
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

A Low-Latency, Area-Efficient Convolution Network for FPGA

Acceleration
1 Gutti Naga Swetha,

ECE department, Guru Nanak Dev Engineering College,VTU, Bidar, Karnataka, India

Email - nswethag@gmail.com

2 Dr. Anuradha M.Sandi

ECE department, Guru Nanak Dev Engineering College, VTU, Bidar, Karnataka, India

Email - anu29975@gmail.com

Abstract

The goal of the technology known as Field Programmable Gate Arrays (FPGA) is to improve the safety,

performance, and efficiency of cryptographic operations in contexts with limited resources. The use of

deep learning has been more important in recent years, particularly with regard to the achievement of low

latency and space efficiency in FPGA-based implementations. This study paper gives According to the

suggested model, which is called EffiConvNet (Efficient Convolution Network), ternary neural networks,

logic expansion, and block convolution are all integrated. Block Convolution is a technique that tries to

optimise the data dependence among the spatial tiles. This helps to ease the load on chip memory and

facilitates efficient processing. In order to do this, logic expansion is used, which replaces the XNOR gates

with neural networks. This allows for more effective utilisation of resources. In order to achieve the desired

degree of efficiency at the training stage, further ternary neural networks are used. The experimental

results of our technique on real-world tasks reveal that it is successful. Furthermore, these coupled

architectures together (EffiConvNet) illustrate the efficacy of our approach. While assuring optimal

resource utilisation and better inference performance, the combination strategy that has been described

offers a potential option for addressing the obstacles that are connected with the deployment of large-scale

neural networks on FPGAs.

Keywords: EffiConvNet, Area Efficient, Low Latency, FPGA

1 Introduction

In today's linked world, secure communication is

essential. Cryptography protects data transfer by

ensuring secrecy, integrity, authentication, and non-

repudiation. Symmetric key cryptography has long

been used, but key management and key sharing

security concerns plague it.In response, Elliptic

Curve Cryptography (ECC) is a potential public-key

cryptosystem alternative. ECC uses the algebraic

structure of elliptic curves over finite fields for

several benefits. These include smaller key sizes,

faster calculations, and comparable security to RSA.

Such qualities make ECC ideal for resource-

constrained contexts like wireless mobile

communication and personal communication

systems.However, implementing ECC securely and

efficiently is complex. Optimised algorithms and

structures for ECC arithmetic operations like point

multiplication and division are needed. ECC

deployment on hardware platforms like Field

Programmable Gate Arrays (FPGAs) has issues

related to space utilisation, processing latency, and

energy efficiency [1]-[3]. Field Programmable Gate

Arrays (FPGAs) are commonly accessible

programmable devices that enable hardware

customisation with low development costs. These

devices feature customisable logic blocks (CLBs)

with programmable logic cells and a flexible

connector network. Programmable input/output

cells surround the core. FPGAs also have DSP

blocks for arithmetic applications like multiply-and-

accumulate. Block RAMs, look-up tables, flip-

flops, clock control units, high-speed I/O interfaces,

and more are included. This study addresses the

complex issues of safe and effective cryptographic

implementations in wireless mobile and personal

communication systems. Field Programmable Gate

Arrays (FPGAs) are used to optimise Elliptic Curve

Cryptography (ECC) algorithms and hardware

designs. Here are the ways in which deep learning

contributes to these objectives:
 Model Compression: Deep learning

techniques, such as pruning, quantization, and

network architecture design, enable the

compression of neural network models. By

reducing the model size, fewer resources are

required to implement the network on an FPGA,

IJCDS 1571004361

1

resulting in improved area efficiency. Smaller

models also lead to reduced memory

requirements and lower data transfer, which

contributes to lower latency.

 Optimization for Parallelism: Deep learning

models can be optimized to leverage parallelism,

which is essential for efficient FPGA

implementations. Techniques like model

parallelism and layer parallelism divide the

network into smaller subcomponents that can be

processed in parallel on FPGA resources. By

distributing the computations across multiple

processing elements, the overall latency is

reduced, and FPGA resources are utilized more

efficiently.

 Hardware-Aware Model Design: Deep

learning models can be designed with hardware

constraints in mind, allowing for better

utilization of FPGA resources and reducing area

overhead. Techniques such as custom layer

design, precision optimization, and dataflow

optimizations enable the mapping of specific

operations to FPGA primitives and take

advantage of the hardware's parallelism and

computation capabilities.

 Quantization and Fixed-Point Arithmetic:

Deep learning models can be quantized to lower

precision, such as using fixed-point arithmetic

instead of floating-point operations. This

reduces resource requirements, as fixed-point

arithmetic consumes fewer FPGA resources

compared to floating-point arithmetic.

Quantization also reduces memory bandwidth

requirements, leading to lower latency by

minimizing data transfer.

 Model Pruning and Sparsity: Deep learning

techniques like model pruning and sparsity

regularization help reduce the number of

parameters and activations in the network.

Sparse representations enable more efficient

storage and computation, resulting in improved

area efficiency and lower latency.

 Hardware-Accelerated Inference: FPGA

platforms offer the flexibility to design

customized hardware accelerators for deep

learning inference. By implementing key

operations of the neural network directly in

hardware, the latency is significantly reduced

compared to software-based implementations.

Deep learning frameworks provide tools to

deploy models on FPGAs and generate

optimized hardware designs.

