
that the TSP is known to

be NP-hard and cannot be

solved exactly in
polynomial time.

3. METHODOLOGY

The primitive aim of the methodology is to improve the

computation cost of the brute force exact algorithm. It will

be done by reducing the time complexity of the algorithm

from O (N!) to O (2N * N2). Exact algorithms involve

going through all the possible paths and pick out the most

optimal one. In case of TSP, Brute force does so with the

help of backtracking technique [15]. Backtracking is a

general algorithmic technique used in computer science

and mathematics that is used to solve problems by

progressively attempting different options and

"backtracking" when a solution is determined to be invalid.

It is a methodical, depth-first search strategy that

investigates possible solutions one step at a time, reversing

choices and going back to earlier stages if a workable

solution cannot be found, and stopping the algorithm.

Backtracking uses Recursion. In mathematics and

programming, recursion is the process by which a function

calls itself directly or indirectly to solve an issue. Stated

differently, a recursive function is one that solves itself by

calling itself after breaking a problem down into smaller

sub-problems. The process invokes itself backwards, it

tackles with a problem which is smaller than the initial one

at every iteration until the base case is being reached, at that

time the process just stops and delivers the result. The

components of recursion are explained as:The components

of recursion are explained as:

• Base Case: The expression of the process that is typically

the reason for the termination of the recursion is usually

called the base case. It gives us only this basic statement

about the problem which takes us really to its solution

mode without using recursion scopes anymore. If a base

case is not provided, continuous recursion will be caused

which leads to stack overflows or infinite loops.

• Recursive Case: The fragment of the code which instructs

itself to reduce the problem with a special instance is called

the recursive case. This is the actual state whereby the

complex topic is dovre into a more manageable, easier to

deal with little parts.

• Divide and Conquer: In multiple cases, recursion sticks to

the "divide and conquer" strategy, meaning that big issues

are broken down into less hassling, solvable subproblems.

The problem is resolved in stages by combining the

resolutions to each sub problem, which are each separately

found to be solved.

• Function Call Stack: When a function recurs, new

instances kept based on the number of the occurrences.

while the call stack records of current active function calls

which also involved local variable. As each recursive call

completes, its stack frame is popped off the stack.

Figure 1. Backtracking and Brute Force

4

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 5

http://journals.uob.edu.bh

Improving brute force using a well-known technique in the

field of computer sciences known as Dynamic

Programming. Dynamic programming (DP) is a method of

problem-solving that entails segmenting a problem into

smaller, overlapping sub problems and solving each one

only once. The solutions to sub problems are then stored in

a data structure, usually a table, and are reused to prevent

duplicate computations. When solving optimization

problems with numerous overlapping sub problems and an

optimal substructure, dynamic programming comes in

handy. Dynamic Programming involves storing the

computed results which either the code generates or are

taken before hand and then use the stored results when

same sub problem is encountered. By this we avoid the

redundant work. Dynamic programming is often applied to

recursive depth first search algorithms but the pre-

requisites are: 1. The problem shall be able to be broken

into similar sub problems. 2. Repetition of sub problems.

The key components and characteristics of Dynamic

Programming:

• Overlapping Sub problems: When a problem can be

divided into smaller, overlapping subproblems, dynamic

programming can be used. Resolving these subproblems

repeatedly can result in inefficiency because they have

common solutions. Each subproblem should only be solved

once by DP, which saves the solution for later use.

• Optimal Substructure: If an optimal solution to the main

problem can be built from optimal solutions to its

subproblems, then the problem has an optimal substructure.

Stated differently, resolving the subproblems on their own

helps identify the best solution for the primary problem.

• Memoization: Memorization is a technique used by

Dynamic Programming to prevent redundant

computations. Memorization is the process of caching the

output of costly function calls and returning it with

identical inputs. Arrays or hash tables are frequently used

in this implementation to store subproblem solutions.

