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Abstract 

The goal of the technology known as Field Programmable Gate Arrays (FPGA) is to improve the safety, 

performance, and efficiency of cryptographic operations in contexts with limited resources.  The use of 

deep learning has been more important in recent years, particularly with regard to the achievement of low 

latency and space efficiency in FPGA-based implementations. This study paper gives According to the 

suggested model, which is called EffiConvNet (Efficient Convolution Network), ternary neural networks, 

logic expansion, and block convolution are all integrated. Block Convolution is a technique that tries to 

optimise the data dependence among the spatial tiles. This helps to ease the load on chip memory and 

facilitates efficient processing. In order to do this, logic expansion is used, which replaces the XNOR gates 

with neural networks. This allows for more effective utilisation of resources. In order to achieve the desired 

degree of efficiency at the training stage, further ternary neural networks are used. The experimental 

results of our technique on real-world tasks reveal that it is successful. Furthermore, these coupled 

architectures together (EffiConvNet) illustrate the efficacy of our approach. While assuring optimal 

resource utilisation and better inference performance, the combination strategy that has been described 

offers a potential option for addressing the obstacles that are connected with the deployment of large-scale 

neural networks on FPGAs. 

Keywords: EffiConvNet, Area Efficient, Low Latency, FPGA 

1 Introduction  

In today's linked world, secure communication is 

essential. Cryptography protects data transfer by 

ensuring secrecy, integrity, authentication, and non-

repudiation. Symmetric key cryptography has long 

been used, but key management and key sharing 

security concerns plague it.In response, Elliptic 

Curve Cryptography (ECC) is a potential public-key 

cryptosystem alternative. ECC uses the algebraic 

structure of elliptic curves over finite fields for 

several benefits. These include smaller key sizes, 

faster calculations, and comparable security to RSA. 

Such qualities make ECC ideal for resource-

constrained contexts like wireless mobile 

communication and personal communication 

systems.However, implementing ECC securely and 

efficiently is complex. Optimised algorithms and 

structures for ECC arithmetic operations like point 

multiplication and division are needed. ECC 

deployment on hardware platforms like Field 

Programmable Gate Arrays (FPGAs) has issues 

related to space utilisation, processing latency, and 

energy efficiency [1]-[3]. Field Programmable Gate 

Arrays (FPGAs) are commonly accessible 

programmable devices that enable hardware 

customisation with low development costs. These 

devices feature customisable logic blocks (CLBs) 

with programmable logic cells and a flexible 

connector network. Programmable input/output 

cells surround the core. FPGAs also have DSP 

blocks for arithmetic applications like multiply-and-

accumulate. Block RAMs, look-up tables, flip-

flops, clock control units, high-speed I/O interfaces, 

and more are included. This study addresses the 

complex issues of safe and effective cryptographic 

implementations in wireless mobile and personal 

communication systems. Field Programmable Gate 

Arrays (FPGAs) are used to optimise Elliptic Curve 

Cryptography (ECC) algorithms and hardware 

designs. Here are the ways in which deep learning 

contributes to these objectives: 
 Model Compression: Deep learning 

techniques, such as pruning, quantization, and 

network architecture design, enable the 

compression of neural network models. By 

reducing the model size, fewer resources are 

required to implement the network on an FPGA, 
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resulting in improved area efficiency. Smaller 

models also lead to reduced memory 

requirements and lower data transfer, which 

contributes to lower latency. 

 Optimization for Parallelism: Deep learning 

models can be optimized to leverage parallelism, 

which is essential for efficient FPGA 

implementations. Techniques like model 

parallelism and layer parallelism divide the 

network into smaller subcomponents that can be 

processed in parallel on FPGA resources. By 

distributing the computations across multiple 

processing elements, the overall latency is 

reduced, and FPGA resources are utilized more 

efficiently. 

 Hardware-Aware Model Design: Deep 

learning models can be designed with hardware 

constraints in mind, allowing for better 

utilization of FPGA resources and reducing area 

overhead. Techniques such as custom layer 

design, precision optimization, and dataflow 

optimizations enable the mapping of specific 

operations to FPGA primitives and take 

advantage of the hardware's parallelism and 

computation capabilities. 

