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Abstract: Real-time monitoring of output electrical parameters of the transmitted signals in a capacitive resistivity underground imaging
system is necessary because these are significant in the calculation of underground resistivity, however, machine learning has not yet
been applied in this application to improve the accuracy of measurement. This study aims to develop and select the best prediction
models that can be implemented for a digital measuring unit suitable for capacitive resistivity underground imaging. Three deep neural
network models namely Elman recurrent neural network (ERNN), long short-term memory (LSTM), and gated recurrent unit (GRU)
were explored to build prediction models for the current and voltage of the transmitter circuit. The prediction models’ performance was
assessed using mean squared error (MSE), which is reduced to its absolute lowest value. The result shows that the best-trained models
for current and voltage prediction are the ERNN models with configurations of 900-600-500 hidden neurons network with training
MSE of 9.82 X 10-9 and the configured 1300-1000-900 hidden neurons with training MSE of 0.465, respectively. With the help of the
prediction models, it would be possible to measure current and voltage output accurately, allowing simultaneous data acquisition while
avoiding the need for a separate measuring device.

Keywords: Deep neural network, Recurrent neural network, Long short-term memory, Gated recurrent unit, Digital measuring
circuit, Underground imaging

1. Introduction
Underground utility demand in the Philippines was

projected to have an increasing trend as there is a con-
stantly growing population rate from 1960 to 2021 with
26.27 million up to 111.05 million people, respectively
[1]. Increasing population and industrial expansion both
contribute to the establishment of various underground
service utility lines such as pipes, water lines, electricity,
and drainage [2]. With that, it introduces the exploration of
utility and object detection through underground imaging
technology to properly handle the web of utility lines. The
study of underground imaging is necessary for the effective
construction and operation of urban underground facilities
[3]. This has been a well-known strategy since it has a non-
destructive approach to detecting underground objects and
structures, reducing the pre-construction process’s adverse
effects [2]. Specifically, a capacitive resistivity underground

imaging system is composed of a configured transmitter and
receiver antennas that are capacitively coupled in the ground
[4], [5] to measure the potential difference in resistivity
readings [6]. The transmitter emits low-frequency elec-
tromagnetic waves into the ground and the multi-receiver
systems will detect the reflected signals generated by a
conductive anomaly [7]. Thus, this concept conveys that
penetration, resolution capabilities, and frequency selection
are incorporated into a well-configured antenna design.

Numerous designs of transmitter antennae appropriate
for underground imaging have been developed over the
years [8], [9]. In one investigation, a circular patch an-
tenna that operates within 500 MHz and 2 GHz and is
appropriate for GPR applications of detection of buried
objects was used [10]. A high-power Gaussian monopulse
ultrawideband transmitter for buried object detection was
created using a different design that combined two pulse
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generators based on Marx transistor, a Vivaldi antenna,
and a balun [11]. Moreover, a transmitter unit which is a
transverse electromagnetic flared (TEM) horn antenna with
a pulse shaping circuit consisting of a crystal oscillator
with an oscillation frequency of 10 MHz and an amplitude
in the range of ±1 V has been developed for imaging of
water pipelines [12]. Hence, in utilizing transmitter antenna
design, one important factor is to monitor the current and
voltage for verification of the parameters of output signals
that are essential for the calculation of the subsurface
resistivity, and this can be done through a measuring device
such as the digital multimeter or an electrical measuring
unit.

Digital multimeter (DMM) has various measuring ca-
pabilities such as Direct Current (DC) current/voltage, Al-
ternating Current (AC) current/voltage, power, resistance,
and electric energy [13]. Since it is a functional electronic
device, it is crucial for the industry to further guarantee that
the accurate and scientific process of electrical parameter
measurements is observed. Thus, machine learning was
used to boost the accuracy of digital measuring tools
in recent years, leading to greater advancements, such
as introducing a deep learning-based solution for reading
recognition for digital multimeters using the You-Only-
Look-Once (YOLO) detection approach in [14]. The dis-
play region along with important data was identified and
extracted successfully which help in reducing maintenance
procedure errors and maximizing the use of human re-
sources. Another study proposed a digital multimeter read-
ing recognition method that is based on machine learning
for automation verification [15]. The verification method
will be automated in the study in order to increase the
effectiveness of power instrument detection. Then, in [16],
this research investigates how deep learning neural network
methods can be integrated to forecast voltage distribution in
electrical power systems focusing on locating smart meters.
Meanwhile, other electrical measures are not considered;
this only predicts voltage magnitude. These studies showed
the power of machine learning for electrical measuring
equipment like digital multimeters. These algorithms can
deliver accurate and real-time predictions by evaluating
electrical measurements, which enables better monitoring
and management of electrical systems.

According to multiple accounts, machine learning was
used to develop prediction models for electrical parameters.
In the study of [17], researchers compared neural network
prediction models, support vector machine (SVM) for re-
gression, and equation discovery for predicting the next
voltage values without performing measurements. Another
prediction modeling was employed through a convolutional
neural network (CNN) to detect and categorize welding cur-
rent to construct an ERT imaging trailer and detect defects
[18]. While in [19], the paper suggests a prediction model of
the input voltage signal received by an underground imaging
system based on genetic programming (GP). Through this,
the prediction model can replace laborious mathematical

calculations with a more accurate and effective approach.
To forecast the charging level, voltage, current, speed, and
mileage of lithium-ion batteries in electric vehicles, an
artificial neural network (ANN) model is considered [20]
while deep neural networks were already utilized for the
prediction of battery life and voltage which addresses the
challenges of lifetime and health prediction of batteries [21].