By leveraging deep learning techniques and optimizing

models for FPGA implementations, it is possible to

achieve area efficiency and low latency. Deep learning

models, especially Convolutional Neural Networks

(CNNs), have demonstrated unparalleled performance in

various tasks but necessitate substantial computational

resources. When mapped onto FPGA platforms, which

inherently possess resource limitations, the tension

between optimizing for area and latency becomes

particularly pronounced. Current studies often

emphasize either minimizing resource utilization or

reducing latency, yet rarely combine both ambitions into

a cohesive architecture. Consequently, the potential for

comprehensive solutions that address both area

efficiency and low latency remains largely untapped.

Despite the progress in FPGA-based DL acceleration,

there remains an evident research gap in the concurrent

optimization of area efficiency and low latency. Existing

studies often prioritize one objective over the other,

leading to suboptimal solutions. This gap stems from the

lack of a comprehensive approach that holistically

addresses both challenges in FPGA-accelerated DL

systems.

1.1 Motivation and contribution

In the evolving realm of artificial intelligence, deep

learning has cemented its place at the forefront,

particularly in applications necessitating robust image

processing capabilities. FPGA (Field-Programmable

Gate Array) platforms, renowned for their adaptability,

present a unique opportunity for the deployment of deep

learning models. The research contribution is as follows:

 our research contributions encompass novel

techniques for improving FPGA-based DNN

acceleration. By introducing block convolution,

logic expansion, and integrating TNNs,

 we offer a holistic approach that advances the

field's understanding of efficient neural network

deployment on FPGA platforms.

 Our work contributes to addressing memory

limitations, enhancing resource utilization, and

optimizing training processes for improved area

efficiency and low-latency DNN inference.

This research is organized as follows: first section starts

with background of FPGA and integration of deep

learning to optimize its performance. Furthermore,

motivation and contribution is discussed. Second section

discusses brief review of existing relevan work, third

section presents the mathematical modelling of proposed

model. Proposed model is evaluated in fourth section

along with comparative analysis with existing model.

2

1.2 Objectives

In the field of deep learning, the implementation of large-

scale neural networks on FPGAs faces challenges in

achieving area efficiency and managing latency

constraints. The proposed EffiConvNet model seeks to

address these challenges by integrating innovative

concepts such as ternary neural networks, logic

expansion, and block convolution. The overarching

problem is the need for a cohesive approach that

harmoniously combines the optimization of

cryptographic operations and deep learning within

FPGA platforms, aiming to strike a balance between

security, efficiency, and computational performance.

1. Develop arithmetic operations in ECC Core.

 Point Multiplication Architecture.

 Point division architecture.

2. Implementing the architecture efficiently on FPGA in

terms of area.

3. Architectural design focused on achieving reduced

latency.

4. Energy-efficient design for Field-Programmable Gate

Arrays (FPGA).

2 Related Work

Enhancing the efficiency of compressed Binarized

Neural Network (BNN) models involves employing

pruning methods to eliminate redundant parameters.

However, there exists a trade-off between accuracy and

pruning, as higher pruning rates may lead to decreased

accuracy. In [7], the authors leverage Bayesian

optimization for channel pruning in quantized neural

networks. This approach is based on preserving the

angles of high-dimensional binary vectors [8] and

considering euclidean distance. In a similar vein, [9]

introduces neuron pruning for fully connected layers,

followed by network retraining. On the other hand, [10]

presents a learning-based technique to prune the number

of filters/channels in BNN.The AutoPrune approach

proposed in [11] adopts a gradient-based search to

optimize a group of learnable parameters, providing an

alternative to directly pruning weights. Additionally,

[12] employs a weight flipping frequency method to

prune BNN, analyzing binary weight sensitivity to

accuracy. Moreover, this framework supports layer-wise

pruning, reducing the number of channels in each layer

by a consistent percentage of insensitive weights. In the

realm of BNN, [13] introduces O3BNN-R, which

employs two irregular pruning methods for eliminating

redundant edges during inference: threshold edge

pruning and pooling edge pruning. [14] explores the

concept of reusing calculated partial outputs of

duplicated filters to prune redundant operations in BNN.

The Slimming Binarized Neural Network (SBNN) from

[15] utilizes two compression techniques: filter pruning

and knowledge distillation.A different perspective

comes from [16], which proposes floating-point (FP)

feature map compression for a hardware accelerator.

This involves hardware design and a compression

algorithm, which can accommodate quantization

methods like ternary neural quantization (TTQ) without

significant accuracy degradation, reducing

computational costs. In the hardware architecture

domain, [17] presents FantastIC4, an innovative design

that supports efficient on-chip execution of multiple

compact fully-connected layer representations. The

architecture minimizes required multipliers for

inference, introducing robustness to 4-bit quantization

and high compressibility through a novel entropy-

constrained training method.[18] employs algorithm-

architecture-circuit design optimization, inspired by data

reuse and sparsity in Deep Belief Network (DBN)

learning algorithms. This leads to a heterogeneous

multicore architecture with localized learning

capabilities. Addressing streaming applications, [19]

proposes a tailored streaming hardware architecture for

improved compute efficiency in CNNs on FPGAs. The

accelerator unifies computational functions like

convolutional and deconvolutional layers, optimizing

residual and concatenative connections to support

various CNN topologies during inference.While [20]

offers qualitative analysis, [21] provides more detailed

insights with quantitative data on inference accuracy,

latency, throughput, power consumption, and efficiency.

