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Abstract: The automation of tasks such as environmental monitoring, toxin detection, and mineral resource identification requires
artificial agents with perceptual discrimination capabilities to identify the predominant features in environments much larger than their
sensing range. The key challenge is developing collective decision-making methods that allow agents to predict a global perspective
of the environment from local observations. Our research explores the leverage of collective decision-making for binary perceptual
discrimination tasks, using evolutionary computation techniques to synthesise an artificial neural network controller. We focus on
strategies that generalised better to patchy and clustered feature distribution environments. We investigate three communication strategies
- close-neighbour, rand-neighbour, and far-neighbour- in which robots exchange opinions about the dominant colour of the environment
based on the distance between sender and receiver robots. The results show that the rand-neighbour strategy significantly improves
performance, particularly in unseen patchy patterns. The extensive analysis of the communication dynamics among the robots indicates
that the effectiveness of rand-neighbour strategy is attributed to its efficient circulation of opinions among both close and distant robots.
Our findings support the hypothesis that primordial communication between one receiver robot and a randomly chosen emitter robot is
sufficient to develop an effective collective decision-making strategy for swarm of robots engages in perceptual discrimination tasks.
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1. Introduction
In environments where the size greatly exceeds the

sensing capabilities of individual agents, there is a sig-
nificant risk of inaccurate evaluations, leading to incorrect
decisions. Tasks such as environmental monitoring, toxin
detection, and mineral resource identification require ar-
tificial agents with perceptual discrimination abilities to
identify key features in unknown environments. Employing
multiple agents to cover a larger area can make possible to
gather more comprehensive information about the quality
of environmental features or options.

Nevertheless, effective mechanisms are needed to al-
low the group of agents to make autonomous collective
decisions. Swarm robotics is the research domain that
tries to identify the individual mechanisms underpinning
collective decision-making as well as other complex collec-
tive responses. Generally speaking, swarm robotics systems
address tasks that require collaborative efforts of a large
number of agents interacting with each other to solve
complex and extensive problems that would be otherwise

impossible for a single agent to handle. Inspired to the
behaviour of social insects, the distinctive characteristics of
swarm robotics is self-organisation, distributed control, and
local sensing, which endow the swarm with a higher level of
fault tolerance, scalability, and adaptability to environmental
disturbances [1].

The design methods in swarm robotics require roboti-
cists to identify individual behaviours that generate the
swarm desired collective response [2]. However, this is a
particularly challenging design problem, since the collective
response is a phenomenon that emerges from complex and
difficult-to-predict dynamics involving both robot-robot and
robot-environment interactions. This design problem can be
found in the study of many swarm responses, including
those requiring collective decision-making, which is the
process of choosing an option between those available by
the swarm of robots in a collective way. The characteristics
of collective decision-making is that once a consensus is
reached, it cannot be attributed to any specific member of
the swarm. Rather, it emerges from the complex spatial and
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temporal interactions involved in the opinion exchange pro-
cess among swarm members [3]. In the literature regarding
swarm robotics, collective decision-making techniques are
generally investigated in two-options scenarios in which
the swarm robots have to find a consensus on the best
option between the two available. This type of scenarios
is generally referred to as best-of-n (where the number
of available options is two) problem [4], [5]. A specific
type of best-of-2 decision-making problem is a perceptual
discrimination task where the two options are spread within
the environment, with the better quality option associated to
the one that appears in a larger quantity than the alternative
one. Since the perceptual capabilities of the robots are lim-
ited, a consensus on the best-quality option can be achieved
only through a collective decision process in which robots
explore different areas of the environment, and interact in
order to “integrate” their perceptual experiences to converge
to a common opinion on the best option.

One effective method to design individual control mech-
anisms underpinning collective decision-making in percep-
tual discrimination tasks is the hand-coded approach. In this
methodology, designers meticulously craft individual mech-
anisms that drive the collective response to the problem
at hand. The literature has demonstrated the effectiveness
of the hand-coded approach, especially when adopting the
Voter model principles, where robots modify their opinions
based on selecting a random neighbour [6], [7], or the
majority rule, where the opinion aligns with the opinion that
supported by the majority of a group of neighbours [8], [9].
However, the design of hand-coded controls often relies on
strong assumptions made by designers regarding how the
problem should be addressed. These assumptions can limit
the ability of the swarm to exploit subtle irregularities in
physical and social perceptual cues, which could otherwise
enhance the collective decision-making process [10]. Recent
research has highlighted weaknesses in the hand-coded
approach, particularly its adaptability in dynamic environ-
ments where the optimal option changes over time [11],
[9].