Nonetheless, the developed models cannot identify se-
quential data, therefore, time series forecasting models
based on deep neural networks have been introduced to
predict electrical parameters such as voltage and current
based on historical data to optimize the prediction’s ac-
curacy. A deep recurrent neural network (DRNN) was
effectively employed in estimating the consumption value
of electricity in the medium to long-time frame [22]. Also,
voltage instability of a power system has been successfully
predicted using the recurrent neural network (RNN) with
particle swarm optimization [23], and by employing an
RNN thru long short-term memory (LSTM) [24] wherein it
demonstrated promising results that are useful as a warning
scheme for system operators. The remaining useful life
(RUL) of electrical devices is predicted using a convo-
lutional neural network integrated with long short-term
memory (CNN-LSTM) network [25]. Non-linear voltages
can be predicted by utilizing the LSTM network which is
found to be accurate and effective [26]. Gated recurrent
unit (GRU) has been introduced also which can be applied
for estimating the charge state of lithium batteries in two
different research [27], [28]. The first research algorithm
employed the measured voltage and measured current as the
input to predict the charge state while the other approach
predicted the charge state by considering the measured
temperature as the input. However, both showed higher
prediction accuracy in predicting the SOC essential for
battery management. In [29], the standard RNN, LSTM,
and GRU models were compared to predict battery voltage.
This study aims to identify the most effective model and
to demonstrate the efficacy of RNN architectures in the
specified task. Ultimately, it was determined that LSTM
outperformed the other two frameworks by means of ac-
curacy. Lastly, RNN, LSTM, and GRU were then explored
to develop prediction models for estimating electrical load
based on current measurements [30]. But, in this experiment
conducted, the GRU model showed the highest potential
regarding accuracy and the lowest error. Based on the afore-
mentioned studies, the performance results of prediction
models may vary depending on the nature of the dataset
and the specific task at hand. To select the best model for a
certain application including current and voltage prediction,
more investigation and testing may be necessary. Also, there
is no specific research that uses machine learning for the
electrical system measurement of a capacitive resistivity
underground imaging system.

In digital multimeters, it is important to consider the
accuracy of electrical parameter readings to reduce and
avoid deviation from their actual value. Additionally, there
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is a need for real-time checking of the generated current
and voltage by a single-pair antenna transmitter subsystem
for underground imaging to verify the parameters of output
signals in comparison to received signals of the receiver
subsystem which is essential in calculating the under-
ground’s resistivity. Most significantly, machine learning
methods have not yet been used to boost the accuracy
of a digital multimeter designed for capacitive resistivity
underground imaging equipment.

With that, the study focuses on the development of a pre-
diction model that can be implemented for a digital measur-
ing unit suitable for capacitive resistivity underground imag-
ing applications. Particularly, three deep neural network
models namely Elman recurrent neural network (ERNN),
long short-term memory (LSTM), and gated recurrent unit
(GRU) were explored to create time-series prediction mod-
els for current and voltage outputs of the transmitter circuit.
To evaluate the performance of the developed prediction
models and to select the best model with greater accuracy to
predict the current and voltage, mean squared error (MSE)
was used and reduced to its absolute minimum. Through the
development of the current and voltage prediction model for
the digital measuring unit, it will allow simultaneous data
acquisition through a single connection from the transmitter
of a single-pair antenna system for underground imaging.
Also, these prediction models contributed to providing a
more accurate output reading of current and voltage which
avoids the utilization of a separate, bulky, and multiple
connection measuring device. Also, predictive models may
continuously build upon and adjust to sudden changes in the
electrical system, producing predictions and measurements
with greater accuracy.

2. Materials andMethods
This research involves five major steps in the develop-

ment of prediction models of current-voltage digital meter
for monitoring of transmitter subsystem for underground
imaging (Fig. 1). It starts with the construction of the
current-voltage measuring circuit connected to the trans-
mitter circuit designed for underground imaging equipment,
then simulation of the circuitry for the collection of mea-
sured current and voltage data based on measured DC input
voltage (Vdc) and set operating frequency (fo), followed
by the development of the different deep neural network
models specifically ERNN, LSTM, and GRU to be used
in predicting the output current and voltage. After that,
training, validation, and testing of deep neural network
models were conducted, and lastly, the selection of the best
neural network model with the lowest MSE and comparison
of predicted results with the measured values.

A. Construction of Transmitter Measuring Circuit
A capacitive resistivity underground imaging system

comprised of transmitter and receiver subsystems to obtain
electrical measurements from the ground [8]. Prior to con-
structing a digital measuring circuit, a transmitter circuit is
first designed, and it operates at frequencies ranging from

3.5 KHz to 18.5 KHz. The transmitter circuit can send out
sine, triangular, or rectangular wave signals.

Figure 1. Step-by-step process of the prediction of current and
voltage for digital measuring circuit to be used for monitoring the
transmitted signals in capacitive resistivity underground imaging
system

The range of output voltage from the transmitter is from
500 Vpk to 1500 Vpk with a minimum power of 2 W and a
maximum power of 20 W. To achieve a 10 W output power,
its corresponding output voltage must be 10 W. While at
maximum power output, the maximum current is close to
15 mA.