However, both studies suffer from the limitation of using

different DNN models for distinct automation

frameworks, making direct comparison challenging.

3 Proposed Methodology

Machine learning technologies like neural network setup

and Tiled Convolution improve programmable logic

devices' area efficiency and latency. These flexible

hardware components may be modified to improve

neural network accuracy and performance.

Programmable logic device setup optimises memory use,

including Truth tables. Convolutional neural networks

and Tiled Convolution enhance device latency. Feature

mappings require improvised latency, causing

Convolutional Neural Network (CNN) overhead on

Programmable logic devices with limited memory.

These methods reduce memory restrictions and improve

efficiency for wide-scale processing of Convolutional

Neural Networks on Programmable Logic Devices and

optimise their topologies. This optimises CNN's memory

and programmable logic device implementation, making

3

it quicker and more efficient on a large scale. These

devices are thus useful for healthcare imaging, image

recognition, and other Convolutional Neural Network

applications. These methods optimise CNN's

Programmable logic device implementation and memory

efficiency. Tiled convolution breaks the input picture

into tiles, reducing memory use and processing

requirements for large-scale Convolutional Neural

Networks. The PLD is optimised for Convolutional

Neural Network processing. Machine learning is used to

train Convolutional Neural Network data models and

programmable logic device designs. This helps the

model discover optimum setups. Split tiles interpret the

information during tiled convolution. Truth tables and

programmable logic device neural network setup

improve device resource allocation. The gadget

optimises tiny input picture tiles. After this, the

Convolutional Neural Network is built on the

Programmable Logic Device, which improves its

performance due to memory utilisation and device

settings.

3.1.1 Architecture and Working of Proposed

Model

The detailed view of the proposed architecture is given

in the figure 1 below. An input image is taken as an

inference. This image is then split up into tiles by the Tile

convolution that allows parallel processing and

decreased memory utilization therefore increasing the

latency of the working model. Every tile is processed

separately for efficient use of memory on the

Programmable Logic Device. These resulting tiles are

then passed on to the ‘Learning Programmable logic

device configuration of neural networks’, at this stage

machine learning algorithms are used for optimal

configuration of Programmable Logic Devices. At this

stage, the device is both enhanced in latency and has

improved area efficiency due to the techniques applied.

The fragments or tiles of the image is then concatenated

to form the output image.

Figure 1 EffiConvNet working module

The tiled convolution uses a ‘divide and merge

computational approach’, where the information of the

tiles is independent to the output of adjacent tile

information. For instance, consider the input image has

three features and convolutional layers are 3 by 3 by 3.

The input image is split into four tiles as 4 by 4 by 3. The

input feature image is given as (𝑋𝑖𝑛𝑝𝑢𝑡, 𝐼𝑖𝑛𝑝𝑢𝑡) whereas

the dimension of the output image is given as:

𝐼𝑜𝑢𝑡𝑝𝑢𝑡 = 1+((𝐼𝑖𝑛𝑝𝑢𝑡 − 𝑙 + 2𝑞)𝑡−1)

𝑋𝑜𝑢𝑡𝑝𝑢𝑡 = 1+((𝑋𝑖𝑛𝑝𝑢𝑡 − 𝑙 + 2𝑞)𝑡−1)

(1)

The output image is of the dimension 8 by 8.

Considering the tiled convolution proposed in this study,

the input image is tiled to the size 5 by 5 that results in

an output image tile of 3 by 3. This is then combined to

produce an output feature image of size 6 by 6, keeping

in mind the size of the input image. This is done by use

the Border Extension technique, the method involves

added additional pixels around the ends of the image for

tiled computations. This assures the size of the input

feature image is suitable to the required tile dimension

for processing. This also prevents loss of data and

information. For instance, an input image tile having

original dimension of 5 by 5 is bordered to 6 by 6 pixels

where the original feature image is 4 by 4 pixels. This

produces output image tiles of dimension 4 by 4 that are

combined to produce a resulting output image of size 8

by 8.

𝑂 =
((𝑡−1)(𝐽 + 2𝑞 − 𝑙)) + 1

((
𝐽
𝑂 + 2𝑞𝑢 − 𝑙) (𝑡−1)) + 1

(2)

In the above equation (2), input feature images

are denoted as 𝐽 for the dimension (𝑋𝑖𝑛𝑝𝑢𝑡, 𝐼𝑖𝑛𝑝𝑢𝑡). Tiled

convolution breaks up the input image into smaller

fragments. After which Tiled Convolution is performed

on every fragment separately. Further the results are

concatenated together. Considering the Convolutional

Neural Network used for this study, the border extension

is performed for CNN multilayers in two different ways,

namely ‘Fixed Bordering’ that splits the input image into

uniform tiles for computations to make simultaneous

processing easier. Image classification as well as Object

Recognition is performed as an experimentation on the

Tiled Convolution technique. The Tile dimension,

pattern, border extension is considered for accuracy on

various Convolutional Neural Networks. Considering

Network Image Classification, there are four networks

considered namely, MobileNet, VGC16, Residual

network-50 and Residual Network-18. For these

networks, when the tile length is greater than 1 the border

extension is asymmetrical. The CNN layers are altered

4

such that the tile length is set to 𝑡 succeeded by a pooling

layer 𝑡 by 𝑡. These network models are trained while the

hyperparameter used to control the process of learning is

kept constant for all these networks. Out of these

networks, it is observed that three networks have an

enhanced accuracy post modification. The study

involves models are initially trained as well as models

that tuned using prior trained models. It is observed that

the Networks VGC16, Residual network-50 and

Residual Network-18 obtained a higher and improved

accuracy through tunning with prior trained models

whereas MobileNet requires initial training from scratch.