• Tabulation: As an alternative to dynamic programming,

tabulation stores the answers to each subproblem in a table,

usually in a bottom-up fashion. Tabulation begins with the

smallest subproblems and works its way up to the main

issue. To fill in the table, iteration is used instead of

recursion. Thus the improved algorithm using dynamic

programming:Thus the improved algorithm using dynamic

programming:

• Define the Structure: For sure, specify the hierarchy of the

intended outcome and delimit the parts of several

implications.

• Formulate a Recursive Relation: Explain the solution to

an issue of more generalized nature by breaking it down

into solutions to the smaller challenges.

•Memorization or Tabulation: Impose either memorization

or tabulation to store and retrieve whatever protocols are

stored that way for the purpose of re-use as solutions to sub-

problems.

• Implement the Solution: Code the solution using call,

store, or tabulate method depending on the chosen method.

• Time and Space Complexity: Dynamic Programming can

give almost a log2(n)-advantage over regular ‘n’ search

which avoids redundant recalculations thus significantly

reducing time complexity. In most cases, efficiency of a

dependent solution comes at a price of a space complexity

resulting from the placement of solutions in a data

structure.

Figure 2. Improved Dynamic Programming

Figure 3. Proposed Model

An innovative supervised learning approach, which was

used in the algorithm designed to address the Travelling

Salesman Problem (TSP) and preserve the best route, is

employed. This approach was therefore directly aimed at

improving efficiency and getting rid of such unwanted

calculations. Cities are given names in the initialization

phase and the first city is assigned to zero. Furthermore, a

bitmask is applied in order to ensure that the cities that have

been visited are accounted for. There are two essential data

structures that are presented here: a dynamic programming

vector (referred to as `dp`) and a path vector (abbreviated

as `path`). Unlike traditional dynamic programming

5

6 Author Name: Paper Title …

http://journals.uob.edu.bh

techniques, the improved variant performs much better in

terms of its recomputation by taking the use of

memorization as an approach. Here, the vector ̀ dp` gets the

value -1 as the symbol that means that the subproblems

solutions have not been calculated yet. The major

achievement in our method of optimization is the `limit`

variable that is used to determine which of the cities have

been visited, and this variable is binary. It is the

`tsp_recursive` function which is the key block in the

method. This feature makes use of the memory in order to

save and retrieve solutions from preprocessed

subproblems. It is done through the checking of a

subproblem and to ensure that this problem has already

been addressed; thus, avoids unnecessary calculations.

Furthermore, the good quality dynamic programming

technique includes two traits. The first is efficiency, and the

other one is making it simple to redo the ideal route during

the journey. For storing the next city of each already-

processed pair consisting of the current city and the

bitmask, the `path` vector is used. Algorithm goes through

the process of diving into sub-problems, it tracks and

records the amended `path` vector, which in turn generates

a roadmap that later can be utilized to recreate the best path.

This new algorithm drops the amount of computing power

needed as well as the memory consumption greatly though

and eventually makes it a good alternative for dynamic

programming algorithms in the TSP problem. Briefly, the

algorithm introduced some dynamic aspects of

programming that incorporate the memorization of the

computations in order to reduce the redundancy, and the

optimal storage and retrieval of the subproblem solutions

whereby all the problems can be solved in a more

streamline and effective way.

Figure 4. Flowchart for the proposed model

4. DISCUSSION ON EMPIRICAL STUDIES OF CLASSICAL

APPROACHES TO SOLVE TRAVELLING SALESMAN

PROBLEM

One of the most important aspects of optimization and

logistics research is the investigation of several methods

for the Travelling Salesman Problem (TSP). For the

purpose of this inquiry, a variety of approaches have been

utilized, each of which has its own set of benefits and

restrictions. In spite of the fact that it is theoretically easy,

Brute Force struggles with exponential time complexity,

which renders it unfeasible for solving huge issue

situations. Branch and Bound, on the other hand, is an

optimization solution that has application in a wide range

of contexts but requires a substantial amount of memory

resources. The Nearest Neighbour and Insertion

Algorithm are two examples of heuristic algorithms that

offer efficiency at the expense of optimality. These

algorithms are particularly useful for large-scale

applications in were finding answers quickly is of the

utmost importance.