The electrical parameters required for proper mea-
surement and analysis of the resistivity of underground
imaging using the capacitive resistivity technique are the
transmitter’s output current and voltage, and the receiver’s
in-phase voltage component reading [8]. These electrical
measurements are essential for the computation of the
ground equivalent resistance using Ohm’s Law [31]. The
digital measuring circuit, designed in this study, focused
on acquiring only the measurements from the transmitter
subsystem, therefore with the readings of the output cur-
rent and voltage. Analog signal processing is used on the
transmitter’s output, and digital signal processing is done on
the measurement circuit’s output signal before it is sent to
the Arduino. The key purpose of the constructed transmitter
measuring circuit is to obtain the current and voltage signal
levels from the output of the transmitter and convert it into
signals that are within the input threshold of Arduino or any
microcontroller, usually 0 − 3 V. In the actual implementa-
tion of a capacitive resistivity underground imaging system,
the current and voltage being transmitted to the ground
cannot be determined without a measuring device being
linked to it, thus, a digital measuring circuit is necessary as
these transmitted amounts of current and voltage signals are
valuable in data processing and analysis of underground’s
electrical properties.
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Figure 2. Transmitter digital measuring circuit designed using Proteus Simulation Software

The digital measuring circuit, which is designed and
simulated using Proteus Software (Fig. 2), is composed of a
500 µΩ shunt resistor that is used for measuring and obtain-
ing the transmitter output’s current values, represented by a
current source for an isolated simulation. Its corresponding
AC voltage signal present at the shunt resistor is amplified
with a gain of 322,641 using a 3-stage cascaded amplifier.
The amplified AC voltage signal is then converted to a DC
voltage signal using a peak detector circuit which served
as an input in the A1 ADC pin of the Arduino. The DC
voltage at the A1 10-bit ADC pin is measured and needed
to be converted to its equivalent transmitter peak current,
thus simulations were performed to compile relationships
between the current and the measured DC voltage signal.
Moreover, a parallel connection between the output of the
3-stage cascaded amplifier and a comparator circuit was
created to generate pulse signals that have an output ranging
from 0 to 2.5 Vpk-pk. This pulse signal then serves as an
input to the Arduino using the A0 ADC pin which is useful
so that the Arduino could read the measured signals. The
LCD is then used for displaying the transmitter current and
voltage.

B. Data Collection and Preparation
To consider the effect of the coupling and parasitic

capacitances acting as filters that change the frequency
response of the measuring circuit in capacitive resistivity
underground imaging, different input signal frequencies
were considered in the circuit simulation, and from that
the transmitter output current can be represented not just as
a function of the measured DC signal but also taking into
account of operating frequency. The frequency is obtained
from the pulses at the input signal of the A0 ADC pin.
The first 139-row dataset was obtained from the circuit
simulation by adjusting the values of transmitter output
current through a current source as shown in Figure 2.
Only 139 rows were gathered because the computer used for
Proteus simulation experienced slow run time due to exces-
sive Central Processing Unit (CPU) load and insufficient
RAM. This resulting 139-row dataset contains the list of
random values of signal operating frequencies ranging from
3.178 KHz to 18.5 KHz, corresponding measured DC input
voltages ranging from 0.487 Vdc to 2.5 Vdc, and the equiv-

alent measured output current values of 4 mA to 15 mA.
These three parameters of the first dataset were used for
training the developed current prediction models whereas
the input parameters used are the obtained measured DC
input voltages and operating frequencies while the target
output parameter is the measured output current from the
measuring circuit.

With the established dataset for model training for
current prediction, the next step is to acquire the relation of
the transmitter output voltage to be defined by the predicted
current to identify the specific parameters needed in training
the voltage prediction models. Through the simulations
performed with the transmitter circuit, it was observed that
the relationship between the output voltage and current was
not perfectly linear, therefore there is a need to generate
another dataset for peak voltage prediction to lessen the
error compared to an MSE of 62 from simply multiplying
the predicted current with the average computed circuit load
of 102.54Ω. From the simulation, the second dataset is
composed of 419 rows of relationships of the transmitter
output currents and voltages ranging from 4 mA to 15 mA
and 411 Vpk to 1485 Vpk, respectively. These parameters
were used to train the voltage prediction models wherein
the measured current from the transmitter circuit’s output
is used as the input parameter, and the measured voltage is
the target output.

C. Recurrent Neural Network Modeling
Advanced deep learning prediction and classification

techniques called recurrent neural networks (RNNs) are
especially effective at dealing with time-series information
along with other data sets that are sequential [32] that
perform well and most sophisticated method for machine
learning, and natural language processing [33]. Typically,
an RNN’s hidden state ht dynamics given an input sequence
x=x1,x2,. . . ,xt may be expressed as:

ht =

{
0, i f (t = 0)
∅(ht−1, xt), otherwise

(1)

where ∅ is a non-linear function while the updated recurrent
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hidden state is stated as follows:

ht = σ(Wxt + Uht−1) (2)

where σ is a hyperbolic tangent function, W is the input
neuron weight, and U is the recurrent neuron weight. Thus,
the output Z at time t is calculated as:

Zt = (Why + ht) (3)

where Why is the corresponding weight at the output layer.

In this study, the prediction of the current level has been
performed specifically using the Elman recurrent neural
network (ERNN) architecture presented in Figure 3 whereas
there are two inputs (DC input voltage and operating
frequency), three hidden layers, and one expected output
for predicted current.