This method aims at learning optimal configurations of

the Programmable Logic Devices for CNN. Machine

learning techniques are algorithms are used for training

model of CNN and corresponding Programmable Logic

Devices. Resource location is optimized using Look up

Tables. These tables play an essential role in

configuration of Programmable Logic Devices, where

the input in these tables represents binary values while

the output consists of precomputed values for every

combination of input values. This mechanism has three

main phases before implementation which involves the

Training Stage, Redundancy Reduction stage and the

final phase of Logical enhancement. In the training stage,

‘Learning Programmable logic device configuration of

neural networks’ uses machine learning methods for

training the CNN model used in this study. Optimal

configurations of Programmable logic devices are

predicted for the CNN model that shows best accuracy

in the Tiled Convolution. Every layer of the model has

features 𝛽 that are involved in the learning process

combined with weights as well as sparsity is introduced

for reduction of non-zero weights using 𝐿2 Regularizer,

for which the training loss Υ is calculated using the

equation given below:

Υ = κ (∑ ∑(𝜛(𝑚,𝑑))
2

𝐷

𝑑=1

𝑀

𝑚=1

)

−1
2

(3)

 In the equation (3), the sparsification factor is

denoted as κ, count of layer given as 𝑀 and the number

of channels in every layer is given as 𝐷. The weighted

vector for layers 𝑚 𝑎𝑛𝑑 𝑑 is expressed as 𝜛. The next

phase in the proposed work includes the Redundancy

Reduction stage. After the training of the neural network

less significant or redundant configurations within the

Programmable Logic Device is removed. Basically, the

Look up table configurations are eliminated, this

enhances the complete accuracy and performance of the

device implementation. This process involves

application of a threshold value denoted as 𝜗 for every

weight 𝜛. A relational link is developed in regard to

accuracy and area utilization.

𝜛

← {
𝜛 𝑖𝑓 ‖𝜛‖ 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4

)

 The Convolutional Neural Network is then

binarized for the recovery of accuracy loss that is

induced. This proposed study uses XNOR gate instead

of a 𝐿 −Programmable Logic Device, that has an initial

input of �̃�1
(𝑛,𝑢)

 to retain the original value and dimension

of the input connection, that withholds the Redundancy

Reduced Binary Neural Network Structure. While 𝐿 −

𝑄 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1, the corresponding inputs 𝐿 − 𝑄 −

1 of the same tile of convolution �̃�1
(𝑛,𝑢)

 that proves the

dimension of the tile remains the same. Their selection is

limited, where each connected input image is linked to at

least one lookup table. For 𝑄 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 0, 𝑄 is

the final input for look up table that is linked to a 𝑄 −

𝑏𝑖𝑡 𝑚𝑒𝑚𝑜𝑟𝑦, �̃�(𝑛,𝑢). The look up tables are limited in

terms of adding look up table connections, this is

resolved by using larger value of 𝐿 and lower value of 𝑄,

in this case there will be lesser signals for the look up

table. For this, the value of 𝐿 − 𝑄 has to be decreased to

avoid loss on input.

 For a binary domain of {−1,1}𝑂 along with

Binary Neural Networks, there are constraints for

training of models for operation on real vectors 𝕊�̃� for

back propagation. This is resolved by interpolating

expansion of ℎ̂𝑛: 𝕊𝐿−𝑄 × 𝕊𝑄 → 𝕊 where

ℎ̂𝑛(�̃�(𝑛,𝑢), �̃�(𝑛,𝑢))=ℎ𝑛(�̃�(𝑛,𝑢), �̃�(𝑛,𝑢)) and

ℎ𝑛: {−1,1}𝐿−𝑄 × {−1,1}𝑄 → {−1,1} for ℎ𝑛. Consider

ℎ𝑛 to be a constant value, for a Boolean input, then ℎ̂𝑛

also remains unchanged. The expansion is performed

using Lagrange interpolation that is expressed in the

equation below:

ℎ̂𝑛(�̂̃�(𝑛,𝑢), �̂̃�(𝑛,𝑢))

= ∑ (�̂�𝑒 ∏ ([
�̂̃�(𝑛,𝑢)

�̂̃�(𝑛,𝑢)
] − 𝑒𝑙)

𝐿

𝑙=1

)

𝑒 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 {−1,1}𝐿

(5)

 Considering the weights used in the training

phase in equation (3), these weights are included in the

retraining of model. The aim is the achieve the given

below equation after the relinked signals are eliminated

after Redundancy Reduction.