 Quantization and Fixed-Point Arithmetic: 

Deep learning models can be quantized to lower 

precision, such as using fixed-point arithmetic 

instead of floating-point operations. This 

reduces resource requirements, as fixed-point 

arithmetic consumes fewer FPGA resources 

compared to floating-point arithmetic. 

Quantization also reduces memory bandwidth 

requirements, leading to lower latency by 

minimizing data transfer. 

 Model Pruning and Sparsity: Deep learning 

techniques like model pruning and sparsity 

regularization help reduce the number of 

parameters and activations in the network. 

Sparse representations enable more efficient 

storage and computation, resulting in improved 

area efficiency and lower latency. 

 Hardware-Accelerated Inference: FPGA 

platforms offer the flexibility to design 

customized hardware accelerators for deep 

learning inference. By implementing key 

operations of the neural network directly in 

hardware, the latency is significantly reduced 

compared to software-based implementations. 

Deep learning frameworks provide tools to 

deploy models on FPGAs and generate 

optimized hardware designs. 

By leveraging deep learning techniques and optimizing 

models for FPGA implementations, it is possible to 

achieve area efficiency and low latency. Deep learning 

models, especially Convolutional Neural Networks 

(CNNs), have demonstrated unparalleled performance in 

various tasks but necessitate substantial computational 

resources. When mapped onto FPGA platforms, which 

inherently possess resource limitations, the tension 

between optimizing for area and latency becomes 

particularly pronounced. Current studies often 

emphasize either minimizing resource utilization or 

reducing latency, yet rarely combine both ambitions into 

a cohesive architecture. Consequently, the potential for 

comprehensive solutions that address both area 

efficiency and low latency remains largely untapped. 

Despite the progress in FPGA-based DL acceleration, 

there remains an evident research gap in the concurrent 

optimization of area efficiency and low latency. Existing 

studies often prioritize one objective over the other, 

leading to suboptimal solutions. This gap stems from the 

lack of a comprehensive approach that holistically 

addresses both challenges in FPGA-accelerated DL 

systems. 

1.1 Motivation and contribution 

In the evolving realm of artificial intelligence, deep 

learning has cemented its place at the forefront, 

particularly in applications necessitating robust image 

processing capabilities. FPGA (Field-Programmable 

Gate Array) platforms, renowned for their adaptability, 

present a unique opportunity for the deployment of deep 

learning models. The research contribution is as follows: 

 our research contributions encompass novel 

techniques for improving FPGA-based DNN 

acceleration. By introducing block convolution, 

logic expansion, and integrating TNNs,  

 we offer a holistic approach that advances the 

field's understanding of efficient neural network 

deployment on FPGA platforms.  

 Our work contributes to addressing memory 

limitations, enhancing resource utilization, and 

optimizing training processes for improved area 

efficiency and low-latency DNN inference. 

This research is organized as follows: first section starts 

with background of FPGA and integration of deep 

learning to optimize its performance. Furthermore, 

motivation and contribution is discussed. Second section 

discusses brief review of existing relevan work, third 

section presents the mathematical modelling of proposed 

model. Proposed model is evaluated in fourth section 

along with comparative analysis with existing model.  
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1.2 Objectives 

In the field of deep learning, the implementation of large-

scale neural networks on FPGAs faces challenges in 

achieving area efficiency and managing latency 

constraints. The proposed EffiConvNet model seeks to 

address these challenges by integrating innovative 

concepts such as ternary neural networks, logic 

expansion, and block convolution. The overarching 

problem is the need for a cohesive approach that 

harmoniously combines the optimization of 

cryptographic operations and deep learning within 

FPGA platforms, aiming to strike a balance between 

security, efficiency, and computational performance. 

1. Develop arithmetic operations in ECC Core. 

 Point Multiplication Architecture. 

 Point division architecture. 

2. Implementing the architecture efficiently on FPGA in 

terms of area. 