Recently, an alternative design approach based on evo-
lutionary robotics (ER) has been introduced [12]. In this
approach, the decision making unit generating the agent’s
opinion is an artificial neural network synthesised using
evolutionary computation techniques [13]. A notable fea-
ture of the ER approach is the automation of the design
process, which significantly reduces the influence of de-
signer assumptions. Recent research work [14] provides
evidence that the ER approach outperformed the hand-
coded approach with respect to robustness, scalability, and
adaptability of the collective response of the group.

The study illustrated in [15] highlights that the challenge
in perceptual discrimination tasks lies not only in the
magnitude of the difference between the quality of the two
options, but also in their distribution patterns. This result
has been found in a type of perceptual discrimination task

in which the options are two colours covering the floor of an
arena that the robots explore with a random movement, and
the quality refers to the proportion of floor covered by each
option. In particular, the authors focused on nine benchmark
environments with varying feature distribution patterns, as
shown in Figure 1. The results achieved by this study
show that, regardless of the difference in quality, groups
designed to perform optimally in the Random type of envi-
ronments (see Figure 1, Random) experience a performance
drop when they are post-evaluated in the Off-diagonal and
Stripe environment (see Figure 1, Off-diagonal, and Stripe).
This observation has been corroborated by other recent
studies [12], [16], [17] which report the same type of
performance drop in spite of the fact that they employ
artificial neural network as robots controllers to improve
the robustness of the collective response.

Figure 1. Images of the nine floor patterns used in this experiment.
The Random is the floor pattern experienced by the robots during
the design phase. The other eight floor patterns, originally intro-
duced in [15], are used as robustness test of the decision-making
mechanisms used by the robots to perform this binary perceptual
discrimination task.

The main focus of this study is to overcome the lim-
itations illustrated in [15], [12], [16], [17] by developing
individual decision-making mechanisms underpinning a col-
lective response that allow a swarm of robots to perform
sufficiently well in all the nine types of floor distribution
patterns illustrated in Figure 1. In order to achieve this
objective, we focus on multiple elements such as the type
of individual random walk used by the robots to explore
the arena, the structure of the neuro-controller, as well as
on the characteristics of the communication strategy used
to exchange individuals opinions. We found out that, this
latter element is the one that allowed us to achieve an im-
portant improvement in terms of robustness of the collective
decision with observing specific floor patterns. Particularly,
we found out that only when the communication events
happens between a robot receiver and a randomly chosen
(rather than the closest as in [15], [12], [16], [17]) emitter
among those within communication range, no performance
drop is observed while moving from Random to all the other
nine floor patterns. We show that the superior robustness
observed in group in which the communication happens
between a robot receiver and a randomly chosen emitter
can be attributed to a more effective circulation of opinions
among both the spatially close and distant robots, thereby
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maintaining a high accuracy rate in the decision process
throughout the eight floor patterns not experienced by the
robots during the design phase. We would like to bring
to the reader’s attention that this study is an extension of
our previous study in [18], where we developed an effective
collective decision-making strategy for a group of 20 e-puck
robots. However, this research extends [18] by focusing
on enhancing communications strategies to improve group
performance that generalised better to environments with
patchy, clustered feature distribution.

2. Methods
The task the robots are required to perform in this

experiment is a binary perceptual discrimination problem.
The robots have to collectively choose which colour covers
the largest proportion of a closed square arena (200×200
cm), tiled with black and white 10×10 cm tiles. We consider
two scenarios: i) a simple scenario (hereafter, referred to
as S-env), in which the difference in the proportion of black
and white tiles is relatively large, since 66% of the arena
floor is covered by one colour (the dominant one), while the
other colour covers the remaining 34% of the arena floor;
ii) the hard scenario (hereafter, referred to as H-env), in
which the ratio difference of black and white tiles is smaller
than in S-env, since one colour (the dominant one) covers
55% of the arena floor, while the other colour covers the
remaining 45% of the arena floor. For both the S-env and the
H-env scenario, the robots experience both environments:
black dominant environment (hereafter, referred to as BD-
env), and white dominant environment (hereafter, referred
to as WD-env).