5

ℎ̂𝑛(�̂̃�(𝑛,𝑢), �̂̃�(𝑛,𝑢))

= ∑ �̂̃�𝑗
(𝑛,𝑢)

, �̂�𝑗
(𝑛,𝑢)

𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 {1,… ,𝐿−𝑄}

(6)

 After all ℎ̂𝑛 is initialized, the second and last

stage of retraining is performed after which the training

constraints are binarized. High- accuracy training

followed by Redundancy Reduction proves rapid

convergence and also the initial stage of Took up table

learning that decreased chances of overfitting. The

enhancement of latency as well as area efficiency is

achieved in this proposed study by enabling adequate

memory resource use as well as faster performance with

higher efficiency of the Programmable Logic Devices

for Convolutional Neural Networks. The Concatenation

of separate tiles result in the final output.

4 Performance Evaluation.

This section of the research presents the evaluation of

model evaluation, which includes the evaluation and

comparison with the existing model to prove the model

efficiency. Moreover, in order to evaluate the model

proposed model utilizes three dataset namely MNIST

[23], CIFAR-10 [24] and ModelNet40 [25] dataset.

4.1 Evaluation on MNIST Dataset

The table1 presents a comparison of different

methodologies for image classification, each associated

with specific platforms, operating frequencies, LUT

(Look-Up Table) counts, accuracy rates, and power

efficiencies. Among these methods, several noteworthy

observations can be made. "Re-Bnet" achieves a

commendable accuracy of 98.29% using 25600 LUTs at

a frequency of 200 MHz on the Spartan XC platform.

Similarly, "FP-BNN" demonstrates a high accuracy of

98.24% on the Stratix-V platform, although its

corresponding LUT count is unspecified. "BNN-PYNQ"

attains an accuracy of 98.4% with 26809 LUTs at a

frequency of 300 MHz on the Ultra96 platform,

accompanied by a power efficiency of 267342. "Finn-R"

stands at an accuracy of 97.69% using 38205 LUTs and

300 MHz frequency on the Ultra96 platform. "Finn," on

the other hand, achieves an accuracy of 98.4% with

82988 LUTs at 200 MHz on the ZC706 platform. The

"Proposed" methodology boasts the highest accuracy of

99.2% with a relatively modest LUT count of 29156,

operating at 300 MHz on the Ultra96 platform.

Impressively, this methodology maintains a power

efficiency of 882190.

Table 1 MNIST dataset comparison

Methodol

ogies

Platfo

rm

Freque

ncy

LU

T

Accur

acy

Power

Efficie

ncy

Re-Bnet

[26]

Spart

an

XC

200 256

00

98.29 -

FP-BNN

[27]

Strati

x-V

150 - 98.24 -

BNN-

PYNQ

[28]

Ultra

96

300 268

09

98.4 26734

2

FINN-R

[29]

Ultra

96

300 382

05

97.69 -

FINN[30] ZC70

6

200 829

88

98.4 -

EffiConv

Net

Ultra

96

300 291

56

99.2 88219

0

Figure 2 Accuracy comparison

The provided table compares several image processing

methodologies based on key metrics like operating

frequency, Look-Up Table (LUT) count, accuracy,

processing speed (Kfps), and area efficiency."FINN-

PYNQ" operates at 300 MHz with 25431 LUTs,

achieving an 80.1% accuracy and processing speed of

1.9 Kfps. "ReBNet" achieves 80.59% accuracy at 200

MHz, utilizing 53200 LUTs and processing at 6 Kfps.

"FBNA" has 88.61% accuracy with 26900 LUTs

(frequency unspecified) and processes at 0.5 Kfps.

"FINN-R" achieves 80.1% accuracy with 41733 LUTs at

300 MHz, processing at 19.5 Kfps. "Finn" obtains 80.1%

accuracy at 125 MHz with 365963 LUTs, processing at

125 Kfps. The "Proposed" method reaches a 94.2%

accuracy at 210 MHz using 290012 LUTs, processing at

205 Kfps.These findings highlight trade-offs between

accuracy, processing speed, and LUT utilization. The

"Proposed" approach strikes a balance, excelling in

accuracy and processing speed while efficiently using

resources. Method selection depends on specific

application requirements.

4.2 Evaluation on CIFAR dataset

The table2 presents a concise analysis of various image

processing methodologies based on key performance

indicators. "FINN-PYNQ" achieves an 80.1% accuracy

using 25431 LUTs at 300 MHz, processing at 1.9 Kfps

96.5
97

97.5
98

98.5
99

99.5

A
cc

u
ra

cy
Methodologies

Accuracy

6

with an area efficiency of 0.074. "ReBNet" operates at

200 MHz with 53200 LUTs, yielding 80.59% accuracy

and processing at 6 Kfps, showing an area efficiency of

0.11. "FBNA" achieves an 88.61% accuracy with 26900

LUTs (frequency unspecified), operating at 0.5 Kfps and

having an area efficiency of 0.02."FINN-R" and "FINN"

both operate at 300 MHz, using 41733 and 365963 LUTs

respectively, achieving 80.1% accuracy. "FINN-R"

processes at 19.5 Kfps with an area efficiency of 0.467,

while "FINN" achieves 125 Kfps with an area efficiency

of 0.34 at 125 MHz. The "Proposed" method operates at

210 MHz with 290012 LUTs, attaining a high 94.2%

accuracy and processing at an impressive 205 Kfps,

accompanied by an area efficiency of 0.727.

Table 2 CIFAR dataset

Methodolo

gies

Freque

ncy

LUT

s

Accur

acy

Kf

ps

Area

Efficie

ncy

FINN-

PYNQ [28]

300 2543

1

80.1 1.9 0.074

ReBNet

[26]

200 5320

0

80.59 6 0.11

FBNA [31] - 2690

0

88.61 0.5 0.02

FINN-R

[29]

300 4173

3

80.1 19.