3. Architectural design focused on achieving reduced 

latency. 

4. Energy-efficient design for Field-Programmable Gate 

Arrays (FPGA). 

2 Related Work 

Enhancing the efficiency of compressed Binarized 

Neural Network (BNN) models involves employing 

pruning methods to eliminate redundant parameters. 

However, there exists a trade-off between accuracy and 

pruning, as higher pruning rates may lead to decreased 

accuracy. In [7], the authors leverage Bayesian 

optimization for channel pruning in quantized neural 

networks. This approach is based on preserving the 

angles of high-dimensional binary vectors [8] and 

considering euclidean distance. In a similar vein, [9] 

introduces neuron pruning for fully connected layers, 

followed by network retraining. On the other hand, [10] 

presents a learning-based technique to prune the number 

of filters/channels in BNN.The AutoPrune approach 

proposed in [11] adopts a gradient-based search to 

optimize a group of learnable parameters, providing an 

alternative to directly pruning weights. Additionally, 

[12] employs a weight flipping frequency method to 

prune BNN, analyzing binary weight sensitivity to 

accuracy. Moreover, this framework supports layer-wise 

pruning, reducing the number of channels in each layer 

by a consistent percentage of insensitive weights. In the 

realm of BNN, [13] introduces O3BNN-R, which 

employs two irregular pruning methods for eliminating 

redundant edges during inference: threshold edge 

pruning and pooling edge pruning. [14] explores the 

concept of reusing calculated partial outputs of 

duplicated filters to prune redundant operations in BNN. 

The Slimming Binarized Neural Network (SBNN) from 

[15] utilizes two compression techniques: filter pruning 

and knowledge distillation.A different perspective 

comes from [16], which proposes floating-point (FP) 

feature map compression for a hardware accelerator. 

This involves hardware design and a compression 

algorithm, which can accommodate quantization 

methods like ternary neural quantization (TTQ) without 

significant accuracy degradation, reducing 

computational costs. In the hardware architecture 

domain, [17] presents FantastIC4, an innovative design 

that supports efficient on-chip execution of multiple 

compact fully-connected layer representations. The 

architecture minimizes required multipliers for 

inference, introducing robustness to 4-bit quantization 

and high compressibility through a novel entropy-

constrained training method.[18] employs algorithm-

architecture-circuit design optimization, inspired by data 

reuse and sparsity in Deep Belief Network (DBN) 

learning algorithms. This leads to a heterogeneous 

multicore architecture with localized learning 

capabilities. Addressing streaming applications, [19] 

proposes a tailored streaming hardware architecture for 

improved compute efficiency in CNNs on FPGAs. The 

accelerator unifies computational functions like 

convolutional and deconvolutional layers, optimizing 

residual and concatenative connections to support 

various CNN topologies during inference.While [20] 

offers qualitative analysis, [21] provides more detailed 

insights with quantitative data on inference accuracy, 

latency, throughput, power consumption, and efficiency. 

However, both studies suffer from the limitation of using 

different DNN models for distinct automation 

frameworks, making direct comparison challenging. 

3 Proposed Methodology 

Machine learning technologies like neural network setup 

and Tiled Convolution improve programmable logic 

devices' area efficiency and latency. These flexible 

hardware components may be modified to improve 

neural network accuracy and performance. 

Programmable logic device setup optimises memory use, 

including Truth tables. Convolutional neural networks 

and Tiled Convolution enhance device latency. Feature 

mappings require improvised latency, causing 

Convolutional Neural Network (CNN) overhead on 

Programmable logic devices with limited memory. 