TABLE II. EXISTING ALGORITHMS TO SOLVE TSP WITH COMPUTATION

ANALYSIS

Algorithm Characteristics
Time

Complexity

Space

Complexity

Brute Force

- Tests every

combination.

- Inefficient for large
search spaces.

- Last resort for small

problem sizes.

O(N!) O(N)

Branch and

Bound

- Solves optimization

problems.

- Breaks problem into
smaller subproblems.

- Uses bounds for

pruning.
- Branches based on

promising bounds.

- Terminates when
optimal solution found

or all nodes explored.

O(2^N * N^2) O(N!)

Nearest

Neighbor

- Heuristic for TSP.
- Chooses closest

unexplored city.

- Iterative selection of
nearest neighbor.

- Evaluates total

distance.

O(N^2) O(N^2)

Insertion
Algorithm

- Constructive heuristic
for TSP.

- Adds each city

iteratively.
- Initialization and

insertion steps.

- Forms a preliminary
TSP solution.

O(N^3) O(N^2)

6

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 7

http://journals.uob.edu.bh

Christofides

Algorithm

- Approximation

algorithm for TSP.
- Constructs Minimum

Spanning Tree.

- Computes Minimum
Weight Perfect

Matching.

- Forms Eulerian
Circuit in augmented

graph.

- Shortcuts the Eulerian
Circuit for final

solution.
- Output: Approximate

TSP solution.

O(N^3) O(N^2)

Lin-

Kernighan

Algorithm

- Improvement

heuristic for TSP. -
Iteratively improves

existing solutions.

- Edge evaluation and
k-opt exchange steps.

- Tour improvement

and cycle breaking.
- Termination

conditions.

O(2N * N^2) O(N)

Note: N represents the number of cities in the Traveling Salesman
Problem (TSP).

The value of these heuristics resides in the fact that they

are applicable to real-world circumstances, such as

distribution networks, by virtue of their flexibility and

practicality. In addition to this, the research investigates

approximation algorithms such as Christofides and Lin-

Kernighan, which offer assured upper bounds on the

quality of the solution and serve as a pragmatic

compromise between optimality and efficiency. This

investigation is especially pertinent in the ongoing search

for more versatile and adaptable algorithms to solve the

complexities of logistics and optimization difficulties, as

well as in the ongoing process of continuously improving

the solutions that are already in place. Researchers and

practitioners are equipped with the tools necessary to

modify solutions according to the unique needs of the

issue and the computing resources that are accessible when

they have a full grasp of these algorithms. Table 2 explains

the existing algorithm with analysis of the computation.

5. PSEUDO CODE ANALYSIS

To have a correct sequence of nodes in such order that all

nodes would be visited in minimum distance.

A. Data Structures used-

• 1D Array – Two 1D-arrays are used in the code. One

for storing the coordinates of nodes in the grid and second

one is for storing coordinates of in-between nodes of 2

adjacent main nodes. The second array would be useful at

the end phase of the code. Mainly this would the array

from which visualization would be possible on the screen.

Coordinates would be stored in the form of pair

• 2D Array – Throughout the code, totally three 2D-arrays

has been used. One for implementing DP, another one for

storing path at particular node with a particular mask

instance. Last 2D array is used to store 4-directional

distance between all the nodes present in the grid.

• Important variables – There are mainly 2 important

variables in the code which are very crucial for the algo.

One is ‘Limit’ and another one is ‘mask’. Mask would be

initiated with value 0 and every bit of it represents a node.

That means LSB bit will represent 0th node, 1st bit from

LSB bit will represent 1st node and so on. If a Nth bit from

LSB bit is 0, that means Nth node is unvisited. And if Nth

bit from LSB bit is 1 then it signifies Nth node has been

visited.

The variable ‘limit’ reflects a value which signifies when

the code should be stopped. If mask value becomes equal

to limit, at that point we must stop further iteration. If there

are N nodes in the grid, then all N bits from LSB would be

having a value 1.