Figure 3. The designed Elman recurrent neural network architecture
for current signal prediction

D. Long Short-Term Memory
The long short-term memory (LSTM) model was deep

neural network created to address the inadequacies of
RNNs, for the purpose of capturing long-term information
and improving performance on long sequence data [34],
To overcome the problems of disappearing gradients and
gradient expansion, LSTM introduces input gates and forget
gates [35].

The LSTM layers are comprised mainly of four gates

that manipulate the cell-state data. The first is referred to
as the ”forget gate,” which recognizes and omits data that
is optional and not necessary. The sigmoid function also
specifies which of the previous output can be removed.
The input gate comes next, where the sigmoid function
determines whether or not the data will be written. The next
layer is the candidate gate with the tanh functions that weigh
the importance of the data and control what to write in the
cell state. The output gate then determines what information
should be delivered as the output concealed state ht after
filtering the new values generated by the tanh layer from the
cell state ct with the sigmoid function [36]. The cell state is
in charge of adding or eliminating previous data based on
its relevance and importance in making the forecast [34].

it = σ(xtU i + ht−1W i) (4)

ft = σ(xtU f + ht−1W f ) (5)

ot = σ(xtUo + ht−1Wo) (6)

In (4) to (6), it, ft, ot represent the input gate, forget
gate, and output gate where σ is the sigmoid function, xt is
the input given, Ui,Uf, and Uo, represent the weight of the
input in the input, forget, and output gates respectively, ht-1,
holds the data from the preceding terms, while Wi, Wf, and
Wo are the weights of the data from the preceding terms
in the input, forget, and output gates. Then, the cell state
ct is given to tanh function and multiplied to ot to get the
updated hidden state ht.

E. Gated Recurrent Unit
The gated recurrent unit (GRU) is a specific kind

of optimized deep LSTM-based recurrent neural network
that keeps the LSTM immunity to the vanishing potential
problem. Updating the internal states requires less work
since the underlying structure is simpler and easier to
train. The reset port decides whether the current state
should be coupled with the prior information, while the
update port governs how much of the state data from the
last instant is maintained in the present condition. GRU
requires less memory and is quicker than LSTM. However,
when working with datasets that comprise longer sequences,
LSTM is accurate to a greater extent [35]. GRU’s input and
output structures are identical to those found in a standard
RNN, while its internal structure is comparable to an LSTM
[35]. A typical GRU is composed of reset gate r and update
gate textitz which can be calculated as:

rt = σ(xtWr + ht−1Ur) (7)

zt = σ(xtWz + ht−1Uz) (8)
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where σ is the sigmoid function, xt is the given input, Wr
and Wz are the weights in the input of the reset and update
gate, respectively, ht-1 holds the data of the preceding units
while Ur and Uz represent the weights of the preceding
units in the reset and update gate, accordingly. Finally, the
hidden state ht is calculated using the hidden state of time
t-1 and input time series value xt.

Additionally, the LSTM and GRU architecture for cur-
rent prediction used in this study is presented in Figure 4
It represents two inputs (DC input voltage and operating
frequency), three hidden layers, a fully connected layer, and
one expected output for predicted current.

Figure 4. The designed LSTM and GRU network architecture for
current signal prediction

F. Peak Voltage and Peak Current Prediction using ERNN,
LSTM, and GRU
The three deep neural networks, specifically, ERNN,

LSTM, and GRU, were coded and performed using MAT-
LAB Software. The ERNN was modeled using the hyper-
parameters presented in Table I while LSTM and GRU are
shown in Table II. Each of the three deep neural network
models is composed of three hidden layers wherein in
hidden layer 1, the simulated number of neurons was set
to 500, 700, 900, 1100, and 1300, in hidden layer 2 was
200, 400, 600, 800, 1000, and in hidden layer 3 was 100,
300, 500, 700, 900. The three models each received 500,
1000, 1500, 2000, and 2500 training epochs.

The logarithmic transfer function ‘logsig’ has been
applied as the function of activation for each hidden layer in
the optimum network architecture in ERNN, linear transfer
function ‘purelin’ has been applied to the output layer, while
‘trainrp’ is used as the network training function by which
in accordance with the resilient backpropagation method, it
adjusts the values of the weights and biases.

To update the parameters of the network in a custom
training loop in LSTM and GRU model for current pre-
diction, the stochastic gradient descent with momentum

(SGDM) algorithm was applied. On the other hand, for volt-
age prediction, the adaptive moment estimation optimizer
(ADAM) was employed. Lastly, LSTM and GRU models
also employed an initial rate of learning of 0.01 and 128 as
the minibatch size.

TABLE I. Hyperparameters for Current and Voltage Predictions
using ERNN

Hyperparameter Value

1st Layer Number of Neurons 500, 700, 900, 1100, 1300
2nd Layer Number of Neurons 200, 400, 600, 800, 1000
3rd Layer Number of Neurons 100, 300, 500, 700, 900

Number of Training Epochs 500, 1000, 1500, 2000, 2500
1st Layer Activation Function Logsig
2nd Layer Activation Function Logsig
3rd Layer Activation Function Logsig

Output Layer Activation Function Purelin
Training Function Trainrp

TABLE II. Hyperparameters for Current and Voltage Predictions
using LSTM and GRU

Hyperparameter Value

1st Layer Number of Neurons 500, 700, 900, 1100, 1300
2nd Layer Number of Neurons 200, 400, 600, 800, 1000
3rd Layer Number of Neurons 100, 300, 500, 700, 900

Number of Training Epochs 500, 1000, 1500, 2000, 2500
Optimizer/Training Function SGDM/ADAM

Initial Learning Rate 0.01
Minibatch Size 128

G. Prediction Model Evaluation Metric
Since the study is a regression task, thus, one specific

evaluation metric design used to assess the prediction mod-
els’ performance is the Mean Squared Error (MSE). This
indicator provides a measurement of how well the model
works in terms of prediction accuracy by measuring the
error or a disparity between predicted and actual values.