These methods reduce memory restrictions and improve 

efficiency for wide-scale processing of Convolutional 

Neural Networks on Programmable Logic Devices and 

optimise their topologies. This optimises CNN's memory 

and programmable logic device implementation, making 
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it quicker and more efficient on a large scale. These 

devices are thus useful for healthcare imaging, image 

recognition, and other Convolutional Neural Network 

applications. These methods optimise CNN's 

Programmable logic device implementation and memory 

efficiency. Tiled convolution breaks the input picture 

into tiles, reducing memory use and processing 

requirements for large-scale Convolutional Neural 

Networks. The PLD is optimised for Convolutional 

Neural Network processing. Machine learning is used to 

train Convolutional Neural Network data models and 

programmable logic device designs. This helps the 

model discover optimum setups. Split tiles interpret the 

information during tiled convolution. Truth tables and 

programmable logic device neural network setup 

improve device resource allocation. The gadget 

optimises tiny input picture tiles. After this, the 

Convolutional Neural Network is built on the 

Programmable Logic Device, which improves its 

performance due to memory utilisation and device 

settings.  

3.1.1 Architecture and Working of Proposed 

Model 

The detailed view of the proposed architecture is given 

in the figure 1 below. An input image is taken as an 

inference. This image is then split up into tiles by the Tile 

convolution that allows parallel processing and 

decreased memory utilization therefore increasing the 

latency of the working model. Every tile is processed 

separately for efficient use of memory on the 

Programmable Logic Device. These resulting tiles are 

then passed on to the ‘Learning Programmable logic 

device configuration of neural networks’,  at this stage 

machine learning algorithms are used for optimal 

configuration of Programmable Logic Devices. At this 

stage, the device is both enhanced in latency and has 

improved area efficiency due to the techniques applied. 

The fragments or tiles of the image is then concatenated 

to form the output image.  

 

Figure 1 EffiConvNet working module 

The tiled convolution uses a ‘divide and merge 

computational approach’, where the information of the 

tiles is independent to the output of adjacent tile 

information. For instance, consider the input image has 

three features and convolutional layers are 3 by 3 by 3. 

The input image is split into four tiles as 4 by 4 by 3. The 

input feature image is given as (𝑋𝑖𝑛𝑝𝑢𝑡, 𝐼𝑖𝑛𝑝𝑢𝑡) whereas 

the dimension of the output image is given as: 

 

𝐼𝑜𝑢𝑡𝑝𝑢𝑡 = 1+((𝐼𝑖𝑛𝑝𝑢𝑡 − 𝑙 + 2𝑞)𝑡−1) 

 

𝑋𝑜𝑢𝑡𝑝𝑢𝑡 = 1+((𝑋𝑖𝑛𝑝𝑢𝑡 − 𝑙 + 2𝑞)𝑡−1) 

 

 

 

(1) 

The output image is of the dimension 8 by 8. 

Considering the tiled convolution proposed in this study, 

the input image is tiled to the size 5 by 5 that results in 

an output image tile of 3 by 3. This is then combined to 

produce an output feature image of size 6 by 6, keeping 

in mind the size of the input image. This is done by use 

the Border Extension technique, the method involves 

added additional pixels around the ends of the image for 

tiled computations. This assures the size of the input 

feature image is suitable to the required tile dimension 

for processing. This also prevents loss of data and 

information. For instance, an input image tile having 

original dimension of 5 by 5 is bordered to 6 by 6 pixels 

where the original feature image is 4 by 4 pixels. This 

produces output image tiles of dimension 4 by 4 that are 

combined to produce a resulting output image of size 8 

by 8.  

𝑂 =
((𝑡−1)(𝐽 + 2𝑞 − 𝑙)) + 1

((
𝐽
𝑂 + 2𝑞𝑢 − 𝑙) (𝑡−1)) + 1

 

 

 

 

(2) 

In the above equation (2), input feature images 

are denoted as 𝐽 for the dimension (𝑋𝑖𝑛𝑝𝑢𝑡, 𝐼𝑖𝑛𝑝𝑢𝑡). Tiled 

convolution breaks up the input image into smaller 

fragments. After which Tiled Convolution is performed 

on every fragment separately. Further the results are 

concatenated together. Considering the Convolutional 

Neural Network used for this study, the border extension 

is performed for CNN multilayers in two different ways, 

namely ‘Fixed Bordering’ that splits the input image into 

uniform tiles for computations to make simultaneous 

processing easier. Image classification as well as Object 

Recognition is performed as an experimentation on the 

Tiled Convolution technique. The Tile dimension, 

pattern, border extension is considered for accuracy on 

various Convolutional Neural Networks. Considering 

Network Image Classification, there are four networks 

considered namely, MobileNet, VGC16, Residual 

network-50 and Residual Network-18. For these 

networks, when the tile length is greater than 1 the border 

extension is asymmetrical. The CNN layers are altered 
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such that the tile length is set to 𝑡 succeeded by a pooling 