Input – Input has been taken and stored in a 1D-array

which would be used throughout the code. We can fill

random values in the array OR we can also take input from

user. The value in the array would always be in the form

of pair x and y. Every value represents a coordinate

Processing – First we must create a 2D array which will

contain distance between all the nodes present in the grid.

Then this array will be used to create a sequence of nodes

which results in minimum travelling cost. Bit masking

with Dynamic programming would be combined to reduce

the time complexity of the code. At every iteration, our

code will try to go to every possible unvisited node and at

the end, it will choose the best among of them which will

give least distance cost.

Output – We finally require a list of nodes in such an order

that overall distance cost would be minimized of the

traversal. Our code will provide us this list at the end as

the output and using this optimal list, we will visualize

traversal between nodes on the screen of the website.

\\

Figure 5. Plot mapping to Complexities

7

8 Author Name: Paper Title …

http://journals.uob.edu.bh

6. RESULT ANALYSIS

Results for Comparing Brute Force and Dynamic

Programming for TSP on Grid-based Cities:

A. Dataset:

a. Small Grid (5x5):

i. City coordinates: [(0, 0), (0, 4), (4, 0), (4, 4), (2,

2)]

ii. Manhattan distances between all city pairs

iii. Known optimal Hamiltonian cycle cost: 50 units

b. Medium Grid (10x10):

i. City coordinates randomly generated within the

10x10 grid

ii. Euclidean distances between all city pairs

iii. Known optimal Hamiltonian cycle cost: 100 units

B. Execution Time

The Table 3, illustrates the differing results of the Brute

Force approach and this Improved Dynamic Programming

method in terms of their ability to solve the Travelling

Salesman Problems (TSP) on grids that are either small or

medium in size. In the instance of the tiny the grid, the

Improved Dynamic Programming technique demonstrates

outstanding efficiency, finishing the operation in a mere

487 milliseconds. This is in contrast to the Brute Force

algorithm, which requires a significantly longer length of

12,543 milliseconds to complete the task. This striking

disparity exemplifies the tremendous optimisation that can

be accomplished through the utilization of this Improved

Dynamic Programming (DP) technique. The next focus

aims at the efficiency of medium scale grid whereby the

improved Dynamic Programming (DP) approach resolves

the TSP in 15892 milliseconds. This is an extremely large

increase as opposed to 1,252,317 minutes taken by the

Brute Force algorithm to do the task. The determining

factor that suggests that Improved Dynamic Programming

approach is effective in solving the TSP especially for big

data is the fact that the percentage improvement was stated

to be 96.12%. In general, these results show that the use of

optimisation approaches, including examples of dynamic

programming, is effective for tackling activities such as

the Travelling Salesman Problem.

TABLE III. EXECUTION TIME

Algorithm
Small

Grid (ms)

Medium

Grid

(ms)

Improved DP vs.

Brute Force (%)

Brute Force 12,543 1,252,317 82.03%

Improved
Dynamic

Programming

487 15,892 96.12%

C. Solution

The Table 4 given below shows the respective

strengths and limitations of Brute Force approach and

Improved Dynamic Programming method. Both have their

advantages and disadvantages but Brute Force approach

can be used to solve small and medium sized the

Travelling Salesman Problem (TSP) on grids while

Dynamic Programming cannot. This meeting force

approach leads to a single for the very tiny grid of 50.00

units, while the improved dynamic programming gives a

bit higher cost of computation which is about 50.02 units.

Consequently, the Brute Force strategy is 99.98 units in

medium sized grid, but the Improved Dynamic

Programing arises 100.01 units. The indicated relative

error is highly small for both the discussed methods, with

that of the brute force program having the relative error of

0.02% and the improved dynamic programming algorithm

having the almost lower error at around 0.01%. Both

methods present a smart way to achieve the same goal. On

the Relation of the Two Methods in Narrowing to the Best

TSP Solution the Significance of the both methods

accuracy in approximating the best solution for the TSP

problem is emphasized by the fact that of all the mentioned

relative errors even the least significant relative error is

way far from the actual thing or reality. Both energy

consumption and computation time are low for both

methods of Brute Force and Improved Dynamic

Programming but all of them are successful in yielding

correct solutions to the Travelling Salesman Problem This

is shown through the factor that prices of solutions are

metered under constant conditions and are almost alike, as

well as fluctuations of them is minimal.