Random positions and orientations are initially chosen
to place a swarm of 20 robots in the arena (see Figure 2a).
The robots have to explore the arena and reach consensus
on the option with the best quality (i.e., choosing the
currently dominant colour) over a period of 400 seconds.
While exploring the arena, the robots can communicate
with spatially proximal neighbours their current opinion.
Consensus to the correct option is attained whenever all
the 20 robots shared the same correct opinion about which
colour is currently dominant for at least 10 s.

Our simulation model the e-puck robot [19], a popu-
lar miniature robot commonly utilised in swarm robotics.
The simulated robot is equipped with a floor sensor for
binary colour detection (0 for black and 1 for white) and
eight infrared sensors for obstacle detection. The robots
communicate using Range and Bearing sensors, with the
communication range limited to 50 cm. To bridge the gap
between the simulation and reality, a uniform noise of 10%
is appended to all motor outputs, sensor readings, robot
positions, and orientations.

The robot’s exploration of the environment is based on
ballistic motion [20], a variant of random walk used in
robotic swarm mapping. This movement pattern involves
the robot travelling in a straight line (ballistic trajectory)
until encountering an obstacle (other robots or the arena

wall), at which point it randomly changes direction. Ballistic
motion has proven to be effective in exploring enclosed
environments [21]. Figure 2b illustrates the finite state
machine controlling the robot’s movement.

The robot’s decision-making process is controlled
by a Continuous-Time Recurrent Neural Network
(CTRNN) [22], optimised using artificial evolutionary
techniques. The CTRNN comprises 2 sensor neurons, 4
internal neurons, and 1 output neuron representing the
robot’s opinion. The topology of the CTRNN is depicted in
Figure 2c. The network input includes the readings of the
floor sensor and the received communication signal from
a randomly selected neighbour chosen from those located
at a distance less than 50 cm away from the receiver.
The network outputs a binary value where 1 corresponds
to the opinion that the dominant colour is white, and 0
corresponds to the opinion that the dominant colour is
black. This binary value, corresponding to the current
robot’s opinion, is communicated among spatially proximal
robots, as mentioned above. If, for a robot receiver there
are no neighbouring robots within communication distance
(i.e., < 50 cm), the reading of the receiver’s sensor neuron
for communication is set to 0.5. During communication,
only one neighbour’s opinion is selected from the set of
available neighbours.

Equations 1, 2, and 3 illustrate how the sensory, internal,
and opinion neurons are updated at every simulation cycle.

yk = gIk; k ∈ {1, ...,M}; with M = 2; (1)

τkẏk = −yk +

j=M+4∑
j=1

ω jkσ(yk + β j); k ∈ {M+1, ..,M+4};(2)

yk =

j=M+4∑
j=M+1

ω jkσ(y j + β j); k ∈ {M + 5}; (3)

with σ(x) = (1 + e−x)−1. These equations incorporate
terms reminiscent of real neuron functions: cell potential
is denoted by yk, the decay constant is τk, g represents the
gain factor, and Ik is the activation of the kth sensor neuron
where k = 1, ..,M (refer to Figure. 2c for mapping between
sensor neurons and their corresponding sensors), ωk j the
synaptic connection strength from neuron j to neuron k,
the bias term β j, the firing rate σ(y j + β j). The same bias
(βI) for all sensory neurons, and the same holds for opinion
neuron (βO). The genetically specified network parameters
include: τk and βk of internal neurons, βI , βO, ωk j represents
the weights of all the network connections, and g. When
the network is initiated or reset, the cell potentials reset to
0. For integrating equation 2, the forward Euler method is
employed with an integration time step of ∆T = 0.1

A simple evolutionary algorithm that uses tournament-
based selection, as illustrated in [12] is used to optimise
the networks’ parameters. This population comprises 64
genotypes. New generations emerge from a mixture of elitist
selection, recombination, and mutation. Each generation
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Figure 2. (a) The simulation environment. (b) The finite-state
machine controlling the robots’ movements. (c) Continuous-Time
Recurrent Neural Network (CTRNN) generating the robots’ opinion.

preserves the six best performing individuals (i.e., ‘elite’)
from the preceding generation without any change. The
rest of the new generation is formulated by proportionally
selecting the fittest 40 of the prior generation.