The MSE between the actual and predicted values for
each output node in relation to network training was used
to determine the performance of the three deep neural
networks. It is expressed mathematically as:

MS E =
1
n

n∑
i=1

Yi − Ŷi (9)

where n is the data points number, Yi is the actual values,
and Ŷ i is the predicted values.

3. Results and Discussion
A. Relationship of the Electrical Antenna Parameters

To ascertain the degree of relationship between the trans-
mitter antenna operating frequency, DC input voltage, and
the resulting antenna current, a Pearson correlation analysis
with a 95% confidence level was carried out. In the Minitab
platform, two parallel coordinate charts were created to
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clarify the non-linear relationships of the relevant antenna
electrical characteristics (Fig. 5). The peak current and
peak voltage ratings have an extremely positive correlation
(R2 = 1) and the antenna transmitter DC input voltage
(VDC) has a very strong positive correlation with the output
current (R2 = 0.956) which suggests that VDC is a highly
significant input parameter that could potentially alter the
receiver voltage readings, especially with composite air and
biomaterials as dielectric. On the other hand, the operating
frequency of the transmitter has weak negative (R2 = -
0.134) and weak positive (R2 = 0.129) impacts on VDC and
output current which confirmed that it is only responsible
for the degree of resolution in the receiver side, however, it
should be properly calibrated to assure capacitive resistivity
operation.

Figure 5. Parallel coordinate plots (a) between peak current and
voltage ratings, and (b) among operating frequency, DC input
voltage, and output current of the transmitter antenna

B. Simulation Comparison of Current Prediction Models
The simulated current prediction models in MATLAB

Software using ERNN, LSTM, and GRU are shown in
Table III. In this paper, 25 configurations of ERNN current
prediction models have been trained. To train the different
model combinations, The 139 patterns input-output dataset
was separated into three distinct sets at random: a training
data set, which makes up 56% of the data, a validation
data set, which makes up 24% of the data, and a test data
set, which makes up 20% of the data. The input parameter
used for current prediction is the obtained measured DC
input voltages of the transmitter circuit and set operating

frequency ranging from 3.5 KHz to 18.5 KHz and the
target output parameter is the measured current from the
measuring circuit. The training target error performance was
set to 1 × 10-8. It can be observed that the trained model
with hidden neuron combination of 500-200-100 and some
of the trained configurations have a rapid elapsed time of
less than 100 seconds due to the vanishing or exploding
gradient descent encountered during training by which it
is evident that one of the drawbacks of RNN is that when
the network is unfolded for an excessive number of time
steps or when it is processing the lengthy sequential data
used in this study, the gradient of some of the weights tends
to become overly small or big [37]. Due to the gradient’s
shifting weight, if the weight has been set low enough, the
gradient will vanish and the hidden layer next to the input
layer will discontinue learning. On the other side, a weight
that is excessively large will result in a rapid increase in the
gradient. RNN lacks long-term memory, so it is sensitive
to time steps and will be impacted by short-term memory
[35]. Moreover, six out of the 25 trained ERNN models
have almost met the performance criterion of 1 × 10-8. For
the current prediction ERNN model, the combination of
900-600-500 hidden neuron network models with training
epochs of 2,500 has the lowest MSE during training.

Another 25 configured networks of LSTM models have
been trained also for the current prediction. The simu-
lated current prediction models using LSTM are presented
(Table III). For the input-output dataset, the 139 rows
of sequential data for current prediction are divided into
three: 80% for the training data, 10% as validation data,
and the remaining 10% as testing data. The ‘SGDM’
optimizer performed well as the training function for the
current prediction dataset because it helps to accelerate
gradient vectors in the correct directions, which causes
short sequential data to converge more rapidly. From the
perspective of the training time, the average running time
of the LSTM model for the current prediction is 444.48
seconds. Although there are networks with less than 100
seconds of elapsed time, the LSTM models have solved
the issue of vanishing or exploding gradient descent [35].
All the configured networks completed the learning process.
Thus, the combination of 900-600-500 hidden neurons with
2500 training epochs achieved the lowest training MSE for
the LSTM network.