layer 𝑡 by 𝑡. These network models are trained while the 

hyperparameter used to control the process of learning is 

kept constant for all these networks. Out of these 

networks, it is observed that three networks have an 

enhanced accuracy post modification. The study 

involves models are initially trained as well as models 

that tuned using prior trained models. It is observed that 

the Networks VGC16, Residual network-50 and 

Residual Network-18 obtained a higher and improved 

accuracy through tunning with prior trained models 

whereas MobileNet requires initial training from scratch. 

This method aims at learning optimal configurations of 

the Programmable Logic Devices for CNN. Machine 

learning techniques are algorithms are used for training 

model of CNN and corresponding Programmable Logic 

Devices. Resource location is optimized using Look up 

Tables. These tables play an essential role in 

configuration of Programmable Logic Devices, where 

the input in these tables represents binary values while 

the output consists of precomputed values for every 

combination of input values. This mechanism has three 

main phases before implementation which involves the 

Training Stage, Redundancy Reduction stage and the 

final phase of Logical enhancement. In the training stage, 

‘Learning Programmable logic device configuration of 

neural networks’ uses machine learning methods for 

training the CNN model used in this study. Optimal 

configurations of Programmable logic devices are 

predicted for the CNN model that shows best accuracy 

in the Tiled Convolution. Every layer of the model has 

features 𝛽 that are involved in the learning process 

combined with weights as well as sparsity is introduced 

for reduction of non-zero weights using 𝐿2 Regularizer, 

for which the training loss Υ is calculated using the 

equation given below: 

Υ = κ ( ∑ ∑(𝜛(𝑚,𝑑))
2

𝐷

𝑑=1

𝑀

𝑚=1

)

−1
2

 

 

 

(3) 

 In the equation (3), the sparsification factor is 

denoted as κ, count of layer given as  𝑀 and the number 

of channels in every layer is given as 𝐷. The weighted 

vector for layers 𝑚 𝑎𝑛𝑑 𝑑 is expressed as 𝜛. The next 

phase in the proposed work includes the Redundancy 

Reduction stage. After the training of the neural network 

less significant or redundant configurations within the 

Programmable Logic Device is removed. Basically, the 

Look up table configurations are eliminated, this 

enhances the complete accuracy and performance of the 

device implementation. This process involves 

application of a threshold value denoted as 𝜗 for every 

weight 𝜛. A relational link is developed in regard to 

accuracy and area utilization. 

 

𝜛

← {
𝜛             𝑖𝑓 ‖𝜛‖ 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
0                                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(4

) 

 The Convolutional Neural Network is then 

binarized for the recovery of accuracy loss that is 

induced. This proposed study uses XNOR gate instead 

of a 𝐿 −Programmable Logic Device, that has an initial 

input of �̃�1
(𝑛,𝑢)

 to retain the original value and dimension 

of the input connection, that withholds the Redundancy 

Reduced Binary Neural Network Structure. While 𝐿 −

𝑄 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1, the corresponding inputs 𝐿 − 𝑄 −

1 of the same tile of convolution �̃�1
(𝑛,𝑢)

 that proves the 

dimension of the tile remains the same. Their selection is 

limited, where each connected input image is linked to at 

least one lookup table. For 𝑄 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 0, 𝑄 is 

the final input for look up table that is linked to a 𝑄 −

𝑏𝑖𝑡 𝑚𝑒𝑚𝑜𝑟𝑦, �̃�(𝑛,𝑢). The look up tables are limited in 

terms of adding look up table connections, this is 

resolved by using larger value of 𝐿 and lower value of 𝑄, 

in this case there will be lesser signals for the look up 

table. For this, the value of 𝐿 − 𝑄 has to be decreased to 

avoid loss on input.  