During the evolutionary phase, each group undergoes
eight evaluations in the S-env condition (four in BD-env and
four in WD-env), with each evaluation lasting 400 seconds
(equivalent to 4000 simulation steps). In every evaluation,
the genotype is decoded into a neuro-controller, which is
then replicated in all 20 robots (considering a homogeneous
swarm). The robots are placed randomly in the arena, both
in terms of position and orientation. After the first 2000
simulation steps, the robot r opinion is evaluated in every
simulation step t (i.e., Or

t ). The average opinion of the 20
robots R is calculated and fitness assigned to the group
according to Equation 4.

Fe =


T
2
∑T

t= T
2

∑R
r=1 Or

t in WD-env
T
2
∑T

t= T
2

∑R
r=1(1 − Or

t ) in BD-env
(4)

The evaluation of the fitness score in the latter half of
the trial time is deliberate to avoid instability of opinion
state during the initial exploration phase. In this early stage,
robots have not yet accumulated sufficient physical and
social experience of the environment.

Regarding computational complexity, the time required
to complete a single evolutionary run, when executed on a
Dell PowerEdge server equipped with 64 cores and 256 GB
of main memory, is approximately 10 hours.

3. Results
For designing the controller of the robots, we perform

five separate evolutionary runs, each one lasting 2000 gen-
erations. We remind the reader that during the evolutionary
phase, the robots experience only the Random floor pattern
(see first image in Figure 1). In order to select the best group
(i.e., the best genotype), the highest-ranked groups from the
1000th to the 2000th generation of each evolutionary run are
re-evaluated 50 trials in BD-env and 50 trials in WD-env
environment. The best group out of these re-evaluations is
chosen for the demonstration of the ability of the decision-
making techniques that based on the neural-network to grant
a swarm of simulated robots to attain consensus in the WD-
env and the BD-env. Moreover, we show that the group can
adapt to different floor patterns to the one examined through
the design phase. In particular, this study show the accuracy
of the decision-making process on the best group in eight
extra floor patterns shown in Figure 1.

As far as it concerns the performances in the Ran-
dom floor pattern, Figure 3 shows the decision-making
development process by displaying the opinions of all the
robots of the best group in both the S-env and in the H-
env conditions, respectively. In both graphs, white boxes
indicate the robots’ number which have the right opinion
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in the WD-env environment, while black boxes indicate
the robots’ number which have the right estimation in
the BD-env environment. Where each box is produced by
50 points (each point is corresponding to a different seeded
re-evaluation trial). Figure 3a refers to the robots’ opinion
in S-env (i.e., the dominant colour takes 66% of the tiles that
consisting the arena floor), while Figure 3b to the robots’
opinion in H-env (i.e., the dominant colour takes 55% of
the tiles that consisting the arena floor).

0

5

10

15

20

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
seconds

nu
m

be
r 

of
 ro

bo
ts

(a)

0

5

10

15

20

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
seconds

nu
m

be
r 

of
 ro

bo
ts

(b)

Figure 3. Boxs plot presenting the robots’ number which have the
right estimation in the WD-env environment (represented by the
white boxes) and in the BD-env environment (represented by the grey
boxes) at constant time durations of 20 s until the trial end (400 s).
(a) S-env condition; (b) H-env condition. Each box is produced by 50
points (where each point is corresponding to a different seeded trial).
The inter-quartile range of the data is represented by boxes, while
the median value is marked by horizontal bars inside the boxes. The
whiskers extend to the most extreme data points within 1.5 times
the inter-quartile range from the box.

The graphs indicates that the best group reaches a con-
sensus on the correct option, in both types of environments
and in both the S-env and in the H-env. Moreover, the
consensus is reached more quickly in the S-env than in
the H-env condition. The consensus on the correct option
in the H-env condition is reached in approximately 200
seconds in both types of environments. Note that, the
robots’ control system has been designed in the S-env. Thus,
the H-env represents a rather novel environmental condition
for these robots. It should be noted that in Figures 3a and 3b,
the group converges to the white opinion in WD-env at
time 0. This is due to the genetic basis of the evolved
controller which even in the absence of any perceptual
evidence—as it happens at the beginning of each trial—
it selects opinion WD-env. The emergence of a genetic bias
in binary collective and individual robot decision scenarios
has been documented in previous research (e.g., see [23]),
where robots are managed by analogous neural network
architectures.