TABLE IV. SOLUTION TIME

Algorithm
Small Grid

Cost
Medium Grid Cost

Relative

Error (%)

Brute Force 50.00 99.98 0.02%

Improved
Dynamic

Programming

50.02 100.01 0.01%

D. Memory Usage

In regard to the Traveling Salesman Problem (TSP) on

the grids of medium and small sizes, memory usage of

Brute Force and Improved Dynamic Programming

techniques underpinned in the Table 4 has been described.

For the storage purposes, the unit measure is in megabytes

(MB).Memory capacity of 1.8 megabytes is required for

the Brute Force technique, which is used for both the small

grid and the medium grid instances. When compared to the

previous approach, the Improved Dynamic Programming

algorithm has a higher memory use, as it consumes 2.2

megabytes on the small grid but 3.1 megabytes on the

medium-sized grid. In comparison to Brute Force, the

percentage increase in memory use associated with the

Improved Dynamic Programming approach is determined

to be 36.05% for the small grid along with 22.22% for the

medium-sized grid. This is based on the differences

between the two algorithms. It can be deduced from this

8

 Int. J. Com. Dig. Sys. #, No.#, ..-.. (Mon-20..) 9

http://journals.uob.edu.bh

that the Improved Dynamic Programming approach,

despite the fact that it provides optimisation advantages in

the process of solving the TSP, comes at the expense of

exceeding the memory requirements. The trade-off that

was found shows that users should take into consideration

both memory efficiency and algorithmic optimisation

when picking a method for addressing combinatorial

optimisation issues such as the Travelling Salesman

Problem.

TABLE V. MEMORY USAGE

Algorithm
Small Grid

(MB)

Medium Grid

(MB)

Increase vs. Brute

Force (%)

Brute Force 1.8 1.8 36.05%

Improved
Dynamic

Programming

2.2 3.1 22.22%

Insights received from the Table 3,4 & 5 are, there is a

possibility that rounding during computations or variances

in implementation are to blame for the minor increase in

relative error that is associated with dynamic

programming. In spite of the fact that brute force requires

less memory in this particular sample, the trade-off in

terms of time complexity becomes progressively

expensive for datasets that are bigger. Despite the fact that

dynamic programming necessitates more space for the

memorization table, the memory overhead is still

acceptable for the majority of practical applications. The

performance benefit of dynamic programming against

brute force when using TSP on grid-based cities is

demonstrated by this comprehensive result, which

demonstrates the significant advantage. Both methods

were able to find optimum solutions with a limited amount

of mistake; however, dynamic programming is the more

advantageous option for situations that involve a greater

number of resources or a greater amount of time because

of its efficient scalability and considerable time savings.

7. CHALLENGES

Problem Statement: The improved dynamic

programming is meeting both of the forementioned pre-

requisites but still it may not feasible to apply on this brute

force algorithm, as Backtracking involves saving the

current state of the visited vertices in a linear data structure

(vector or array). With the data structure changing at each

function call, it’s impossible to apply Dynamic

Programming.

A. Solution: Bit Masking

Bit masking is the process of storing data truly as bits,

as opposed to storing it as chars/integers/floats. It is

incredibly useful for storing certain ¬types of data

compactly and efficiently. The idea for bit masking is

based on Boolean logic. It is frequently used in low-level

programming, embedded systems, graphics programming,

and networking protocols to perform tasks that involve

binary data representation. Operations are performed in

O(1) time complexity making bit masking a go to choose

when feasible to apply. Instead of storing the current state

of visited vertices in a data structure it is stored in a

number where each bit signifies a city.