 For a binary domain of {−1,1}𝑂 along with 

Binary Neural Networks, there are constraints for 

training of models for operation on real vectors 𝕊�̃� for 

back propagation. This is resolved by interpolating 

expansion of ℎ̂𝑛: 𝕊𝐿−𝑄 × 𝕊𝑄 → 𝕊 where 

ℎ̂𝑛(�̃�(𝑛,𝑢), �̃�(𝑛,𝑢))=ℎ𝑛(�̃�(𝑛,𝑢), �̃�(𝑛,𝑢)) and 

ℎ𝑛: {−1,1}𝐿−𝑄  × {−1,1}𝑄 → {−1,1} for ℎ𝑛. Consider 

ℎ𝑛 to be a constant value, for a Boolean input, then ℎ̂𝑛 

also remains unchanged. The expansion is performed 

using Lagrange interpolation that is expressed in the 

equation below: 

ℎ̂𝑛(�̂̃�(𝑛,𝑢), �̂̃�(𝑛,𝑢))

= ∑ (�̂�𝑒 ∏ ([
�̂̃�(𝑛,𝑢)

�̂̃�(𝑛,𝑢)
] − 𝑒𝑙)

𝐿

𝑙=1

)

𝑒 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 {−1,1}𝐿

 

 

 

 

 

(5) 

 Considering the weights used in the training 

phase in equation (3), these weights are included in the 

retraining of model. The aim is the achieve the given 

below equation after the relinked signals are eliminated 

after Redundancy Reduction. 
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ℎ̂𝑛(�̂̃�(𝑛,𝑢), �̂̃�(𝑛,𝑢))

=  ∑ �̂̃�𝑗
(𝑛,𝑢)

, �̂�𝑗
(𝑛,𝑢)

𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 {1,… ,𝐿−𝑄}

 

 

(6) 

 After all ℎ̂𝑛 is initialized, the second and last 

stage of retraining is performed after which the training 

constraints are binarized. High- accuracy training 

followed by Redundancy Reduction proves rapid 

convergence and also the initial stage of Took up table 

learning that decreased chances of overfitting. The 

enhancement of latency as well as area efficiency is 

achieved in this proposed study by enabling adequate 

memory resource use as well as faster performance with 

higher efficiency of the Programmable Logic Devices 

for Convolutional Neural Networks. The Concatenation 

of separate tiles result in the final output.   

4 Performance Evaluation. 

This section of the research presents the evaluation of 

model evaluation, which includes the evaluation and 

comparison with the existing model to prove the model 

efficiency. Moreover, in order to evaluate the model 

proposed model utilizes three dataset namely MNIST 

[23], CIFAR-10 [24] and ModelNet40 [25] dataset.  

4.1 Evaluation on MNIST Dataset 

The table1 presents a comparison of different 

methodologies for image classification, each associated 

with specific platforms, operating frequencies, LUT 

(Look-Up Table) counts, accuracy rates, and power 

efficiencies. Among these methods, several noteworthy 

observations can be made. "Re-Bnet" achieves a 

commendable accuracy of 98.29% using 25600 LUTs at 

a frequency of 200 MHz on the Spartan XC platform. 

Similarly, "FP-BNN" demonstrates a high accuracy of 

98.24% on the Stratix-V platform, although its 

corresponding LUT count is unspecified. "BNN-PYNQ" 

attains an accuracy of 98.4% with 26809 LUTs at a 

frequency of 300 MHz on the Ultra96 platform, 

accompanied by a power efficiency of 267342. "Finn-R" 

stands at an accuracy of 97.69% using 38205 LUTs and 

300 MHz frequency on the Ultra96 platform. "Finn," on 

the other hand, achieves an accuracy of 98.4% with 

82988 LUTs at 200 MHz on the ZC706 platform. The 

"Proposed" methodology boasts the highest accuracy of 

99.2% with a relatively modest LUT count of 29156, 

operating at 300 MHz on the Ultra96 platform. 