A. Robustness to Different Floor Patterns
To evaluate the robustness of the best group to environ-

ments with floor patterns different from those experienced
during the design phase, we estimated the accuracy in
the decision-making process of this group in eight extra
floor patterns shown in Figure 1. The results are shown
in Figure 4. The graphs show accuracy, that is the trials
number (over 50 trials) where the consensus state to the
correct opinion is reached by the group for at least 10 s,
in nine distinct floor patterns. That is the Random pattern,
already experienced during the evolutionary design phase,
and eight extra patterns never experienced before. In this
post-evaluation test, each trial lasts 1000 s. Figure 4a shows
the results in S-env (i.e., the ratio of dominant colour tiles
is 66%). The graph demonstrates good performances with
a relatively high success ratio in all the floor patterns. In
particular, its is worth noticing the accuracy in the Off-
diagonal and Stripe, which remains above 80% in both floor
patterns and for both the WD-env (see Figure 4a, white bars
for Off-diagonal and Stripe) and the BD-env (see Figure 4a,
black bars for Off-diagonal and Stripe). This is a significant
performance improvement with respect to previous related
works [16], [17], in which the authors report a significant
performance drop, in term of accuracy, of robots required
to operate in those patchy floor patterns (i.e., the Off-
diagonal and the Stripe) without having experienced them
during the design phase. In the next Section, we provide
further evidence which illustrates the significance of the
communication strategy in allowing the best group to extend
its good accuracy rate to those eight floor patterns not
experienced during the design phase. Figure 4b presents the
results in H-env (i.e., the ratio of dominant colour tiles is
55%). When the variation in the proportion of floor overlay
by the two colour reduced, a slight performance degradation
observed across all the environment patterns, particularly
in the Stripe environment. This accuracy drop can be, in
large parts, accounted for by considering that the criteria for
defining success in our experiment setup (i.e., all 20 robots
must agree on the correct option for at least 10 s) is very
stringent. It is worth mentioning that in many unsuccessful
trials in the H-env, the majority of the robots (e.g., 18 or 19
robots) shared the same opinion about the correct option.
However, in spite of the large convergence of the robots to
the right opinion, given our definition of consensus, those
trials are not considered successful. Generally speaking,
the performance shown in Figure 4a and 4b represent a
significant improvement compared to the results reported in
recent research works [16], [17], where poor performance
was reported even in S-env condition, particularly in patchy
environments (e.g., Off-diagonal and Stripe).

Figure 5 shows the time to converge to consensus which
is calculated over successful experiments only (out of 50
post-evaluation trials), in nine distinct floor patterns. The
white boxes refer to time to convergence in the WD-
env, while the black boxes refer to time to convergence
in the BD-env. Each trial lasts 1000 s. In Figure 5a, the
graph shows the results in S-env (i.e., the proportion of
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(a)

(b)

Figure 4. Bar plots representing accuracy, which is measured by
the trials’ number (from 50 experiments) where the swarm robots
attained the consensus state to the correct opinion for at least 10 s, in
nine distinct floor patterns (see [15] and Section 1). The white bars
refer to accuracy in the WD-env environment, while the black bars
refer to accuracy in the BD-env environment. Each trial lasts 1000 s.
In (a), the graph shows the results in S-env (i.e., the proportion of
the dominant colour tiles is %66 ) while in (b), the graph shows the
results in H-env (i.e., the proportion of the dominant colour tiles is
%55).

the dominant colour tiles is %66 ) while in Figure 5b, the
graph shows the results in H-env (i.e., the proportion of the
dominant colour tiles is %55). Similar trends are observed
in both graphs, with slightly longer time to converge to
consensus in H-env. An obvious increase in the time to
convergence is observed in the Stripe environment in both
graphs. This explains why the trial duration was increased
from 400 s during the design phase, to 1000 s for this post-
evaluation tests.

B. Further Investigation On the Communication Strategies
In the previous Section, we have shown that our ex-

perimental setup allowed us to design decision-making
mechanisms using evolutionary-designed neuro-controllers,
that allow a group of robots to accurately choose the correct
options between two alternatives in a perceptual discrim-
ination task. More importantly, we have shown that our
best group manages to generalise its performance to floor
patterns not experienced during the design phase. This result
is particularly relevant because it represents a step forward
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Figure 5. Box plots indicating time to converge to consensus
which is calculated within successful experiments only (out of 50
post-evaluation trials), in nine distinct floor patterns (see [15] and
Section 1). The white boxes refer to time to convergence in the WD-
env environment, while the black boxes refer to time to convergence
in the BD-env environment. Each trial lasts 1000 s. In (a), the graph
shows the results in S-env (i.e., the ratio of the dominant colour tiles
is %66 ) while in (b), the graph shows the results in H-env (i.e., the
ratio of the dominant colour tiles is %55).