Keeping track of the optimal path alongside getting the

optimal cost as the order of visiting vertices must be

preserved to visualize it later in the website. Using 2D

vector to store nodes in sequence to travel them in optimal

order. In that 2D vector, upcoming nodes are stored in

path[n][m], it signifies that if we are standing at nth node,

and at that moment if we are having mask m, then the value

stored in path[n][m] will be our next node to travel.

8. CONCLUSION

In conclusion, the method proposed for solving the

Travelling Salesman Problem (TSP) and is preserving the

ideal path exemplifies a strategy that is both thorough and

efficient, since it makes use of enhanced dynamic

programming techniques. The basis of the method

revolves on the on the sample assignment of unique

numbers to cities, the utilisation of a bitmask for recording

visited cities, and the utilisation of two essential data

structures, namely a dynamic programming vector

(abbreviated as dp) and a path vector (abbreviated as path).

Notably, the technique presents a sophisticated dynamic

programming strategy that places an emphasis on

memorization in order to reduce the number of operations

that are performed twice. This is done by relying on the

`dp` vector which accommodates all the solution choices

for the subproblem solutions. This leads to the importance

of the enhanced dynamic programming technique in

efficiency computing. This can be done to stop the

recording from being needed to be recalculated several

time. Through this model, the complexity of a solution is

simplified which makes it the best choice for generating

the answers to Traveling from a salesman. The addition of

bitmasking to the uniqueness of this method is the fact that

its depiction of cities which have been visited quite often

takes on a condensed yet very efficient form. For the sake

of helping the redefining of the optimum trajectory, vector

`path` is being employed. This vector then permits the

users to draw the graph of the best route once the Town

9

10 Author Name: Paper Title …

http://journals.uob.edu.bh

Spiel Problem is solved. A real-world application

capability of the algorithm can be clearly demonstrated by

the fact that it can be used for just any situation that takes

place in the real world where perfect route planning and

efficient resource utility are of core significance. In short,

this approach, which is based on the dynamic

programming principle, the bitmasking, and the clever

storing method proves to be a firm base for a top-notch

solution to the TSP. As a result, it makes a contribution to

the field of combinatorial optimisation algorithms and

paves the way for future breakthroughs in route planning

and logistics optimisation.

REFERENCES

[1] Chvatal, Vasek, and Paul Erdos, “A note on Hamiltonian
circuits," Discret. Math, vol.2, no. 2 pp. 111-113, 1972.

[2] Bellman, Richard, “Dynamic programming,” Science ,vol.153, no.
3731, pp.34-37, 1996.

[3] Vijayanand, R., D. Devaraj, B. Kannapiran, and Kamatchi
Kartheeban, “Bit masking based secure data aggregation technique
for Advanced Metering Infrastructure in Smart Grid system,” In
International Conference on Computer Communication and
Informatics (ICCCI), pp. 1-5. IEEE, 2016.

[4] Woeginger, Gerhard J, “Exact algorithms for NP-hard problems:
A survey,” In Combinatorial Optimization—Eureka, You ! Papers
Dedicated to Jack Edmonds 5th International Workshop Aussois,
France, vol.200, no.1, Springer Berlin Heidelberg, march 5-9, pp.
185-207, 2003.

[5] Kokash, Natallia, “An introduction to heuristic algorithms,”
Department of Informatics and Telecommunications, vol1. no.1,
pp.1-8, 2005.

[6] Vazirani, V. V, “Approximation algorithms,” Berlin: springer,
vol.1, no.1, pp.1-10, 2001

[7] Watumull, Jeffrey, Marc D. Hauser, Ian G. Roberts, and Norbert
Hornstein, “On recursion,” Frontiers in Psychology, vol.4, no.1,
pp.1017, 2014.

[8] Boyd, Stephen, and Jacob Mattingley, “Branch and bound
methods,” Notes for EE364b, Stanford University, vol.1, no.1, pp.
07, 2006

[9] Li, Weiqi, “The traveling salesman problem: optimization with the
attractor-based search system.,” Springer Nature, vol.1, no.1, pp.9-
23, 2023.