Impressively, this methodology maintains a power 

efficiency of 882190. 

Table 1 MNIST dataset comparison 

Methodol

ogies 

Platfo

rm 

Freque

ncy 

LU

T 

Accur

acy 

Power 

Efficie

ncy 

Re-Bnet 

[26] 

Spart

an 

XC 

200 256

00 

98.29 - 

FP-BNN 

[27] 

Strati

x-V 

150 - 98.24 - 

BNN-

PYNQ 

[28] 

Ultra

96 

300 268

09 

98.4 26734

2 

FINN-R 

[29] 

Ultra

96 

300 382

05 

97.69 - 

FINN[30] ZC70

6 

200 829

88 

98.4 - 

EffiConv

Net 

Ultra

96 

300 291

56 

99.2 88219

0 

 

Figure 2 Accuracy comparison 

The provided table compares several image processing 

methodologies based on key metrics like operating 

frequency, Look-Up Table (LUT) count, accuracy, 

processing speed (Kfps), and area efficiency."FINN-

PYNQ" operates at 300 MHz with 25431 LUTs, 

achieving an 80.1% accuracy and processing speed of 

1.9 Kfps. "ReBNet" achieves 80.59% accuracy at 200 

MHz, utilizing 53200 LUTs and processing at 6 Kfps. 

"FBNA" has 88.61% accuracy with 26900 LUTs 

(frequency unspecified) and processes at 0.5 Kfps. 

"FINN-R" achieves 80.1% accuracy with 41733 LUTs at 

300 MHz, processing at 19.5 Kfps. "Finn" obtains 80.1% 

accuracy at 125 MHz with 365963 LUTs, processing at 

125 Kfps. The "Proposed" method reaches a 94.2% 

accuracy at 210 MHz using 290012 LUTs, processing at 

205 Kfps.These findings highlight trade-offs between 

accuracy, processing speed, and LUT utilization. The 

"Proposed" approach strikes a balance, excelling in 

accuracy and processing speed while efficiently using 

resources. Method selection depends on specific 

application requirements. 

4.2 Evaluation on CIFAR dataset 

The table2 presents a concise analysis of various image 

processing methodologies based on key performance 

indicators. "FINN-PYNQ" achieves an 80.1% accuracy 

using 25431 LUTs at 300 MHz, processing at 1.9 Kfps 
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with an area efficiency of 0.074. "ReBNet" operates at 

200 MHz with 53200 LUTs, yielding 80.59% accuracy 

and processing at 6 Kfps, showing an area efficiency of 

0.11. "FBNA" achieves an 88.61% accuracy with 26900 

LUTs (frequency unspecified), operating at 0.5 Kfps and 

having an area efficiency of 0.02."FINN-R" and "FINN" 

both operate at 300 MHz, using 41733 and 365963 LUTs 

respectively, achieving 80.1% accuracy. "FINN-R" 

processes at 19.5 Kfps with an area efficiency of 0.467, 

while "FINN" achieves 125 Kfps with an area efficiency 

of 0.34 at 125 MHz. The "Proposed" method operates at 

210 MHz with 290012 LUTs, attaining a high 94.2% 

accuracy and processing at an impressive 205 Kfps, 

accompanied by an area efficiency of 0.727. 

Table 2 CIFAR dataset 

Methodolo

gies 

Freque

ncy 

LUT

s 

Accur

acy 

Kf

ps 

Area 

Efficie

ncy 

FINN-

PYNQ [28] 

300 2543

1 

80.1 1.9 0.074 

ReBNet 

[26] 

200 5320

0 

80.59 6 0.11 

FBNA [31] - 2690

0 

88.61 0.5 0.02 

FINN-R 

[29] 

300 4173

3 

80.1 19.