compared to the results of previous research works [16],
[17], which all reported a large drop in decision accuracy in
patchy distributed floor patterns (i.e., the Off-diagonal and
the Stripe). In order to achieve the good accuracy rate at
the robustness test shown above, we have modified several
elements of the original experimental setup as illustrated
in [16], [17]. In particular, we have modified the type of
random walk with which the robots explore the arena, the
structures of the neuro-controller by increasing the number
of neurons in the hidden layers, and the communication
strategy allowing a receiver robot to receive communication
signals from a randomly chosen robot among those in the
communication range. These three modifications have been
introduced progressively, one after the other with the intent
to improve the accuracy at the Robustness test. However,
a significant improvement in performance accuracy in the
patchy distributed floor patterns has been observed only
after having introduced the modification concerning the
communication strategy. Thus, this indicates that the new
communication strategy has the largest merit in improving
the accuracy rate.

In this section, we show the results of further post-
evaluation tests which aim to provide elements to explain
why the new communication strategy proven more effective
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than the previous strategy in making the collective decision
process robust enough to deal with all different floor pat-
terns shown in Figure 1.

To understand how effective communication contributes
to collective performance, we studied communication strate-
gies focusing on the distance between signal sender and
receiver. In particular, we investigated three types of com-
munication strategies: i) a strategy called close-neighbour
in which the communication events are possible only be-
tween a robot receiver and a robot emitter located at the
shortest distance to the receiver among those within the
receiver communication range (i.e., 50 cm); ii) a strategy
called rand-neighbour in which communication events are
possible between a robot receiver and a randomly chosen
robot emitter among those within the receiver communi-
cation range; iii) a strategy called far-neighbour in which
communication events are possible only between a robot
receiver and a robot emitter located at the longest distance to
the receiver among those within the receiver communication
range.

In this post-evaluation tests, we run 50 trials in which
we recorded, for each type of communication strategy
employed by the robots (i.e., the close-neighbour, the rand-
neighbour, and the far-neighbour), the number of commu-
nication events falling in each of the following distance cat-
egory: i) <= 20 cm, ii) (20 cm, 30 cm], iii) (30 cm, 40 cm],
and iv) (40 cm, 50 cm]. This post-evaluation test is meant to
provide better insights into how opinions are communicated
within the group.

Figure 6 shows heatmaps of the communication fre-
quency between the robots during 50 trials, with the
communication frequency sampled every 10 s over a trial
duration of 400 s. The darker the cell colour in the map,
the higher the frequency of communication. Figures 6a, 6b,
and 6c represent the frequency of communication in the
close-neighbour, rand-neighbour and far-neighbour strate-
gies, respectively. As expected, when the robots employ
the close-neighbour strategy (Figure 6a), the most frequent
interactions are those falling into the category < 20 cm.
On the contrary, when the robots employ the far-neighbour
strategy, the most frequent interactions are those falling
into the category (40 cm, 50 cm]. This demonstrates that
in close-neighbour and far-neighbour strategies, opinion
exchanging is spatially restricted to robots within a specific
range of distances. That is, communication tends to concern
either spatially close robots (when the group employs the
close-neighbour strategy) or spatially distant robots (when
the group employs the far-neighbour strategy). This bias
affects the way in which opinions flow within the group,
with a clear negative consequence on the accuracy in the
patchy distributed floor patterns. Note that, in those works
that reported a significant performance drop in the patchy
floor patterns (i.e., [16], [17]), the robots employ the close-
neighbour strategy. When the robots employ the rand-
neighbour strategy, we notice a frequency distribution sim-
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Figure 6. Heatmaps showing the frequency of communication events,
over 50 trials, between two robots located at progressively longer
distances. In particular, communication events are categorised into
four categories (i.e., <= 20 cm, (20 cm, 30 cm], (30 cm, 40 cm],
(40 cm, 50 cm]) based on the distance between the robot emitter and
the robot receiver. In (a), the graph refers to the condition in which
communication events are possible only between a robot receiver
and a robot emitter located at the shortest distance to the receiver
among those within the receiver communication range. In (b), the
graph refers to the condition in which communication events are
possible between a robot receiver and a randomly chosen robot
emitter among those within the receiver communication range. In (c),
the graph refers to the condition in which communication events are
possible only between a robot receiver and a robot emitter located at
the longest distance to the receiver among those within the receiver
communication range.

ilar to the far-neighbour strategy but definitely less biased
towards the category (40 cm, 50 cm] (see Figure 6b). This
indicates that, when the robots employ the rand-neighbour
strategy, as in our experimental setup, opinions circulate
more frequently than in the close-neighbour strategy among
distant robots, and also more frequently than in the far-
neighbour strategy among the nearest robots. This is an
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element that favours an opinion exchange process that
turns out to generate decision-making strategies capable
of dealing with the patchy floor distributions without a
significant accuracy drop in the group performance (see
Figure 4).