5

0.467

FINN [30] 125 3659

63

80.1 12

5

0.340

EFFICON

VNET

210 2900

12

94.2 20

5

0.727

Figure 3 area efficiency comparison

4.3 Latency based Evaluation

The provided table offers a concise yet valuable

comparison of different methodologies based on their

accuracy and latency performance. "Pointnet++ [33]"

achieves a commendable accuracy of 91.9%, albeit with

a relatively higher latency of 117.59 units. On the other

hand, "O-pointnet [34]" achieves a slightly lower

accuracy of 88.5%, with the corresponding latency not

specified, implying a potential trade-off between

accuracy and latency. Notably, "EFFICONVNET"

stands out by achieving an impressive accuracy of 93.9%

while maintaining a significantly lower latency of 19.67

units.
Table 3 Accuracy and latency

Methodologies Accuracy Latency

Pointnet++[32] 91.9 117.59

O-pointnet [33] 88.5

EFFICONVNET 93.9 19.67

O-pointnet [33] is deployed on a ZynqXC -7z045 device,

although specific resource utilization details are not

provided. Pointnet-FPGA [35] is implemented on a

ZCU104 device and demonstrates variations in width

and resource utilization. With a width of 16, it uses

30933 LUTs, 60412 Flip-Flops (FFs), 123 Block RAM

(BRAM), and 1026 Digital Signal Processing (DSP)

units. This methodology achieves a processing rate of

130 GOPS. When the width is reduced to 8, resource

utilization is adjusted, with 19530 LUTs, 36010 FFs, 114

BRAM, and 1026 DSPs, enabling an increased

processing rate of 182.1 GOPS. Similarly, point cloud

[36] is executed on a ZCU104 device with a width of 16-

8 (specific width not specified), utilizing 17614 LUTs,

12142 FFs, 365.5 BRAM, and 256 DSPs.On the other

hand, EFFICONVNET stands out in terms of resource

utilization, being implemented on a KCU150 device

with a width of 8. It employs 57366 LUTs, 54082 FFs,

84.5 BRAM, and 2400 DSPs. Impressively, it achieves a

significantly higher processing rate of 277.9 GOPS.

Methodo

logies

O-

point

net

[33]

Point

net-

FPG

A

[34]

Point

net-

FPG

A

[34]

point

clou

d

[35]

EFFICON

VNET

Device Zynq

XC -

7z04

5

ZCU

104

ZCU

104

ZCU

104

KCU150

width 16 16 8 16-8 8

LUT - 3093

3

1953

0

1761

4

57366

FF - 6041

2

3601

0

1214

2

54082

BRAM - 123 114 365.

5

84.5

DSP - 1026 1026 256 2400

GOPS 1.28 130 182.

1

17.7

3

277.9

0

0.2

0.4

0.6

0.8

A
re

a
Ef

fi
ci

en
cy

Methodologies

Area Efficiency

7

Figure 4 GOPS comparison

Conclusion

In the realm of deep learning acceleration on FPGA

platforms, the pursuit of area efficiency and low latency

has emerged as a crucial but often disjointed endeavor.

EffiConvNet stands as an innovative paradigm that

marries novel concepts such as Block Convolution, logic

expansion, and ternary neural networks. Through this

integration, the model offers an effective solution to the

intricate challenges of efficiency in deep learning

systems. The methodologies were evaluated using the

MNIST, CIFAR-10, and ModelNet40 datasets.For the

MNIST dataset, the "EFFICONVNET" methodology

demonstrated the highest accuracy of 99.2% while

maintaining an area efficiency of 882190. This approach

struck a balance between accuracy and resource

utilization on the Ultra96 platform. Similarly, on the

CIFAR dataset, the "EFFICONVNET" approach

achieved a remarkable 94.2% accuracy with an area

efficiency of 0.727 at 210 MHz, highlighting its superior

performance in both accuracy and efficiency.

Furthermore, the latency-based evaluation showcased

that "EFFICONVNET" achieved an impressive accuracy

of 93.9% while maintaining a significantly lower latency

of 19.67 units, indicating its effectiveness in balancing

accuracy and responsiveness.

References

[1] P. Dhilleswararao, S. Boppu, M. S. Manikandan

and L. R. Cenkeramaddi, "Efficient Hardware

Architectures for Accelerating Deep Neural

Networks: Survey," in IEEE Access, vol. 10,

pp. 131788-131828, 2022, doi:

10.1109/ACCESS.2022.3229767.

[2] R. Sayed, H. Azmi, H. Shawkey, A. H. Khalil

and M. Refky, "A Systematic Literature Review

on Binary Neural Networks," in IEEE

Access, vol. 11, pp. 27546-27578, 2023, doi:

10.1109/ACCESS.2023.3258360

[3] K. S. Zaman, M. B. I. Reaz, S. H. Md Ali, A. A.

A. Bakar and M. E. H. Chowdhury, "Custom

Hardware Architectures for Deep Learning on

Portable Devices: A Review," in IEEE

Transactions on Neural Networks and Learning

Systems, vol. 33, no. 11, pp. 6068-6088, Nov.