5 

0.467 

FINN [30] 125 3659

63 

80.1 12

5 

0.340 

EFFICON

VNET 

210 2900

12 

94.2 20

5 

0.727 

 

Figure 3 area efficiency comparison 

4.3 Latency based Evaluation  

The provided table offers a concise yet valuable 

comparison of different methodologies based on their 

accuracy and latency performance. "Pointnet++ [33]" 

achieves a commendable accuracy of 91.9%, albeit with 

a relatively higher latency of 117.59 units. On the other 

hand, "O-pointnet [34]" achieves a slightly lower 

accuracy of 88.5%, with the corresponding latency not 

specified, implying a potential trade-off between 

accuracy and latency. Notably, "EFFICONVNET" 

stands out by achieving an impressive accuracy of 93.9% 

while maintaining a significantly lower latency of 19.67 

units. 
Table 3 Accuracy and latency 

Methodologies Accuracy Latency 

Pointnet++[32] 91.9 117.59 

O-pointnet [33] 88.5  

EFFICONVNET 93.9 19.67 

O-pointnet [33] is deployed on a ZynqXC -7z045 device, 

although specific resource utilization details are not 

provided. Pointnet-FPGA [35] is implemented on a 

ZCU104 device and demonstrates variations in width 

and resource utilization. With a width of 16, it uses 

30933 LUTs, 60412 Flip-Flops (FFs), 123 Block RAM 

(BRAM), and 1026 Digital Signal Processing (DSP) 

units. This methodology achieves a processing rate of 

130 GOPS. When the width is reduced to 8, resource 

utilization is adjusted, with 19530 LUTs, 36010 FFs, 114 

BRAM, and 1026 DSPs, enabling an increased 

processing rate of 182.1 GOPS. Similarly, point cloud 

[36] is executed on a ZCU104 device with a width of 16-

8 (specific width not specified), utilizing 17614 LUTs, 

12142 FFs, 365.5 BRAM, and 256 DSPs.On the other 

hand, EFFICONVNET stands out in terms of resource 

utilization, being implemented on a KCU150 device 

with a width of 8. It employs 57366 LUTs, 54082 FFs, 

84.5 BRAM, and 2400 DSPs. Impressively, it achieves a 

significantly higher processing rate of 277.9 GOPS. 

Methodo

logies 

O-

point

net  

[33] 

Point

net-

FPG

A 

[34] 

Point

net-

FPG

A 

[34] 

point 

clou

d  

[35] 

EFFICON

VNET 

Device Zynq

XC -

7z04

5 

ZCU

104 

ZCU

104 

ZCU

104 

KCU150 

width 16  16 8 16-8 8 

LUT - 3093

3 

1953

0 

1761

4 

57366 

FF - 6041

2 

3601

0 

1214

2 

54082 

BRAM - 123 114 365.

5 

84.5 

DSP - 1026 1026 256 2400 

GOPS 1.28 130 182.

1 

17.7

3 

277.9 

0
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Figure 4 GOPS comparison 

Conclusion  

In the realm of deep learning acceleration on FPGA 

platforms, the pursuit of area efficiency and low latency 

has emerged as a crucial but often disjointed endeavor. 

EffiConvNet stands as an innovative paradigm that 

marries novel concepts such as Block Convolution, logic 

expansion, and ternary neural networks. Through this 

integration, the model offers an effective solution to the 

intricate challenges of efficiency in deep learning 

systems. The methodologies were evaluated using the 

MNIST, CIFAR-10, and ModelNet40 datasets.For the 

MNIST dataset, the "EFFICONVNET" methodology 

demonstrated the highest accuracy of 99.2% while 

maintaining an area efficiency of 882190. This approach 

struck a balance between accuracy and resource 

utilization on the Ultra96 platform. Similarly, on the 

CIFAR dataset, the "EFFICONVNET" approach 

achieved a remarkable 94.2% accuracy with an area 

efficiency of 0.727 at 210 MHz, highlighting its superior 

performance in both accuracy and efficiency. 

Furthermore, the latency-based evaluation showcased 

that "EFFICONVNET" achieved an impressive accuracy 

of 93.9% while maintaining a significantly lower latency 

of 19.67 units, indicating its effectiveness in balancing 

accuracy and responsiveness. 
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