A final series of post-evaluation tests is run to further
investigate how the opinions flow within the group for the
three different communication strategies. In particular, we
run 50 trials in which, for each type of communication
strategy, we recorded the number of communication events
between a receiver and senders, within communication
range, ordered from closest to farthest. For example, the
closest sender is considered the first 1, the second closest
to second 2, and so forth. The primary focus of this test is
to correlate the communication strategies with the number
of available robots within communication range, aiming to
understand how this number affects the performance of
opinions exchanged between robots. Figure 7 shows the
number of communication events between a receiver and
senders, within communication range, ordered from closest
to farthest. These events are computed over 50 trials in
post-evaluation tests in which the robots employ the close-
neighbour strategy (see Figure 7a), the rand-neighbour
strategy (see Figure 7b), and the far-neighbour strategy
(see Figure 7c). The number of communication events is
sampled every 10 s over a 400 s trial. It is worth noticing
that, as for the previous test, the rand-neighbour strategy
generates distributions of events more similar to the far-
neighbour strategy, while recording the highest number of
communication events for the first robot.

Generally speaking, the rand-neighbour strategy seems
to generate a circulation of opinions between both closest
and farthest robots, while the close-neighbour strategy al-
lows only communication between the closest robots among
those within communication range, and the far-neighbour
strategy only between the farthest robots among those
within communication range. Thanks to this property, the
rand-neighbour strategy, contrary to the other two, allows
the group to maintain a high accuracy rate even in the
patchy floor patterns.

This study describes a series of experiments designed
to develop effective and robust swarm robotics control
mechanisms to allow the robots to perform a binary col-
lective perceptual discrimination task, in which we vary
not only the options’ quality but also the way of the
perceptual cues distribution within the environment. Our
primary objective was to overcomes certain limitations
observed in similar recent studies [15], [12], [16], [17],
concerning the robustness of the collective decision-making
process. In particular, we focus on a task where the decision
making mechanisms for individuals are first optimised to
let a swarm of robots to obtain a high accuracy rate in the
collective decision in a type of environment in which cues
are distributed randomly, and subsequently tested for their
robustness in eight different environments where cues are
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Figure 7. Bar plots showing the number of communication events be-
tween a receiver and senders, within communication range, ordered
from closest to farthest. The x-axis refers to the ordinal number of
the senders, while the y-axis refers to the number of communication
events. These events are computed over 50 trials in post-evaluation
tests in which the robots employ (a) the close-neighbour strategy,
(b) the rand-neighbour strategy, (c) the far-neighbour strategy.

distributed differently.

In order to improve the robustness, we modified three
elements compared to [12], [16], [17]: the way in which
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the robots explore the arena, the structure of the neuro-
controller, and the communication strategy among the
robots. In this paper, we illustrate the important improve-
ments, in terms of robustness of the collective response
with respect to [15], [12], [16], [17] emerged thanks to
the introduction of an alternative communication strategy,
in which the opinions are exchanged between a robot
receiver and a randomly chosen (instead from the closest as
in [15], [12], [16], [17]) robot sender among those within
communication range.

4. Conclusions and FutureWork
Our findings indicate that the control mechanism fol-

lowing the new communication strategy significantly en-
hances performance, particularly in unseen patchy patterns
of option distribution in the environment. The superiority
of the random strategy over the previously used solutions
is due to its more efficient circulation of opinions among
both the spatially close and distant robots, thus ensuring
high accuracy of opinion even in environments with patchy
distributed features. However, we believe further investiga-
tion is needed to understand whether this improvement is
consistent across other types of environmental patterns and
tasks such as site selection.

In the future, we plan to investigate the impact of com-
munication strategies on the performance of larger swarm
size. We also intend to transfer the developed controller to
physical e-puck robots to validate our findings in a physical
system.
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