The GRU models for current prediction are comprised
also of 25 different networks presented in Table III. Similar
to LSTM, the input-output dataset included 139 rows of
sequential data that were split into 80% training data,
10% data for validation, and the other 10% of data for
testing. Since GRU is also proven to address concerns
with exploding or vanishing gradient descent. All network
models were learned with an average running time of 763.56
seconds. This shows that the GRU models have a slower
average training time than the LSTM because the simulated
networks are comprised of a complex and larger number of
parameters. Hence, the 500-200-100 hidden neuron network
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TABLE III. Simulated Current Prediction Models using ERNN, LSTM, and GRU

Layer 1 Layer 2 Layer 3 Epochs ERNN LSTM GRU
Train MSE Run Time (s) Train MSE Run Time (s) Train MSE Run Time (s)

500 200 100 500 4.41 × 10-4 23 1.910 55 0.861 73
500 200 100 1000 1.39 × 10-7 51 0.897 107 0.877 135
500 200 100 1500 1.28 × 10-5 74 0.933 162 0.795 203
500 200 100 2000 4.21 × 10-5 97 0.985 156 0.990 278
500 200 100 2500 9.90 × 10-8 49 0.847 222 0.938 338
700 400 300 500 2.83 × 10-5 57 1.030 107 0.892 187
700 400 300 1000 1.19 × 10-5 114 1.020 227 0.942 312
700 400 300 1500 3.32 × 10-6 166 0.906 224 0.796 429
700 400 300 2000 9.98 × 10-8 194 1.030 334 0.870 597
700 400 300 2500 3.13 × 10-6 274 0.988 384 0.798 644
900 600 500 500 2.52 × 10-5 107 0.981 136 0.932 228
900 600 500 1000 2.43 × 10-6 219 0.875 181 0.898 471
900 600 500 1500 6.08 × 10-5 312 1.080 415 0.807 631
900 600 500 2000 9.98 × 10-8 326 0.949 537 0.933 782
900 600 500 2500 9.82 × 10-9 354 0.845 592 0.978 1130
1100 800 700 500 6.63 × 10-2 178 1.060 179 0.861 362
1100 800 700 1000 1.18 × 10-4 347 1.210 200 0.949 694
1100 800 700 1500 6.04 × 10-6 532 0.959 513 1.030 1066
1100 800 700 2000 1.80 × 10-4 725 1.030 717 0.881 1414
1100 800 700 2500 6.13 × 10-7 873 0.966 905 0.834 1825
1300 1000 900 500 9.03 × 10-5 259 0.883 270 0.989 496
1300 1000 900 1000 5.31 × 10-5 561 1.020 598 0.849 1026
1300 1000 900 1500 9.95 × 10-8 581 0.895 870 0.868 1512
1300 1000 900 2000 6.38 × 10-4 1047 0.860 1191 0.961 1850
1300 1000 900 2500 9.99 × 10-8 998 0.917 1830 7.710 2424

with 1500 training epochs attained the lowest training MSE
since GRU is more accurate and faster with fewer training
parameters and a smaller dataset. Additionally, consider-
ing the model principle, GRU can disremember and pick
memories with just one gate, since there is less number
of neurons in a 500-200-100 hidden neuron network with
shorter training epochs, it accomplishes the task with greater
efficiency and precision than the other configurations [35].

C. Simulation Comparison of Voltage Prediction Models
The simulated voltage prediction models using ERNN,

LSTM, and GRU are presented in Table IV. There are also
25 configured networks for each of the ERNN, LSTM, and
GRU. In order to forecast the voltage using ERNN, 419
series of measured current from the transmitter circuit’s
output are used as the input data, and the matching 419
series of measured voltage is utilized as the target output
dataset. These 419 datasets were divided into 56% for
training, 24% for validation, and 20% for testing. Similar
to the current ERNN prediction models, the training target
error performance was set to 1 × 10-8 and all the ERNN
combinations of 500-200-100 hidden neurons and other
trained configurations also experienced a rapid training
elapsed time because of the vanishing gradient descent
wherein to calculate the gradients with respect to the fea-
tures in the hidden layers of the preceding time step should
need an extensive amount of computation [37]. However,
the ERNN combination of 1300-1000-900 hidden neurons
with 2000 training epochs met the lowest training MSE for
this network.

Furthermore, the simulated voltage prediction models
using LSTM are given in Table IV. In the following
networks, the same as ERNN, the 419 input-output datasets
were also applied for the training, validation, and testing.
These 419 rows are divided into 80% training data, 10%
validation data, and 10% testing data. The average running
time of the training period for voltage prediction using
LSTM is 775.6 seconds. Also, the chosen ‘ADAM’ opti-
mizer for voltage prediction worked well as the training
function since it is appropriate for the optimization of larger
datasets [38]. The problem with vanishing or exploding
gradient descent of RNN voltage prediction models was
also addressed by the LSTM voltage prediction models.
Therefore, the 900-600-500 hidden neuron combination of
2500 training epochs attained the lowest possible training
MSE.

Lastly, the simulated GRU voltage prediction models
are shown in Table IV. The 419 input-output datasets were
also applied for the training, validation, and testing. These
419 rows are divided into 80% training data, 10% validation
data, and 10% testing data. The average running time of the
training period for voltage prediction using GRU is 1189.09
seconds which is slower than the LSTM, but the best GRU
network is the same results as the LSTM current prediction
model which is the 500-200-100 hidden neuron combination
of 1500 training epochs.
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TABLE IV. Simulated Voltage Prediction Models using ERNN, LSTM, and GRU

Layer 1 Layer 2 Layer 3 Epochs ERNN LSTM GRU
Train MSE Run Time (s) Train MSE Run Time (s) Train MSE Run Time (s)