2022, doi: 10.1109/TNNLS.2021.3082304

[4] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin,

M. Srivastava, R. Gupta, and Z. Zhang,

‘‘Accelerating binarized convolutional neural

networks with software-programmable

FPGAs,’’ in Proc. ACM/SIGDA Int. Symp.

FieldProgram. Gate Arrays, Feb. 2017, pp. 15–

24

[5] K. Javeed, A. El-Moursy and D. Gregg, "EC-

Crypto: Highly Efficient Area-Delay

Optimized Elliptic Curve Cryptography

Processor," in IEEE Access, vol. 11, pp. 56649-

56662, 2023, doi:

10.1109/ACCESS.2023.3282781

[6] Y. Kuang et al., "ESSA: Design of a

Programmable Efficient Sparse Spiking Neural

Network Accelerator," in IEEE Transactions

on Very Large Scale Integration (VLSI)

Systems, vol. 30, no. 11, pp. 1631-1641, Nov.

2022, doi: 10.1109/TVLSI.2022.3183126.

[7] L. Guerra, B. Zhuang, I. Reid, and T.

Drummond, ‘‘Automatic pruning for quantized

neural networks,’’ 2020, arXiv:2002.00523.

[8] A. G. Anderson and C. P. Berg, ‘‘The high-

dimensional geometry of binary neural

networks,’’ 2017, arXiv:1705.07199.

[9] T. Fujii, S. Sato, and H. Nakahara, ‘‘A threshold

neuron pruning for a binarized deep neural

network on an FPGA,’’ IEICE Trans. Inf. Syst.,

vol. 101, no. 2, pp. 376–386, 2018.

[10] Y. Xu, X. Dong, Y. Li, and H. Su, ‘‘A

Main/Subsidiary network framework for

simplifying binary neural networks,’’ in Proc.

IEEE/CVF Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jun. 2019, pp. 7154–

7162.

[11] X. Xiao and Z. Wang, ‘‘AutoPrune: Automatic

network pruning by regularizing auxiliary

parameters,’’ in Proc. Adv. Neural Inf. Process.

Syst., vol. 32, Dec. 2019, pp. 1–15

020406080100120140160180200220240260280
G

o
P

s

Methodologies

GOPS

8

[12] Y. Li and F. Ren, ‘‘BNN pruning: Pruning

binary neural network guided by weight

flipping frequency,’’ in Proc. 21st Int. Symp.

Quality Electron. Design (ISQED), Mar. 2020,

pp. 306–311.

[13] T. Geng, A. Li, T. Wang, C. Wu, Y. Li, R. Shi,

W. Wu, and M. Herbordt, ‘‘O3BNN-R: An out-

of- order architecture for high-

performance and regularized BNN inference,’’

IEEE Trans. Parallel Distrib. Syst., vol. 32,

no. 1, pp. 199–213, Jan. 2021.

[14] J. Gao, Q. Liu, and J. Lai, ‘‘An approach of

binary neural network energyefficient

implementation,’’ Electronics, vol. 10, no. 15,

p. 1830, Jul. 2021

[15] Q. Wu, X. Lu, S. Xue, C. Wang, X. Wu, and J.

Fan, ‘‘SBNN: Slimming binarized neural

network,’’ Neurocomputing, vol. 401, pp.

113–122, Aug. 2020.

[16] B. -K. Yan and S. -J. Ruan, "Area Efficient

Compression for Floating-Point Feature Maps

in Convolutional Neural Network

Accelerators," in IEEE Transactions on Circuits

and Systems II: Express Briefs, vol. 70, no.

2, pp. 746-750, Feb. 2023, doi:

10.1109/TCSII.2022.3213847.

[17] S. Wiedemann et al., "FantastIC4: A Hardware-

Software Co-Design Approach for Efficiently

Running 4Bit-Compact Multilayer

Perceptrons," in IEEE Open Journal of Circuits

and Systems, vol. 2, pp. 407-419, 2021, doi:

10.1109/OJCAS.2021.3083332.

[18] J. Wu et al., "An Energy-Efficient Deep Belief

Network Processor Based on Heterogeneous

Multi- Core Architecture With Transposable

Memory and On-Chip Learning," in IEEE

Journal on Emerging and Selected Topics in

Circuits and Systems, vol. 11, no. 4, pp. 725-

738, Dec. 2021, doi:

10.1109/JETCAS.2021.3114396.

[19] S. Liu, H. Fan, M. Ferianc, X. Niu, H. Shi and

W. Luk, "Toward Full-Stack Acceleration of

Deep Convolutional Neural Networks on

FPGAs," in IEEE Transactions on Neural

Networks and Learning Systems, vol. 33, no. 8,

pp. 3974-3987, Aug. 2022, doi:

10.1109/TNNLS.2021.3055240.

[20] P. Plagwitz, F. Hannig, M. Ströbel, C.

Strohmeyer, and J. Teich, ‘‘A safari through

FPGA-based neural network compilation and

design automation flows,’’ in Proc. IEEE 29th

Annu. Int. Symp. Field-Program. Custom

Comput. Mach. (FCCM), May 2021, pp. 10–

19.

[21] M. Blott, N. J. Fraser, G. Gambardella, L.

Halder, J. Kath, Z. Neveu, Y. Umuroglu, A.