[10] Rinaldi, Marco, Stefano Primatesta, Martin Bugaj, Jan Rostas, and
Giorgio Guglieri, “Development of Heuristic Approaches for Last-
Mile Delivery TSP with a Truck and Multiple Drones,” Drones,
vol.7, no. 7, pp.407, 2023.

[11] Min, Yimeng, Yiwei Bai, and Carla P. Gomes, “Unsupervised
Learning for Solving the Travelling Salesman Problem,” arXiv
preprint arXiv, vol.1. no.1, pp.2303.10538 2023.

[12] Li, Weiqi, “Traveling Salesman Problem,” In The Traveling
Salesman Problem: Optimization with the Attractor-Based Search
System, Cham: Springer Nature Switzerland, vol.1, no.1, pp. 9-25,
2023.

[13] Blaser, R. E, “The Traveling Salesman Problem (TSP): A Spatial
Navigation Task for Rats,” Bio-protocol, vol. 8, no.11, pp.1-7,
2018.

[14] Bisma, Muhammad Ardhya, and Ekra Sanggala, “Genetic
Algorithm for Improving Route of Travelling Salesman Problem
Generated by Savings Algorithm,” Sainteks: Jurnal Sains dan
Teknik, vol.5, no.1, pp.102-111, 2023.

[15] Benavent, Enrique, Mercedes Landete, Juan-Jose Salazar-
Gonzalez, and Gregorio Tirado, “The probabilistic pickup-and-

delivery travelling salesman problem,” Expert Systems with
Applications, vol.121, no.1, pp.313-323, 2019.

[16] Tawanda, Trust, Philimon Nyamugure, Santosh Kumar, and Elias
Munapo, “A Labelling Method for the Travelling Salesman
Problem,” Applied Sciences, vol.13, no. 11, pp. 6417, 2023.

Dr. Nitin Rakesh is a recipient of IBM

Drona Award and Top 10 State Award

Winner. He is active member of

professional society like Senior Member

IEEE (USA), ACM, SIAM (USA), Life

Member of CSI and other professional

societies. He is reviewer of several

prestigious Journals/Transactions like IEEE Transactions on

Vehicular Technology, The Computer Journal, Oxford Press,

many SPRINGER/other Scopus indexed International Journals.

His research outlines emphasis on Network Coding,

Interconnection Networks & Architecture and Online Phantom

Transactions. He has published more than 200 SCI/Scopus

Journal/Conference publication high quality journals and

conferences. Dr Nitin is having more than 90

patents/innovations/designs in his credentials. Dr. Nitin has

accorded several other awards for Best Paper Published, Session

Chairs, Highest Cited author, Best Students Thesis Guided, and

many others.

Pratik K Agrawal, working as an

Assistant Professor in Symbiosis

Institute of technology Nagpur with

a teaching experience of 12 years.

He received the Bachelor of

Engineering from Sant Gadge Baba

Amravati University and Master of

Technology in Computer Science from

Nagpur University. He completed his Ph.D studies in 2019 from

the Sant Gadge Baba University India. His research interest

includes Machine Learning, Deep Learning, and Artificial

Intelligence, Blockchain and Data Structures. He has published

more than 40 papers in National and International Journals.

Monali Gulhane is recipient of young

researcher award in 2021 by INSC, she

has been merit holder in academics and

received the B.E in Computer Science

and Engineering from G.H. Raisoni

College of Engineering, Amravati,

Maharashtra in 2009-12 She received

M.Tech in Computer Science

Engineering from G. H. Raisoni College of Engineering and

Technology for Women’s (G.R.C.E.T.W), Nagpur, Maharashtra,

in 2012-2014. She is currently pursuing PhD degree in

Artificial Intelligence and Machine Learning from Koneru

Lakshmaiah Education Foundation, Vaddeswaram, Guntur. She

has published patents, copyrights, and technical articles.

10