500 200 100 500 8.23 × 10-4 4 5.69 × 104 91 1.02 × 105 134
500 200 100 1000 7.84 × 10-7 5 335 197 8.34 × 104 165
500 200 100 1500 7.59 × 10-5 4 163 289 8.12 × 104 206
500 200 100 2000 8.37 × 10-5 4 112 290 8.06 × 104 327
500 200 100 2500 7.55 × 10-8 4 112 376 2.12 × 103 407
700 400 300 500 3.230 85 182 139 7.93 × 104 198
700 400 300 1000 2.210 168 283 317 7.98 × 104 372
700 400 300 1500 1.410 256 98 473 7.99 × 104 557
700 400 300 2000 1.460 332 21 641 8.89 × 104 670
700 400 300 2500 1.940 471 31 744 8.37 × 104 944
900 600 500 500 2.890 177 244 234 8.02 × 104 320
900 600 500 1000 5.770 330 51 467 8.28 × 104 655
900 600 500 1500 1.550 569 27 623 8.74 × 104 984
900 600 500 2000 1.730 12 27 1017 8.32 × 104 1252
900 600 500 2500 1.190 898 16 1175 8.03 × 104 1739
1100 800 700 500 1.720 272 89 391 8.47 × 104 535
1100 800 700 1000 6.900 600 53 698 7.97 × 104 1168
1100 800 700 1500 0.523 889 54 1050 8.24 × 104 1788
1100 800 700 2000 0.834 1243 23 1278 8.24 × 104 2219
1100 800 700 2500 1.160 47 24 1802 8.25 × 104 2700
1300 1000 900 500 1.210 380 153 512 8.19 × 104 830
1300 1000 900 1000 0.717 808 36 971 8.34 × 104 1683
1300 1000 900 1500 0.909 63 134 1458 1.10 × 105 2319
1300 1000 900 2000 0.465 552 33 1852 8.14 × 104 3346
1300 1000 900 2500 0.915 1053 31 2305 8.09 × 104 4209

D. Evaluation of RNN, LSTM, and GRU Model Perfor-
mance
The best deep neural network models for each of the

simulated ERNN, LSTM, and GRU for current and voltage
prediction were consolidated in Table V and Table VI, re-
spectively. After training the different networks, the selected
best models were validated and tested. For the prediction
of current, the results (Table V) reveal that the ERNN of
900-600-500 hidden neuron combination of 2500 training
epochs outperformed the LSTM and GRU models with the
lowest training MSE of 9.82 × 10-9 and a validation MSE
of 1.26 × 10-8 which is lower than the test MSE of 0.587.
Therefore, this configuration is selected as the best-trained
model in predicting the current for the current measuring
circuit of the transmitter antenna applied in underground
imaging. This also shows that the ERNN provides better
accuracy than the two other models due to the training
hyperparameters and length of data samples.

Same with predicting the voltage, the best-simulated
models for ERNN, LSTM, and GRU are shown in Table 6.
From that, it has been proven that the ERNN has also bested
the LSTM and GRU results. The ERNN model of 1300-
1000-900 hidden neuron combination with 2000 training
epochs has the lowest training MSE of 0.465, validation
MSE of 0.659, and test MSE of 0.751, thus, it is selected
as the best-trained model for the application of this study in
predicting the voltage for measuring circuit of transmitter
antenna used in underground imaging.

To visualize the actual current from the transmitter
antenna and the predicted current generated by the three
best-trained models, the scatter plot with the regression line
of the three models (ERNN, LSTM, GRU) is presented
in Figure 6 with the predicted and actual current values
obtained during model training. The selected best-trained
ERNN model with 900-600-500 hidden neuron network of
2500 training epochs presented the best fit for the data
(Fig. 6a) since the points are close to the regression line
implying that the predicted values are close to the actual
values. Conversely, the scatter plot of the predicted and
actual values generated by the best-trained LSTM and GRU
models (Fig. 6a and Fig. 6c) are not visually appealing
and did not present a good fit since there are points that
are far from the regression line indicating slightly large
discrepancies between the predicted and actual current
values.

In Figure 7, the comparison of actual output peak volt-
age from the transmitter and predicted voltages produced
by the three models (ERNN, LSTM, GRU) is visualized
through a scatter plot graph. The chosen optimum trained
ERNN model with 1300-1000-900 hidden neuron network
of 2000 training epochs provided the best fit for the actual
voltage values against the predicted voltage values (Fig.
7a). Its plot displays the points that are close to the
regression line. However, it is evident that the two other
voltage prediction models did not provide a good fitting
for the actual and predicted voltage. Figure 7b and Figure
7c, respectively, of the scatter plots for the LSTM and

https:// journal.uob.edu.bh/

https://journal.uob.edu.bh/


636 J. J. Baun, et al.: Deep Neural Network-based Current and Voltage Prediction Models for Digital...

TABLE V. Best Models for Simulated ERNN, LSTM, and GRU Networks for the Current Prediction

Model Layer 1 Layer 2 Layer 3 Epoch Train MSE Validation MSE Test MSE

ERNN 900 600 500 2500 9.82 × 10-9 1.26 × 10-8 0.587
LSTM 900 600 500 2500 0.845 1.06 1.51
GRU 500 200 100 1500 0.795 1.42 1.42

TABLE VI. Best Models for Simulated ERNN, LSTM, and GRU Networks for the Voltage Prediction

Model Layer 1 Layer 2 Layer 3 Epoch Train MSE Validation MSE Test MSE

ERNN 1300 1000 900 2000 0.465 0.659 0.751
LSTM 900 600 500 2500 1.60 1.36 1.49
GRU 500 200 100 1500 2120 1690 2860

Figure 6. The scatter plot of the actual current from the transmitter antenna circuit against the predicted current obtained from: a). 900-600-500
ERNN network, b.) 900-600-500 LSTM network, and c.) 500-200-100 GRU network