Vasilciuc, M. Leeser, and L. Doyle,

‘‘Evaluation of optimized CNNs on

heterogeneous accelerators using a novel

benchmarking approach,’’ IEEE Trans.

Comput., vol. 70, no. 10, pp. 1654–1669, Oct.

2021

[22] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang,

A. Howard, H. Adam, and D. Kalenichenko,

‘‘Quantization and training of neural networks

for efficient integer-arithmetic-only inference,’’

in Proc. IEEE/CVF Conf. Comput. Vis. Pattern

Recognit., Jun. 2018, pp. 2704–2713. Y. Lecun.

MNIST Datset. [Online]. Available:

http://yann.lecun.com/exdb/mnist/

[23] A. Krizhevsky. CIFAR-10 Dataset. [Online].

Available: https://www.cs.

toronto.edu/~kriz/cifar.html

[24] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X.

Tang, and J. Xiao. 3d shapenets: A deep

representation for volumetric shapes. In 2015

IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1912–

1920, 2015

[25] M. Ghasemzadeh, M. Samragh, and F.

Koushanfar, ``ReBNet: Residual binarized

neural network,'' in Proc. IEEE 26th Annu. Int.

Symp. Field- Program. Custom Comput. Mach.

(FCCM), Apr. 2018, pp. 57_64.

[26] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei,

``FP-BNN: Binarized neural network on

FPGA,'' Neurocomputing, vol. 275, pp.

10721086, Jan. 2018.

[27] Xilinx Research Labs. (2017). BNN-PYNQ.

[Online]. Available:

https://github.com/Xilinx/BNN-PYNQ.

[28] M. Blott, T. B. Preuÿer, N. J. Fraser, G.

Gambardella, K. O'brien, Y. Umuroglu, M.

Leeser, and K. Vissers, ``FINN-R: An end-to-

end deeplearning framework for fast

9

http://yann.lecun.com/exdb/mnist/
https://github.com/Xilinx/BNN-PYNQ

exploration of quantized neural networks,''

ACM Trans. Recongurable Technol. Syst., vol.

11, no. 3, pp. 1-23,Sep. 2018.

[29] Y. Umuroglu, N. J. Fraser, G. Gambardella, M.

Blott, P. Leong, M. Jahre, and K. Vissers,

``FINN: A framework for fast, scalable

binarized neural network inference,'' in Proc.

ACM/SIGDA Int. Symp. Field-Program. Gate

Arrays, Feb. 2017, pp. 6574.

[30] M. Ghasemzadeh, M. Samragh, and F.

Koushanfar, ``ReBNet: Residual binarized

neural network,'' in Proc. IEEE 26th Annu. Int.

Symp. Field-Program. Custom Comput. Mach.

(FCCM), Apr. 2018, pp. 5764.

[31] P. Guo, H. Ma, R. Chen, P. Li, S. Xie, and

D.Wang, ``FBNA: A fully binarized neural

network accelerator,'' in Proc. 28th Int. Conf.

Field Program. Log. Appl. (FPL), Aug. 2018,

pp. 511513.

[32] J. Kim, J. K. Lee, and K. M. Lee, “Accurate

image super-resolution using very deep

convolutional networks,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., 2016, pp.

1646–1654.

[33] N. Suda et al., “Throughput-optimized

OpenCL-based FPGA accelerator for large-

scale convolutional neural networks,” in Proc.

ACM/SIGDA Int. Symp. Field Program. Gate

Arrays, 2016, pp. 16–25.

[34] Y. S. Shao et al., “SIMBA: Scaling deep-

learning inference with multichip- module-

based architecture,” in Proc. 52nd Annu.

IEEE/ACM Int. Symp. Microarchit., 2019, pp.

14–27.

[35] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo,

“Optimizing loop operation and dataflow in

FPGA acceleration of deep convolutional

neural networks,” in Proc. ACM/SIGDA Int.

Symp. Field Program. Gate Arrays, 2017, pp.

45–54.

BIOGRAPHIES OF AUTHORS

Ms. G. Naga Swetha, Research

Scholar, Department of E&CE,

Guru Nanak Dev Engineering

College, Affiliated to

Visvesvaraya Technological

University (VTU), Public

university in Belgaum,

Karnataka. She is presently

working as Asst Professor in

Dept. of ECE, Madanapalle

Institute of Technology &

Science, Madanapalle, Andhra

Pradesh. She has 15 years of

teaching experience and she

Completed her M.Tech in

Embedded Systes in Jawaharlal

Nehru Technological

University, Anantapuramu. She

did B.Tech – EIE in Jawaharlal

Nehru Technological

University, Anantapuramu. She

is doing the present research

work on Cryptography and

VLSI design. She has 5 reputed

International journals and 6

International Conferences.

Dr. Anuradha M. Sandi,

Professor & R&D Coordinator,

Department of E&CE, Guru

Nanak Dev Engineering

College, Affiliated to

Visvesvaraya Technological

University (VTU), Public

university in Belgaum,

Karnataka. She done her

research in the Area of

Specialization - Micro and

Nano Characterization. She is a

recognized supervisor under

Visvesvaraya Technological

University (VTU), Public

university in Belgaum. She has

25 years of teaching experience

in E&CE. She completed her

PhD in Gulbarga University,

Gulbarga and M.Tech from

VTU Belgaum. She published

32 journals in reputed National

& International level and 21

Conference papers in reputed

National & International level.

10