Figure 7. The scatter plot of the actual voltage from the transmitter antenna circuit against the predicted voltage obtained from: a). 1300-1000-900
ERNN network, b.) 900-600-500 LSTM network, and c.) 500-200-100 GRU network

GRU models, illustrate that the predicted values are almost
constant, indicating that the regression models are unable to
capture the hidden trends in the data, leading to poor fit of
the models and failure to generalize new data. Although the
LSTM training MSE is small, the value of R2 is negative
which is possible in some case, and it indicates that the
model did not successfully learn the data’s pattern providing
a constant function that always predict the mean value of
the voltage dataset. Therefore, the best-trained LSTM as
well as GRU model is not appropriate to be selected as the
voltage prediction model in this work.

The results show that the selected ERNN models have
the minimum MSE and better accuracy closer to the actual
value of current and voltage signals which is essential

compared to manual computations of output parameters
through Ohm’s Law and it is proven that RNN works
effectively as presented in [16], [18] by its ability to estimate
reference voltage for monitoring purposes without actually
performing any measurements and in predicting electrical
parameters. Compared with LSTM and GRU, the ERNN
model has the ultimate advantages of fast training speed and
lower predictive error in this application. This study shows
that, depending on the specific prediction task, ERNN
remains capable of outperforming the other two models as
opposed to [29], [30], where LSTM and GRU delivered
the maximum prediction accuracy. The parameters that are
selected and the overall amount of data may have an impact
on the outcomes since RNN often works better on large
datasets and with complex training hyperparameters, as
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prior research publications have demonstrated, and because
its structure comprises feedback connections/weights that
induce its memory attribute [39]. This also implies that
the selected model can be implemented on the Arduino-
based current measuring circuit allowing simultaneous data
acquisition through a single connection, however, the com-
putational cost is significantly affected by how the ERNN
model is implemented given that it is a huge network
that needs higher computational processing. With that, the
MATLAB Software was also not able to convert the ERNN
code into its corresponding MEX function and Arduino
language for execution purposes. For future studies, the
researchers would like to consider actual implementation
of the selected models by changing the microcontroller
with a better hardware interface, high resolution, and more
powerful processing capabilities.

4. Conclusion and FutureWorks
In this study, a prediction model for the current and

voltage of a designed digital measuring unit of a capaci-
tive resistivity underground imaging system is developed.
Specifically, different deep neural network models were
investigated to predict the output current and peak voltage
from the transmitter circuit. These three deep neural net-
work models are Elman recurrent neural network (ERNN),
long short-term memory (LSTM), and gated recurrent unit
(GRU) which are designed and simulated in MATLAB
software. For the current prediction, the dataset comprised
of 139 rows. The input data used are the measured DC
input voltages obtained from the simulated digital measur-
ing circuit and the operating frequency of the transmitter
circuit ranging from 3.5 KHz to 18.5 KHz while the
output datasets are the measured output current of the
transmitter circuit. On the other hand, in predicting the
output peak voltage of the transmitter circuit, the input and
output dataset is composed of 419 rows of transmitter peak
currents and corresponding voltages ranging from 4 mA
to 15 mA and 411 Vpk to 1485 Vpk, respectively. There
are 25 configurations simulated for each of the ERNN,
LSTM, and GRU networks with different combinations of
hidden neurons on each of their three hidden layers and
various training epochs. Based on the lowest MSE, the
performance of the prediction models was evaluated. The
results show that the ERNN models both for current and
voltage prediction provide the optimum accuracy with the
lowest MSE. The ERNN model with a 900-600-500 hidden
neuron network trained at 2500 epochs outperformed the
LSTM and GRU models with the lowest training MSE of
9.82 × 10-9 and a validation MSE of 1.26 × 10-8 which
is lower than the test MSE of 0.587 in the prediction of
output current. Additionally, the ERNN has also bested
the LSTM and GRU results in predicting the output peak
voltage of the transmitter circuit. The configured 1300-
1000-900 hidden neuron network ERNN model trained at
2000 training epochs has the lowest training MSE of 0.465,
validation MSE of 0.659, and test MSE of 0.751. The
chosen best-trained models are deemed to be acceptable
and offered a more accurate output reading of current and

voltage, avoiding the use of a separate, large, and multi-
ple connection measuring device. Additionally, the ERNN
algorithm of the best-trained models can be integrated
into the actual development of the hardware and software
of the transmitter digital measuring unit of a capacitive
underground imaging system, thus, enabling simultaneous
data acquisition through a single connection only from the
transmitter subsystem. However, the developed models have
not been tested in either simulation or actual set-up because
the Arduino microcontroller used in the circuit simulation
has limited processing power and memory to perform the
required high computational processing of ERNN model
while MATLAB was also not able to convert the ERNN
algorithm into its corresponding MEX function and Ar-
duino language for execution purposes. Machine learning
on an Arduino board might need some more work and
optimization. Therefore, the next stage for this study is
the actual implementation of the selected best models by
utilizing more advanced and high-powered microcontrollers.
It is also advisable to retrain the model with a new set of
data or adjust the parameters to improve the accuracy and
reliability particularly for the actual implementation.
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